hp-Adaptive RPD based sequential convex programming for reentry trajectory optimization
Sequential convex programming (SCP) methods have been developed to solve reentry trajectory optimization problems. Due to the oversimplified discretization and iteration, the accuracy and efficiency of the existing SCP methods can be further improved. In this paper, a SCP algorithm based on the hp-a...
Uložené v:
| Vydané v: | Aerospace science and technology Ročník 130; s. 107887 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Masson SAS
01.11.2022
|
| Predmet: | |
| ISSN: | 1270-9638, 1626-3219 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Sequential convex programming (SCP) methods have been developed to solve reentry trajectory optimization problems. Due to the oversimplified discretization and iteration, the accuracy and efficiency of the existing SCP methods can be further improved. In this paper, a SCP algorithm based on the hp-adaptive Radau pseudospectral discretization (RPD) is proposed. In the proposed algorithm, the iteration process is divided into three stages depending on the characteristics of subproblems. The constraint relaxation technique is applied in the first stage to ensure that the iteration is stable. During the second stage, the number and position of discretized points will be updated adaptively according to the discretization error and the curvature of state. In the last stage, the linearization error is reduced by several iterations without updating mesh, and the regularization technique is utilized to improve the convergence rate of this process. The proposed algorithm is validated and examined by a typical reentry example. With comparable or even higher results accuracy, the CPU time reduced by 40%-70% when compared to other SCP methods, and is only twentieth of that of GPOPS-II. |
|---|---|
| AbstractList | Sequential convex programming (SCP) methods have been developed to solve reentry trajectory optimization problems. Due to the oversimplified discretization and iteration, the accuracy and efficiency of the existing SCP methods can be further improved. In this paper, a SCP algorithm based on the hp-adaptive Radau pseudospectral discretization (RPD) is proposed. In the proposed algorithm, the iteration process is divided into three stages depending on the characteristics of subproblems. The constraint relaxation technique is applied in the first stage to ensure that the iteration is stable. During the second stage, the number and position of discretized points will be updated adaptively according to the discretization error and the curvature of state. In the last stage, the linearization error is reduced by several iterations without updating mesh, and the regularization technique is utilized to improve the convergence rate of this process. The proposed algorithm is validated and examined by a typical reentry example. With comparable or even higher results accuracy, the CPU time reduced by 40%-70% when compared to other SCP methods, and is only twentieth of that of GPOPS-II. |
| ArticleNumber | 107887 |
| Author | Zhang, Tengfei Su, Hua Gong, Chunlin |
| Author_xml | – sequence: 1 givenname: Tengfei orcidid: 0000-0002-1940-3868 surname: Zhang fullname: Zhang, Tengfei – sequence: 2 givenname: Hua surname: Su fullname: Su, Hua – sequence: 3 givenname: Chunlin orcidid: 0000-0003-4803-3867 surname: Gong fullname: Gong, Chunlin email: leonwood@nwpu.edu.cn |
| BookMark | eNp9kM9KAzEQh4Mo2FYfwFteYGuS3W42eCr1LxQUUTyGbDKpWbqbNVmL9elNrScPPc1vGL5h5huj4853gNAFJVNKaHnZTFUcpowwlnpeVfwIjWjJyixnVBynzDjJRJlXp2gcY0MIYaJgI_T23mdzo_rBbQA_P13jWkUwOMLHJ3SDU2usfbeBL9wHvwqqbV23wtYHHCDNwxYPQTWgB5-iT1ta960G57szdGLVOsL5X52g19ubl8V9tny8e1jMl5lmjA-ZVsYUpZ0JTqGaiUJUhSAEuBWG1ZxQZoGUXNuaAhdlYRnQvDKUG1KQWs9IPkF0v1cHH2MAK_vgWhW2khK5MyMbmczInRm5N5MY_o_Rbvi9Oj3j1gfJqz0J6aWNgyCjdtBpMC4kCdJ4d4D-AZTwgWI |
| CitedBy_id | crossref_primary_10_1016_j_actaastro_2025_01_041 crossref_primary_10_3390_aerospace11090785 crossref_primary_10_1016_j_ast_2024_108969 crossref_primary_10_1016_j_ast_2025_109938 crossref_primary_10_1016_j_arcontrol_2024_100957 crossref_primary_10_1016_j_ast_2025_109958 crossref_primary_10_1109_ACCESS_2024_3443395 crossref_primary_10_1016_j_cja_2024_08_030 crossref_primary_10_1016_j_actaastro_2024_08_057 crossref_primary_10_1016_j_asr_2025_05_051 crossref_primary_10_1109_TAES_2024_3419073 crossref_primary_10_1109_TAES_2024_3417425 crossref_primary_10_1016_j_ast_2024_109544 crossref_primary_10_1016_j_ast_2024_109349 crossref_primary_10_1016_j_ast_2024_109128 crossref_primary_10_1016_j_ast_2024_109464 crossref_primary_10_3390_aerospace12060539 crossref_primary_10_1016_j_ijhydene_2023_11_030 crossref_primary_10_23919_JSEE_2025_000013 crossref_primary_10_1016_j_ast_2024_108938 crossref_primary_10_1016_j_ast_2023_108656 crossref_primary_10_1016_j_ast_2024_109527 crossref_primary_10_1016_j_apenergy_2024_123166 crossref_primary_10_3390_drones8120709 crossref_primary_10_1109_ACCESS_2024_3492200 crossref_primary_10_3390_aerospace12020141 |
| Cites_doi | 10.2514/1.G001210 10.1016/j.ast.2021.106946 10.1145/2558904 10.1016/j.ast.2020.106374 10.1109/TIE.2014.2341553 10.1016/j.automatica.2010.10.037 10.1109/TAES.2016.150741 10.5772/intechopen.81309 10.1007/s10589-022-00350-6 10.1016/j.paerosci.2019.05.003 10.1109/TCST.2012.2237346 10.2514/1.G003731 10.2514/3.21355 10.1016/j.ast.2017.02.023 10.1016/j.ast.2020.106285 10.2514/1.27553 10.1007/s10107-021-01631-4 10.1007/s10589-007-9098-9 10.1016/j.ast.2020.106363 10.2514/1.G002745 10.2514/2.3332 10.2514/2.4008 10.2514/2.4318 10.1016/j.ast.2019.02.041 10.1016/j.automatica.2010.06.048 10.2514/1.20478 10.2514/1.45852 10.1016/j.ast.2021.107234 10.1007/s42064-017-0003-8 10.1016/j.ast.2020.105682 10.1016/j.automatica.2014.06.008 10.1002/oca.957 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Masson SAS |
| Copyright_xml | – notice: 2022 Elsevier Masson SAS |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ast.2022.107887 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1626-3219 |
| ExternalDocumentID | 10_1016_j_ast_2022_107887 S1270963822005612 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H VH1 XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c227t-cadd46f5971e8594984900e7f9d2b7012fe067cfb1e7964f2e138d17d040bc503 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000868482900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1270-9638 |
| IngestDate | Sat Nov 29 07:04:41 EST 2025 Tue Nov 18 20:54:01 EST 2025 Fri Feb 23 02:40:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sequential convex programming hp-adaptive Reentry Trajectory optimization Radau pseudospectral |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c227t-cadd46f5971e8594984900e7f9d2b7012fe067cfb1e7964f2e138d17d040bc503 |
| ORCID | 0000-0002-1940-3868 0000-0003-4803-3867 |
| ParticipantIDs | crossref_primary_10_1016_j_ast_2022_107887 crossref_citationtrail_10_1016_j_ast_2022_107887 elsevier_sciencedirect_doi_10_1016_j_ast_2022_107887 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Aerospace science and technology |
| PublicationYear | 2022 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | Zhou, Zhang, Li (br0190) 2019; 87 Wang, Cui (br0290) 2018 Mease, Teufel, Schoenenberger, Chen, Bharadwaj (br0070) 1999 Mueller, D'Andrea (br0170) 2013 Li, Pang, Wei, Cui, Liu (br0210) 2020; 98 Bharadwaj, Rao, Mease (br0120) 1998; 21 Acikmese, Ploen (br0180) 2007; 30 T. Sands, Deterministic artificial intelligence, London, United Kingdom, IntechOpen, 2020, Online. Zheng, Fu, Xu, Li, Lin (br0060) 2020; 107 Harris, Açıkmeşe (br0270) 2014; 50 Sagliano, Mooij (br0230) 2021; 117 Açıkmeşe, Blackmore (br0250) 2011; 47 Mease, Kremer (br0040) 1994; 17 Sagliano (br0300) 2019; 42 Tian, Fan, Su, Zong (br0010) 2015; 62 Zhao, Tsiotras (br0350) 2011; 34 Lu (br0110) 1997; 20 Phillips (br0360) 2003 Liu, Shen, Lu (br0220) 2016; 39 Patterson, Rao (br0330) 2014; 41 Ma, Pan, Hao, Tang (br0310) 2022; 120 Dahl, Andersen (br0370) 2022; 194 Benson, Huntington, Thorvaldsen, Rao (br0080) 2006; 29 Cheng, Li, Zhang (br0200) 2017; 66 Garg (br0100) 2010; 46 Lu (br0140) 2017; 40 Caruso, Quarta, Mengali, Ceriotti (br0050) 2020; 107 Açıkmeşe, Carson, Blackmore (br0260) 2013; 21 Darby, Hager, Rao (br0320) 2011; 32 Rao (br0020) 2010; 135 Lu, Hanson (br0130) 1998; 35 Kameswaran, Biegler (br0090) 2008; 41 Zhou, He, Zhang, Tang, Bao (br0240) 2021; 109 Liu, Shen, Lu (br0280) 2016; 52 Pager, Rao (br0340) 2022; 81 Liu, Lu, Pan (br0160) 2017; 1 Chai, Savvaris, Tsourdos, Chai, Xia (br0030) 2019; 109 Zhao (10.1016/j.ast.2022.107887_br0350) 2011; 34 Acikmese (10.1016/j.ast.2022.107887_br0180) 2007; 30 10.1016/j.ast.2022.107887_br0150 Zheng (10.1016/j.ast.2022.107887_br0060) 2020; 107 Sagliano (10.1016/j.ast.2022.107887_br0230) 2021; 117 Chai (10.1016/j.ast.2022.107887_br0030) 2019; 109 Benson (10.1016/j.ast.2022.107887_br0080) 2006; 29 Liu (10.1016/j.ast.2022.107887_br0220) 2016; 39 Zhou (10.1016/j.ast.2022.107887_br0240) 2021; 109 Mueller (10.1016/j.ast.2022.107887_br0170) 2013 Cheng (10.1016/j.ast.2022.107887_br0200) 2017; 66 Patterson (10.1016/j.ast.2022.107887_br0330) 2014; 41 Açıkmeşe (10.1016/j.ast.2022.107887_br0260) 2013; 21 Lu (10.1016/j.ast.2022.107887_br0130) 1998; 35 Ma (10.1016/j.ast.2022.107887_br0310) 2022; 120 Sagliano (10.1016/j.ast.2022.107887_br0300) 2019; 42 Kameswaran (10.1016/j.ast.2022.107887_br0090) 2008; 41 Pager (10.1016/j.ast.2022.107887_br0340) 2022; 81 Tian (10.1016/j.ast.2022.107887_br0010) 2015; 62 Dahl (10.1016/j.ast.2022.107887_br0370) 2022; 194 Rao (10.1016/j.ast.2022.107887_br0020) 2010; 135 Mease (10.1016/j.ast.2022.107887_br0070) 1999 Wang (10.1016/j.ast.2022.107887_br0290) 2018 Mease (10.1016/j.ast.2022.107887_br0040) 1994; 17 Zhou (10.1016/j.ast.2022.107887_br0190) 2019; 87 Liu (10.1016/j.ast.2022.107887_br0280) 2016; 52 Caruso (10.1016/j.ast.2022.107887_br0050) 2020; 107 Darby (10.1016/j.ast.2022.107887_br0320) 2011; 32 Açıkmeşe (10.1016/j.ast.2022.107887_br0250) 2011; 47 Phillips (10.1016/j.ast.2022.107887_br0360) 2003 Lu (10.1016/j.ast.2022.107887_br0110) 1997; 20 Lu (10.1016/j.ast.2022.107887_br0140) 2017; 40 Bharadwaj (10.1016/j.ast.2022.107887_br0120) 1998; 21 Harris (10.1016/j.ast.2022.107887_br0270) 2014; 50 Garg (10.1016/j.ast.2022.107887_br0100) 2010; 46 Li (10.1016/j.ast.2022.107887_br0210) 2020; 98 Liu (10.1016/j.ast.2022.107887_br0160) 2017; 1 |
| References_xml | – volume: 17 start-page: 1350 year: 1994 end-page: 1356 ident: br0040 article-title: Shuttle entry guidance revisited using nonlinear geometric methods publication-title: J. Guid. Control Dyn. – volume: 66 start-page: 140 year: 2017 end-page: 151 ident: br0200 article-title: Efficient ascent trajectory optimization using convex models based on the Newton–Kantorovich/pseudospectral approach publication-title: Aerosp. Sci. Technol. – volume: 98 year: 2020 ident: br0210 article-title: Online trajectory optimization for power system fault of launch vehicles via convex programming publication-title: Aerosp. Sci. Technol. – year: 2003 ident: br0360 article-title: A Common Aero Vehicle (CAV) Model, Description, and Employment Guide – volume: 109 year: 2019 ident: br0030 article-title: A review of optimization techniques in spacecraft flight trajectory design publication-title: Prog. Aerosp. Sci. – volume: 21 start-page: 726 year: 1998 end-page: 732 ident: br0120 article-title: Entry trajectory tracking law via feedback linearization publication-title: J. Guid. Control Dyn. – year: 2013 ident: br0170 article-title: A model predictive controller for quadrocopter state interception publication-title: 2013 European Control Conference (ECC) – volume: 194 start-page: 341 year: 2022 end-page: 370 ident: br0370 article-title: A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization publication-title: Math. Program. – volume: 39 start-page: 227 year: 2016 end-page: 241 ident: br0220 article-title: Entry trajectory optimization by second-order cone programming publication-title: J. Guid. Control Dyn. – volume: 50 start-page: 2304 year: 2014 end-page: 2311 ident: br0270 article-title: Lossless convexification of non-convex optimal control problems for state constrained linear systems publication-title: Automatica – volume: 30 start-page: 1353 year: 2007 end-page: 1366 ident: br0180 article-title: Convex programming approach to powered descent guidance for Mars landing publication-title: J. Guid. Control Dyn. – volume: 29 start-page: 1435 year: 2006 end-page: 1440 ident: br0080 article-title: Direct trajectory optimization and costate estimation via an orthogonal collocation method publication-title: J. Guid. Control Dyn. – volume: 1 start-page: 23 year: 2017 end-page: 40 ident: br0160 article-title: Survey of convex optimization for aerospace applications publication-title: Astrodynamics – volume: 20 start-page: 143 year: 1997 end-page: 149 ident: br0110 article-title: Entry guidance and trajectory control for reusable launch vehicle publication-title: J. Guid. Control Dyn. – volume: 117 year: 2021 ident: br0230 article-title: Optimal drag-energy entry guidance via pseudospectral convex optimization publication-title: Aerosp. Sci. Technol. – volume: 120 year: 2022 ident: br0310 article-title: Improved sequential convex programming using modified Chebyshev–Picard iteration for ascent trajectory optimization publication-title: Aerosp. Sci. Technol. – volume: 21 start-page: 2104 year: 2013 end-page: 2113 ident: br0260 article-title: Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem publication-title: IEEE Trans. Control Syst. Technol. – volume: 52 start-page: 1881 year: 2016 end-page: 1892 ident: br0280 article-title: Exact convex relaxation for optimal flight of aerodynamically controlled missiles publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 47 start-page: 341 year: 2011 end-page: 347 ident: br0250 article-title: Lossless convexification of a class of optimal control problems with non-convex control constraints publication-title: Automatica – volume: 35 start-page: 342 year: 1998 end-page: 349 ident: br0130 article-title: Entry guidance for the x-33 vehicle publication-title: J. Spacecr. Rockets – volume: 87 start-page: 459 year: 2019 end-page: 477 ident: br0190 article-title: Receding horizon guidance and control using sequential convex programming for spacecraft 6-DOF close proximity publication-title: Aerosp. Sci. Technol. – volume: 32 start-page: 476 year: 2011 end-page: 502 ident: br0320 article-title: An publication-title: Optim. Control Appl. Methods – volume: 41 start-page: 81 year: 2008 end-page: 126 ident: br0090 article-title: Convergence rates for direct transcription of optimal control problems using collocation at Radau points publication-title: Comput. Optim. Appl. – volume: 42 start-page: 1562 year: 2019 end-page: 1570 ident: br0300 article-title: Generalized publication-title: J. Guid. Control Dyn. – volume: 40 start-page: 193 year: 2017 ident: br0140 article-title: Introducing computational guidance and control publication-title: J. Guid. Control Dyn. – volume: 107 year: 2020 ident: br0060 article-title: Ascent trajectory design of small-lift launch vehicle using hierarchical optimization publication-title: Aerosp. Sci. Technol. – volume: 107 year: 2020 ident: br0050 article-title: Shape-based approach for solar sail trajectory optimization publication-title: Aerosp. Sci. Technol. – year: 1999 ident: br0070 article-title: Re-entry trajectory planning for a reusable launch vehicle publication-title: 24th Atmospheric Flight Mechanics Conference – volume: 46 start-page: 1843 year: 2010 end-page: 1851 ident: br0100 article-title: A unified framework for the numerical solution of optimal control problems using pseudospectral methods publication-title: Automatica – volume: 81 start-page: 857 year: 2022 end-page: 887 ident: br0340 article-title: Method for solving bang-bang and singular optimal control problems using adaptive Radau collocation publication-title: Comput. Optim. Appl. – volume: 34 start-page: 271 year: 2011 end-page: 277 ident: br0350 article-title: Density functions for mesh refinement in numerical optimal control publication-title: J. Guid. Control Dyn. – volume: 109 year: 2021 ident: br0240 article-title: Sequential convex programming method using adaptive mesh refinement for entry trajectory planning problem publication-title: Aerosp. Sci. Technol. – volume: 62 start-page: 1639 year: 2015 end-page: 1650 ident: br0010 article-title: Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase publication-title: IEEE Trans. Ind. Electron. – year: 2018 ident: br0290 article-title: A pseudospectral-convex optimization algorithm for rocket landing guidance publication-title: 2018 AIAA Guidance, Navigation, and Control Conference – reference: T. Sands, Deterministic artificial intelligence, London, United Kingdom, IntechOpen, 2020, Online. – volume: 135 start-page: 497 year: 2010 end-page: 528 ident: br0020 article-title: A survey of numerical methods for optimal control publication-title: Adv. Astronaut. Sci. – volume: 41 start-page: 1 year: 2014 end-page: 37 ident: br0330 article-title: GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using publication-title: ACM Trans. Math. Softw. – volume: 39 start-page: 227 issue: 2 year: 2016 ident: 10.1016/j.ast.2022.107887_br0220 article-title: Entry trajectory optimization by second-order cone programming publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G001210 – volume: 117 year: 2021 ident: 10.1016/j.ast.2022.107887_br0230 article-title: Optimal drag-energy entry guidance via pseudospectral convex optimization publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106946 – volume: 41 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.ast.2022.107887_br0330 article-title: GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming publication-title: ACM Trans. Math. Softw. doi: 10.1145/2558904 – volume: 109 year: 2021 ident: 10.1016/j.ast.2022.107887_br0240 article-title: Sequential convex programming method using adaptive mesh refinement for entry trajectory planning problem publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106374 – volume: 62 start-page: 1639 issue: 3 year: 2015 ident: 10.1016/j.ast.2022.107887_br0010 article-title: Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2341553 – volume: 47 start-page: 341 issue: 2 year: 2011 ident: 10.1016/j.ast.2022.107887_br0250 article-title: Lossless convexification of a class of optimal control problems with non-convex control constraints publication-title: Automatica doi: 10.1016/j.automatica.2010.10.037 – year: 2013 ident: 10.1016/j.ast.2022.107887_br0170 article-title: A model predictive controller for quadrocopter state interception – year: 2003 ident: 10.1016/j.ast.2022.107887_br0360 – year: 2018 ident: 10.1016/j.ast.2022.107887_br0290 article-title: A pseudospectral-convex optimization algorithm for rocket landing guidance – volume: 52 start-page: 1881 issue: 4 year: 2016 ident: 10.1016/j.ast.2022.107887_br0280 article-title: Exact convex relaxation for optimal flight of aerodynamically controlled missiles publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2016.150741 – ident: 10.1016/j.ast.2022.107887_br0150 doi: 10.5772/intechopen.81309 – volume: 81 start-page: 857 issue: 3 year: 2022 ident: 10.1016/j.ast.2022.107887_br0340 article-title: Method for solving bang-bang and singular optimal control problems using adaptive Radau collocation publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-022-00350-6 – volume: 109 year: 2019 ident: 10.1016/j.ast.2022.107887_br0030 article-title: A review of optimization techniques in spacecraft flight trajectory design publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2019.05.003 – volume: 21 start-page: 2104 issue: 6 year: 2013 ident: 10.1016/j.ast.2022.107887_br0260 article-title: Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2012.2237346 – volume: 42 start-page: 1562 issue: 7 year: 2019 ident: 10.1016/j.ast.2022.107887_br0300 article-title: Generalized hp pseudospectral-convex programming for powered descent and landing publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G003731 – volume: 17 start-page: 1350 issue: 6 year: 1994 ident: 10.1016/j.ast.2022.107887_br0040 article-title: Shuttle entry guidance revisited using nonlinear geometric methods publication-title: J. Guid. Control Dyn. doi: 10.2514/3.21355 – volume: 135 start-page: 497 issue: 1 year: 2010 ident: 10.1016/j.ast.2022.107887_br0020 article-title: A survey of numerical methods for optimal control publication-title: Adv. Astronaut. Sci. – volume: 66 start-page: 140 year: 2017 ident: 10.1016/j.ast.2022.107887_br0200 article-title: Efficient ascent trajectory optimization using convex models based on the Newton–Kantorovich/pseudospectral approach publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.02.023 – volume: 107 year: 2020 ident: 10.1016/j.ast.2022.107887_br0060 article-title: Ascent trajectory design of small-lift launch vehicle using hierarchical optimization publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106285 – volume: 30 start-page: 1353 issue: 5 year: 2007 ident: 10.1016/j.ast.2022.107887_br0180 article-title: Convex programming approach to powered descent guidance for Mars landing publication-title: J. Guid. Control Dyn. doi: 10.2514/1.27553 – volume: 194 start-page: 341 issue: 1 year: 2022 ident: 10.1016/j.ast.2022.107887_br0370 article-title: A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization publication-title: Math. Program. doi: 10.1007/s10107-021-01631-4 – volume: 41 start-page: 81 issue: 1 year: 2008 ident: 10.1016/j.ast.2022.107887_br0090 article-title: Convergence rates for direct transcription of optimal control problems using collocation at Radau points publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9098-9 – volume: 107 year: 2020 ident: 10.1016/j.ast.2022.107887_br0050 article-title: Shape-based approach for solar sail trajectory optimization publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106363 – volume: 40 start-page: 193 issue: 2 year: 2017 ident: 10.1016/j.ast.2022.107887_br0140 article-title: Introducing computational guidance and control publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G002745 – volume: 35 start-page: 342 issue: 3 year: 1998 ident: 10.1016/j.ast.2022.107887_br0130 article-title: Entry guidance for the x-33 vehicle publication-title: J. Spacecr. Rockets doi: 10.2514/2.3332 – volume: 20 start-page: 143 issue: 1 year: 1997 ident: 10.1016/j.ast.2022.107887_br0110 article-title: Entry guidance and trajectory control for reusable launch vehicle publication-title: J. Guid. Control Dyn. doi: 10.2514/2.4008 – volume: 21 start-page: 726 issue: 5 year: 1998 ident: 10.1016/j.ast.2022.107887_br0120 article-title: Entry trajectory tracking law via feedback linearization publication-title: J. Guid. Control Dyn. doi: 10.2514/2.4318 – year: 1999 ident: 10.1016/j.ast.2022.107887_br0070 article-title: Re-entry trajectory planning for a reusable launch vehicle – volume: 87 start-page: 459 year: 2019 ident: 10.1016/j.ast.2022.107887_br0190 article-title: Receding horizon guidance and control using sequential convex programming for spacecraft 6-DOF close proximity publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.02.041 – volume: 46 start-page: 1843 issue: 11 year: 2010 ident: 10.1016/j.ast.2022.107887_br0100 article-title: A unified framework for the numerical solution of optimal control problems using pseudospectral methods publication-title: Automatica doi: 10.1016/j.automatica.2010.06.048 – volume: 29 start-page: 1435 issue: 6 year: 2006 ident: 10.1016/j.ast.2022.107887_br0080 article-title: Direct trajectory optimization and costate estimation via an orthogonal collocation method publication-title: J. Guid. Control Dyn. doi: 10.2514/1.20478 – volume: 34 start-page: 271 issue: 1 year: 2011 ident: 10.1016/j.ast.2022.107887_br0350 article-title: Density functions for mesh refinement in numerical optimal control publication-title: J. Guid. Control Dyn. doi: 10.2514/1.45852 – volume: 120 year: 2022 ident: 10.1016/j.ast.2022.107887_br0310 article-title: Improved sequential convex programming using modified Chebyshev–Picard iteration for ascent trajectory optimization publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.107234 – volume: 1 start-page: 23 year: 2017 ident: 10.1016/j.ast.2022.107887_br0160 article-title: Survey of convex optimization for aerospace applications publication-title: Astrodynamics doi: 10.1007/s42064-017-0003-8 – volume: 98 year: 2020 ident: 10.1016/j.ast.2022.107887_br0210 article-title: Online trajectory optimization for power system fault of launch vehicles via convex programming publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.105682 – volume: 50 start-page: 2304 issue: 9 year: 2014 ident: 10.1016/j.ast.2022.107887_br0270 article-title: Lossless convexification of non-convex optimal control problems for state constrained linear systems publication-title: Automatica doi: 10.1016/j.automatica.2014.06.008 – volume: 32 start-page: 476 issue: 4 year: 2011 ident: 10.1016/j.ast.2022.107887_br0320 article-title: An hp-adaptive pseudospectral method for solving optimal control problems publication-title: Optim. Control Appl. Methods doi: 10.1002/oca.957 |
| SSID | ssj0002942 |
| Score | 2.4606469 |
| Snippet | Sequential convex programming (SCP) methods have been developed to solve reentry trajectory optimization problems. Due to the oversimplified discretization and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107887 |
| SubjectTerms | hp-adaptive Radau pseudospectral Reentry Sequential convex programming Trajectory optimization |
| Title | hp-Adaptive RPD based sequential convex programming for reentry trajectory optimization |
| URI | https://dx.doi.org/10.1016/j.ast.2022.107887 |
| Volume | 130 |
| WOSCitedRecordID | wos000868482900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1626-3219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002942 issn: 1270-9638 databaseCode: AIEXJ dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbQxgM8TFzFGCA_8ERllLjpnDxGY9wE08SK6FvUOPbWimVVm07dv-fzLQkMECDxElVWbUc-X87F_s4xIc8louR9pWOmuapYklYpS1WiWQbTXZq8NKltovAHcXSUTibZsafyrux1AqKu080mW_xXUaMNwjaps38h7nZQNOA3hI4nxI7nHwn-bMHyarqwlKBPx68Gxk5VA0eZbma2HEh9qTaBmXUeqJSGgNMsr8ylEXO7lX81uMAo5z5Rs-_F5gq2FcG2GoSsIMvDvLZL3-5Gj1V9qtWsO4GyFm_dmoQ3nhh8cLY2lTv6WxGIYuPvtiLaHJmP8PuNtstPepqVi4iZr90ZHteGaIoNg84M6tid01xT7W6XYf5yujIUWM7RYpiQnR1r2YUnZi4zFee20iks9DYXowxKbzt_dzh535pqntnbldp3C8felgD4w0Q_d1x6zsj4DtnxUQTNnfTvkhuqvkdu92pL3idfejigwAG1OKAdDqjDAe3hgAIH1OOAdjigfRw8IJ9fH44P3jJ_iwaTnIuGSViwZF8jcIxVOsqSLE2yKFJCZxUvBfwTreCxSF3GyqQl45uNh2kViwrqvZSjaPiQbNUXtXpEaCyjaQKjoCUWDuYJI6lRaU6SZQJXUeySKCxRIX2JeXPTydcicAnnBVa1MKtauFXdJS_aLgtXX-V3f07Cuhce387xKwCSX3d7_G_d9sitDuRPyFazXKun5Ka8bGar5TMPpW9CaIr6 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=hp-Adaptive+RPD+based+sequential+convex+programming+for+reentry+trajectory+optimization&rft.jtitle=Aerospace+science+and+technology&rft.au=Zhang%2C+Tengfei&rft.au=Su%2C+Hua&rft.au=Gong%2C+Chunlin&rft.date=2022-11-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.eissn=1626-3219&rft.volume=130&rft_id=info:doi/10.1016%2Fj.ast.2022.107887&rft.externalDocID=S1270963822005612 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon |