Effect of KMnO4 on the migration and transformation of Mn2+ and NH4+-N in electrolytic manganese residue: Autocatalytic system of manganese (Mn2+-MnO2-Mn2+)
[Display omitted] •KMnO4 accelerates the migration and transformation of Mn2+ and NH4+-N in EMR.•NH4+-N was trapped in EMR mainly through electrostatic and ion exchange interactions.•Mn2+ was converted primarily for the new ecologically hydrated MnO2 (NEHMO).•This study provides theoretical support...
Saved in:
| Published in: | Chemical engineering science Vol. 282; p. 119230 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
05.12.2023
|
| Subjects: | |
| ISSN: | 0009-2509 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•KMnO4 accelerates the migration and transformation of Mn2+ and NH4+-N in EMR.•NH4+-N was trapped in EMR mainly through electrostatic and ion exchange interactions.•Mn2+ was converted primarily for the new ecologically hydrated MnO2 (NEHMO).•This study provides theoretical support for the harmless treatment of EMR.
Electrolytic manganese residue (EMR) leachate contains high concentrations of Mn2+, NH4+-N, and heavy metals, seriously damaging the ecological environment. In this study, the effects of different KMnO4 dosages on the migration and transformation of Mn2+ and NH4+-N in EMR were investigated. The results showed that KMnO4 accelerated the migration and transformation of Mn2+ and NH4+-N. Mn2+ was mainly converted to the new ecologically hydrated MnO2 (NEHMO), which adsorbed Mn2+ and then oxidized it to form new active manganese oxides, thus constructing an autocatalytic oxidation reaction system of manganese (Mn2+-MnO2-Mn2+). A part of NH4+-N adsorbed on the NEHMO surface was catalytically oxidized to NO3–-N and NO2–-N. Mn2+on the EMR surface of the KMnO4 system mainly existed in the form of Mn3+, and the manganese oxides formed by the autocatalytic oxidaton of manganese mainly existed in the EMR system in the Fe-Mn oxidation state and residue state. This study provides theoretical support for developing in-situ remediation technology for EMR in residue sites. |
|---|---|
| AbstractList | [Display omitted]
•KMnO4 accelerates the migration and transformation of Mn2+ and NH4+-N in EMR.•NH4+-N was trapped in EMR mainly through electrostatic and ion exchange interactions.•Mn2+ was converted primarily for the new ecologically hydrated MnO2 (NEHMO).•This study provides theoretical support for the harmless treatment of EMR.
Electrolytic manganese residue (EMR) leachate contains high concentrations of Mn2+, NH4+-N, and heavy metals, seriously damaging the ecological environment. In this study, the effects of different KMnO4 dosages on the migration and transformation of Mn2+ and NH4+-N in EMR were investigated. The results showed that KMnO4 accelerated the migration and transformation of Mn2+ and NH4+-N. Mn2+ was mainly converted to the new ecologically hydrated MnO2 (NEHMO), which adsorbed Mn2+ and then oxidized it to form new active manganese oxides, thus constructing an autocatalytic oxidation reaction system of manganese (Mn2+-MnO2-Mn2+). A part of NH4+-N adsorbed on the NEHMO surface was catalytically oxidized to NO3–-N and NO2–-N. Mn2+on the EMR surface of the KMnO4 system mainly existed in the form of Mn3+, and the manganese oxides formed by the autocatalytic oxidaton of manganese mainly existed in the EMR system in the Fe-Mn oxidation state and residue state. This study provides theoretical support for developing in-situ remediation technology for EMR in residue sites. |
| ArticleNumber | 119230 |
| Author | Yang, Huimin Shu, Jiancheng Deng, Zongyu Deng, Yaling Chen, Mengjun Yang, Yong |
| Author_xml | – sequence: 1 givenname: Huimin surname: Yang fullname: Yang, Huimin organization: Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China – sequence: 2 givenname: Yaling surname: Deng fullname: Deng, Yaling organization: Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China – sequence: 3 givenname: Jiancheng surname: Shu fullname: Shu, Jiancheng email: sjcees@126.com organization: Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China – sequence: 4 givenname: Mengjun surname: Chen fullname: Chen, Mengjun organization: Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China – sequence: 5 givenname: Yong surname: Yang fullname: Yang, Yong organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China – sequence: 6 givenname: Zongyu surname: Deng fullname: Deng, Zongyu organization: Zunyi Manganese Day Magnetic Industry Group Co., Ltd, Zunyi, Guizhou 563000, China |
| BookMark | eNp9UE1PAyEU5FAT2-oP8MZR02wFFvdDT01TrbEfFz0TZB-VpssaoCb9L_5Y2a6JiYee3huYmbyZAerZxgJCV5SMKaHZ7XaswI8ZYemY0pKlpIf6hJAyYXekPEcD77cR5jklffQ90xpUwI3GL0u75rixOHwArs3GyWAikrbCwUnrdePq7imSl5aNjl-rOR8lK2wshl00cs3uEIzCtbQbacEDduBNtYd7PNmHRskgO4I_-AB1a_VHvW5dk3gGS9rt5gKdabnzcPk7h-jtcfY6nSeL9dPzdLJIFGN5SN6pVllBeF7yTGvOudYqgooyKgvIiC5JnpGqSIuKA9AslRWXRKZKZ1KzQqVDlHe-yjXeO9BCmXCMGoObnaBEtMWKrYjFirZY0RUblfSf8tOZWrrDSc1Dp4EY6cuAE14ZsAoq42KDomrMCfUP-BqUog |
| CitedBy_id | crossref_primary_10_1016_j_jece_2025_119041 crossref_primary_10_1016_j_jece_2024_114984 crossref_primary_10_1016_j_seppur_2025_134076 crossref_primary_10_1016_j_carpta_2025_100846 crossref_primary_10_1016_j_seppur_2024_128706 crossref_primary_10_1016_j_seppur_2025_133028 crossref_primary_10_3390_ijms26072928 crossref_primary_10_1016_j_jece_2025_115427 |
| Cites_doi | 10.1016/j.scitotenv.2021.152175 10.1016/j.cej.2022.137412 10.1016/j.watres.2023.120219 10.1016/j.seppur.2021.118820 10.1016/j.psep.2021.06.017 10.1016/j.apsusc.2021.150972 10.1016/j.jece.2022.108277 10.1007/s11356-021-18381-7 10.1016/j.ecoenv.2020.111341 10.1016/j.jhazmat.2021.125556 10.1016/j.apsusc.2021.150596 10.1016/j.conbuildmat.2021.123533 10.1016/j.molcata.2015.06.026 10.1016/j.jallcom.2019.151683 10.1016/j.cej.2019.01.139 10.1021/acsestwater.3c00036 10.1016/j.jclepro.2019.117708 10.1016/j.jwpe.2019.100839 10.1016/j.apsusc.2015.12.159 10.1016/j.molstruc.2022.133679 10.1016/j.chemosphere.2022.133804 10.1016/j.ecoenv.2020.111317 10.1016/j.jclepro.2022.131842 10.1016/j.jclepro.2021.127224 10.1016/j.seppur.2021.118798 10.1016/j.chemosphere.2018.01.058 10.1016/j.nanoen.2022.107274 10.1016/j.hydromet.2022.105870 10.1016/j.psep.2021.10.031 10.1016/j.scitotenv.2021.150237 10.1016/j.colsurfa.2022.128804 10.1016/j.jhazmat.2021.125707 10.1016/j.seppur.2022.120959 10.1016/j.chemosphere.2020.126896 10.1016/j.jclepro.2022.134152 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ces.2023.119230 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ces_2023_119230 S0009250923007868 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K XPP ZMT ~02 ~G- 9DU AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EFLBG EJD FEDTE FGOYB HVGLF HZ~ NDZJH R2- SC5 T9H VH1 WUQ Y6R ZY4 ~HD |
| ID | FETCH-LOGICAL-c227t-b1fc68047946ff444ffc479d121a8e60f90760d838d4ee163ad4a0a3cf6af28c3 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001071024600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0009-2509 |
| IngestDate | Sat Nov 29 07:33:06 EST 2025 Tue Nov 18 22:22:38 EST 2025 Tue Dec 03 03:44:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mn2 Migration and transformation NH4+-N EMR Autocatalytic system |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c227t-b1fc68047946ff444ffc479d121a8e60f90760d838d4ee163ad4a0a3cf6af28c3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ces_2023_119230 crossref_primary_10_1016_j_ces_2023_119230 elsevier_sciencedirect_doi_10_1016_j_ces_2023_119230 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-05 |
| PublicationDateYYYYMMDD | 2023-12-05 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering science |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Shu, Wu, Deng, Lei, Huang, Han, Zhang, Zhao, Wei, Chen (b0115) 2021; 270 Lv (b0080) 2022; 98 Wan, Zhou, Deng, Zhan, Zhang (b0125) 2015; 407 Bora, Dutta (b0005) 2019; 31 Li, Yang, Peng, Chen, Deng, Wang, Hong, Li (b0070) 2019; 366 Shu (b0095) 2023; 3 He, Shu, Zeng, Wei, Chen, Tan, Liang (b0030) 2022; 810 Cai, Liu, Yuan, Xu, Zhao, Tong, Lu, He (b0010) 2021; 565 He, Jiang, Hong, Liu (b0025) 2021; 306 Deng, Shu, Lei, Zeng, Li, Chen (b0020) 2021; 270 Wang, Liang, Gao, Ma, He, Zhao, Miao (b0130) 2022; 643 Ilton, Post, Heaney, Ling, Kerisit (b0050) 2016; 366 Li (b0060) 2023; 242 Nkele, Mpenyana-Monyatsi, Masindi (b0090) 2022; 377 Zhou, Xu, Mei, Du, Jv, Hu, Chen (b0190) 2018; 198 Ibrahim, Al-Hossainy, Saha, El-Aal (b0045) 2022; 1268 Wang, Long, Bai, Wang, Yang, Zhou, Zhou (b0135) 2022; 356 Tian, Shu, Chen, Wang, Wang, Luo, Wang, Yang, Xiu, Sun (b0120) 2019; 236 Yang, Tang, Luo, Li, Liang, Snyder (b0150) 2021; 415 Lan, Dong, Xiang, Zhang, Mei, Hou (b0055) 2021; 415 Zhang, Xie (b0175) 2022; 29 Huang, Wang, Yang, Xu, Gu (b0035) 2019; 808 Xu, Jegatheesan, Raveendran, Chatelier (b0145) 2021; 152 Shu, Li, Chen, Sun, Wei, Wang, Wang (b0110) 2020; 253 Shu, Cai, Zhao, Feng, Chen, Zhang, Wu, Yang, Liu (b0100) 2020; 205 Yang, Tang, Bai, Yang, Ding, Chen, Du, Li, Liang (b0155) 2022; 295 Min, Guo, Li, Gu, Guo, Xue, Liang, Hu, Jia, Sun (b0085) 2021; 568 Li, Shu, Wu, Su, Yang, Chen, Liu, Liu (b0075) 2022; 291 Wu, Guo, Liu, Wei, Wang (b0140) 2022; 10 Zeng, Shu, Chen, Wang, He, Wei, Deng, Lei, Liu, Tan, Zhang (b0165) 2022; 211 Huang, Shi, Yang, Dai, Wen, Li, Zi, Luo (b0040) 2022; 446 Chen, Long, Chen, Xie, Xu, Ning, Zhang, Xiao, Yu, Ke, Peng, Li (b0015) 2022; 805 Shu, Wu, Ji, Chen, Wu, Gao, Wei, Zhao, Huo, Liu (b0105) 2020; 206 Zhou (b0180) 2021; 294 Yang, Xue, Liu, Zhang (b0160) 2022; 157 Bora (10.1016/j.ces.2023.119230_b0005) 2019; 31 Shu (10.1016/j.ces.2023.119230_b0110) 2020; 253 Zeng (10.1016/j.ces.2023.119230_b0165) 2022; 211 Ibrahim (10.1016/j.ces.2023.119230_b0045) 2022; 1268 Shu (10.1016/j.ces.2023.119230_b0115) 2021; 270 Tian (10.1016/j.ces.2023.119230_b0120) 2019; 236 Shu (10.1016/j.ces.2023.119230_b0095) 2023; 3 Deng (10.1016/j.ces.2023.119230_b0020) 2021; 270 Chen (10.1016/j.ces.2023.119230_b0015) 2022; 805 Yang (10.1016/j.ces.2023.119230_b0155) 2022; 295 Ilton (10.1016/j.ces.2023.119230_b0050) 2016; 366 He (10.1016/j.ces.2023.119230_b0025) 2021; 306 Li (10.1016/j.ces.2023.119230_b0060) 2023; 242 Wu (10.1016/j.ces.2023.119230_b0140) 2022; 10 Zhou (10.1016/j.ces.2023.119230_b0190) 2018; 198 Min (10.1016/j.ces.2023.119230_b0085) 2021; 568 Shu (10.1016/j.ces.2023.119230_b0105) 2020; 206 Lv (10.1016/j.ces.2023.119230_b0080) 2022; 98 Huang (10.1016/j.ces.2023.119230_b0040) 2022; 446 Zhou (10.1016/j.ces.2023.119230_b0180) 2021; 294 Shu (10.1016/j.ces.2023.119230_b0100) 2020; 205 Huang (10.1016/j.ces.2023.119230_b0035) 2019; 808 Wang (10.1016/j.ces.2023.119230_b0130) 2022; 643 Zhang (10.1016/j.ces.2023.119230_b0175) 2022; 29 Yang (10.1016/j.ces.2023.119230_b0160) 2022; 157 Li (10.1016/j.ces.2023.119230_b0070) 2019; 366 Wan (10.1016/j.ces.2023.119230_b0125) 2015; 407 He (10.1016/j.ces.2023.119230_b0030) 2022; 810 Yang (10.1016/j.ces.2023.119230_b0150) 2021; 415 Lan (10.1016/j.ces.2023.119230_b0055) 2021; 415 Xu (10.1016/j.ces.2023.119230_b0145) 2021; 152 Cai (10.1016/j.ces.2023.119230_b0010) 2021; 565 Wang (10.1016/j.ces.2023.119230_b0135) 2022; 356 Li (10.1016/j.ces.2023.119230_b0075) 2022; 291 Nkele (10.1016/j.ces.2023.119230_b0090) 2022; 377 |
| References_xml | – volume: 270 year: 2021 ident: b0020 article-title: A green method for Mn2+ and NH4+-N removal in electrolytic manganese residue leachate by electric field and phosphorus ore flotation tailings publication-title: Sep. Purif. Technol. – volume: 415 year: 2021 ident: b0055 article-title: Selective recovery of manganese from electrolytic manganese residue by using water as extractant under mechanochemical ball grinding: Mechanism and kinetics publication-title: J. Hazard. Mater. – volume: 10 year: 2022 ident: b0140 article-title: Effect of Fe doping on the surface properties of δ-MnO publication-title: J. Environ. Chem. Eng. – volume: 805 year: 2022 ident: b0015 article-title: Multi-step purification of electrolytic manganese residue leachate using hydroxide sedimentation, struvite precipitation, chlorination, and coagulation: Advanced removal of manganese, ammonium, and phosphate publication-title: Sci. Total Environ. – volume: 808 year: 2019 ident: b0035 article-title: Enhanced electrochemical performance of the layered nickel-rich oxide cathode by KMnO publication-title: J. Alloy. Compd. – volume: 98 year: 2022 ident: b0080 article-title: Inexpensive and eco-friendly nanostructured birnessite-type δ-MnO2: A design strategy from oxygen defect engineering and K+ pre-intercalation publication-title: Nano Energy – volume: 206 year: 2020 ident: b0105 article-title: A new electrochemical method for simultaneous removal of Mn2+ and NH4+-N in wastewater with Cu plate as cathode publication-title: Ecotoxicol. Environ. Saf. – volume: 211 year: 2022 ident: b0165 article-title: A cost-effective method for enhancing manganese leaching from rhodochrosite caused by surfactant-regulated crystal growth of CaSO publication-title: Hydrometall. – volume: 565 year: 2021 ident: b0010 article-title: The structural evolution of MnO publication-title: Appl. Surf. Sci. – volume: 31 year: 2019 ident: b0005 article-title: Removal of metals (Pb, Cd, Cu, Cr, Ni, and Co) from drinking water by oxidation-coagulation-absorption at optimized pH publication-title: J. Water Process Eng. – volume: 377 year: 2022 ident: b0090 article-title: Challenges, advances and sustainabilities on the removal and recovery of manganese from wastewater: A review publication-title: J. Clean. Prod. – volume: 291 year: 2022 ident: b0075 article-title: Enhanced removal of Mn2+ and NH4+-N in electrolytic manganese residue leachate by electrochemical and modified phosphate ore flotation tailings publication-title: Sep. Purif. Technol. – volume: 3 start-page: 2229 year: 2023 end-page: 2237 ident: b0095 article-title: Migration and transformation behavior of Mn2+ and NH4+-N in electrolytic manganese residue at different leaching ph environments: release kinetic model, physical phase changes, and formation of manganese oxide publication-title: ACS ES&T Water – volume: 236 year: 2019 ident: b0120 article-title: Manganese and ammonia nitrogen recovery from electrolytic manganese residue by electric field enhanced leaching publication-title: J. Clean. Prod. – volume: 1268 year: 2022 ident: b0045 article-title: Removal of bromothymol blue dye by the oxidation method using KMnO4: Accelerating the oxidation reaction by Ru (III) catalyst publication-title: J. Mol. Struct. – volume: 270 year: 2021 ident: b0115 article-title: Enhanced removal of Mn2+ and NH4+-N in electrolytic manganese metal residue using washing and electrolytic oxidation publication-title: Sep. Purif. Technol. – volume: 407 start-page: 67 year: 2015 end-page: 74 ident: b0125 article-title: Oxidative degradation of sulfamethoxazole by different MnO publication-title: J. Mol. Catal. A Chem. – volume: 198 start-page: 482 year: 2018 end-page: 491 ident: b0190 article-title: Polyaniline/β-MnO publication-title: Chemosphere – volume: 643 year: 2022 ident: b0130 article-title: Robust structural stability of flower-like δ-MnO publication-title: Colloids Surf A Physicochem Eng Asp – volume: 366 start-page: 475 year: 2016 end-page: 485 ident: b0050 article-title: XPS determination of Mn oxidation states in Mn (hydr)oxides publication-title: Appl. Surf. Sci. – volume: 366 start-page: 92 year: 2019 end-page: 99 ident: b0070 article-title: Enhanced low-temperature activity of LaMnO publication-title: Chem. Eng. J. – volume: 157 start-page: 509 year: 2022 end-page: 526 ident: b0160 article-title: Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: A review publication-title: Process Saf. Environ. Prot. – volume: 446 year: 2022 ident: b0040 article-title: Mechanism of CO selective catalytic reduction denitration on Fe–Mn/AC catalysts at medium and low temperatures under oxygen atmosphere publication-title: Chem. Eng. J. – volume: 294 year: 2021 ident: b0180 article-title: Reusing electrolytic manganese residue as an activator: The effect of calcination on its mineralogy and activity publication-title: Constr. Build. Mater. – volume: 152 start-page: 327 year: 2021 end-page: 337 ident: b0145 article-title: Option study to remove Mn(2+) by KMnO4 at a water treatment plant publication-title: Process Saf. Environ. Prot. – volume: 205 year: 2020 ident: b0100 article-title: A low cost of phosphate-based binder for Mn2+ and NH4+-N simultaneous stabilization in electrolytic manganese residue publication-title: Ecotoxicol. Environ. Saf. – volume: 810 year: 2022 ident: b0030 article-title: Synergistic solidification/stabilization of electrolytic manganese residue and carbide slag publication-title: Sci. Total Environ. – volume: 242 year: 2023 ident: b0060 article-title: Fe, Mn and me publication-title: Water Res. – volume: 568 year: 2021 ident: b0085 article-title: Enhancement of toluene removal over α@δ-MnO publication-title: Appl. Surf. Sci. – volume: 356 year: 2022 ident: b0135 article-title: Cleaner and safer disposal of electrolytic manganese residues in cement-based materials using direct electric curing publication-title: J. Clean. Prod. – volume: 253 year: 2020 ident: b0110 article-title: An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material publication-title: Chemosphere – volume: 306 year: 2021 ident: b0025 article-title: Hazard-free treatment and resource utilisation of electrolytic manganese residue: A review publication-title: J. Clean. Prod. – volume: 295 year: 2022 ident: b0155 article-title: Synergistic effects of prokaryotes and oxidants in rapid sand filters treatment of groundwater versus surface water: Purification efficacy, stability and associated mechanisms publication-title: Chemosphere – volume: 29 start-page: 36295 year: 2022 end-page: 36312 ident: b0175 article-title: Effects of Mn(II) addition on Cd(II) removal by hydrated manganese dioxide publication-title: Environ. Sci. Pollut. Res. – volume: 415 year: 2021 ident: b0150 article-title: Oxidants-assisted sand filter to enhance the simultaneous removals of manganese, iron and ammonia from groundwater: Formation of active MnO publication-title: J. Hazard. Mater. – volume: 810 year: 2022 ident: 10.1016/j.ces.2023.119230_b0030 article-title: Synergistic solidification/stabilization of electrolytic manganese residue and carbide slag publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.152175 – volume: 446 year: 2022 ident: 10.1016/j.ces.2023.119230_b0040 article-title: Mechanism of CO selective catalytic reduction denitration on Fe–Mn/AC catalysts at medium and low temperatures under oxygen atmosphere publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137412 – volume: 242 year: 2023 ident: 10.1016/j.ces.2023.119230_b0060 article-title: Fe, Mn and me publication-title: Water Res. doi: 10.1016/j.watres.2023.120219 – volume: 270 year: 2021 ident: 10.1016/j.ces.2023.119230_b0020 article-title: A green method for Mn2+ and NH4+-N removal in electrolytic manganese residue leachate by electric field and phosphorus ore flotation tailings publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118820 – volume: 152 start-page: 327 year: 2021 ident: 10.1016/j.ces.2023.119230_b0145 article-title: Option study to remove Mn(2+) by KMnO4 at a water treatment plant publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.06.017 – volume: 568 year: 2021 ident: 10.1016/j.ces.2023.119230_b0085 article-title: Enhancement of toluene removal over α@δ-MnO2 composites prepared via one-pot by modifying the molar ratio of KMnO4 to MnSO4·H2O publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150972 – volume: 10 issue: 5 year: 2022 ident: 10.1016/j.ces.2023.119230_b0140 article-title: Effect of Fe doping on the surface properties of δ-MnO2 nanomaterials and its decomposition of formaldehyde at room temperature publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108277 – volume: 29 start-page: 36295 issue: 24 year: 2022 ident: 10.1016/j.ces.2023.119230_b0175 article-title: Effects of Mn(II) addition on Cd(II) removal by hydrated manganese dioxide publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-18381-7 – volume: 206 year: 2020 ident: 10.1016/j.ces.2023.119230_b0105 article-title: A new electrochemical method for simultaneous removal of Mn2+ and NH4+-N in wastewater with Cu plate as cathode publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111341 – volume: 415 year: 2021 ident: 10.1016/j.ces.2023.119230_b0055 article-title: Selective recovery of manganese from electrolytic manganese residue by using water as extractant under mechanochemical ball grinding: Mechanism and kinetics publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125556 – volume: 565 year: 2021 ident: 10.1016/j.ces.2023.119230_b0010 article-title: The structural evolution of MnOx with calcination temperature and their catalytic performance for propane total oxidation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150596 – volume: 294 year: 2021 ident: 10.1016/j.ces.2023.119230_b0180 article-title: Reusing electrolytic manganese residue as an activator: The effect of calcination on its mineralogy and activity publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.123533 – volume: 407 start-page: 67 year: 2015 ident: 10.1016/j.ces.2023.119230_b0125 article-title: Oxidative degradation of sulfamethoxazole by different MnO2 nanocrystals in aqueous solution publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2015.06.026 – volume: 808 year: 2019 ident: 10.1016/j.ces.2023.119230_b0035 article-title: Enhanced electrochemical performance of the layered nickel-rich oxide cathode by KMnO4 treatment precursor publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.151683 – volume: 366 start-page: 92 year: 2019 ident: 10.1016/j.ces.2023.119230_b0070 article-title: Enhanced low-temperature activity of LaMnO3 for toluene oxidation: The effect of treatment with an acidic KMnO4 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.139 – volume: 3 start-page: 2229 issue: 8 year: 2023 ident: 10.1016/j.ces.2023.119230_b0095 article-title: Migration and transformation behavior of Mn2+ and NH4+-N in electrolytic manganese residue at different leaching ph environments: release kinetic model, physical phase changes, and formation of manganese oxide publication-title: ACS ES&T Water doi: 10.1021/acsestwater.3c00036 – volume: 236 year: 2019 ident: 10.1016/j.ces.2023.119230_b0120 article-title: Manganese and ammonia nitrogen recovery from electrolytic manganese residue by electric field enhanced leaching publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.117708 – volume: 31 year: 2019 ident: 10.1016/j.ces.2023.119230_b0005 article-title: Removal of metals (Pb, Cd, Cu, Cr, Ni, and Co) from drinking water by oxidation-coagulation-absorption at optimized pH publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2019.100839 – volume: 366 start-page: 475 year: 2016 ident: 10.1016/j.ces.2023.119230_b0050 article-title: XPS determination of Mn oxidation states in Mn (hydr)oxides publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.12.159 – volume: 1268 year: 2022 ident: 10.1016/j.ces.2023.119230_b0045 article-title: Removal of bromothymol blue dye by the oxidation method using KMnO4: Accelerating the oxidation reaction by Ru (III) catalyst publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2022.133679 – volume: 295 year: 2022 ident: 10.1016/j.ces.2023.119230_b0155 article-title: Synergistic effects of prokaryotes and oxidants in rapid sand filters treatment of groundwater versus surface water: Purification efficacy, stability and associated mechanisms publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.133804 – volume: 205 year: 2020 ident: 10.1016/j.ces.2023.119230_b0100 article-title: A low cost of phosphate-based binder for Mn2+ and NH4+-N simultaneous stabilization in electrolytic manganese residue publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111317 – volume: 356 year: 2022 ident: 10.1016/j.ces.2023.119230_b0135 article-title: Cleaner and safer disposal of electrolytic manganese residues in cement-based materials using direct electric curing publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131842 – volume: 306 year: 2021 ident: 10.1016/j.ces.2023.119230_b0025 article-title: Hazard-free treatment and resource utilisation of electrolytic manganese residue: A review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127224 – volume: 270 year: 2021 ident: 10.1016/j.ces.2023.119230_b0115 article-title: Enhanced removal of Mn2+ and NH4+-N in electrolytic manganese metal residue using washing and electrolytic oxidation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118798 – volume: 198 start-page: 482 year: 2018 ident: 10.1016/j.ces.2023.119230_b0190 article-title: Polyaniline/β-MnO2 nanocomposites as cathode electrocatalyst for oxygen reduction reaction in microbial fuel cells publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.01.058 – volume: 98 year: 2022 ident: 10.1016/j.ces.2023.119230_b0080 article-title: Inexpensive and eco-friendly nanostructured birnessite-type δ-MnO2: A design strategy from oxygen defect engineering and K+ pre-intercalation publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107274 – volume: 211 year: 2022 ident: 10.1016/j.ces.2023.119230_b0165 article-title: A cost-effective method for enhancing manganese leaching from rhodochrosite caused by surfactant-regulated crystal growth of CaSO4·2H2O publication-title: Hydrometall. doi: 10.1016/j.hydromet.2022.105870 – volume: 157 start-page: 509 year: 2022 ident: 10.1016/j.ces.2023.119230_b0160 article-title: Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: A review publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.10.031 – volume: 805 year: 2022 ident: 10.1016/j.ces.2023.119230_b0015 article-title: Multi-step purification of electrolytic manganese residue leachate using hydroxide sedimentation, struvite precipitation, chlorination, and coagulation: Advanced removal of manganese, ammonium, and phosphate publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150237 – volume: 643 year: 2022 ident: 10.1016/j.ces.2023.119230_b0130 article-title: Robust structural stability of flower-like δ-MnO2 as cathode for aqueous zinc ion battery publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2022.128804 – volume: 415 year: 2021 ident: 10.1016/j.ces.2023.119230_b0150 article-title: Oxidants-assisted sand filter to enhance the simultaneous removals of manganese, iron and ammonia from groundwater: Formation of active MnOx and involved mechanisms publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125707 – volume: 291 year: 2022 ident: 10.1016/j.ces.2023.119230_b0075 article-title: Enhanced removal of Mn2+ and NH4+-N in electrolytic manganese residue leachate by electrochemical and modified phosphate ore flotation tailings publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120959 – volume: 253 year: 2020 ident: 10.1016/j.ces.2023.119230_b0110 article-title: An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126896 – volume: 377 year: 2022 ident: 10.1016/j.ces.2023.119230_b0090 article-title: Challenges, advances and sustainabilities on the removal and recovery of manganese from wastewater: A review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.134152 |
| SSID | ssj0007710 |
| Score | 2.4794228 |
| Snippet | [Display omitted]
•KMnO4 accelerates the migration and transformation of Mn2+ and NH4+-N in EMR.•NH4+-N was trapped in EMR mainly through electrostatic and ion... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 119230 |
| SubjectTerms | Autocatalytic system EMR Migration and transformation Mn2 NH4+-N |
| Title | Effect of KMnO4 on the migration and transformation of Mn2+ and NH4+-N in electrolytic manganese residue: Autocatalytic system of manganese (Mn2+-MnO2-Mn2+) |
| URI | https://dx.doi.org/10.1016/j.ces.2023.119230 |
| Volume | 282 |
| WOSCitedRecordID | wos001071024600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0009-2509 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007710 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IK5i3OQHkIDIU-K4icPbmIbKZQWJgcpT5DrxaNW502im8V_4CfxIjm9Jxk2AxEvkOrYT9fvic3x8fA5C92MqklFdCcJkMSKw_kpJwWhCcsE5CEBYgNg0ne9f5ZMJn06LN4PB13AW5mSZa81PT4uj_wo11AHY5ujsX8DdDgoVUAbQ4Qqww_WPgPfxiEEJfLmnXzO_GxAdzg882NZnsqevOo1xT9MH9Km9ORkzKJKJDSfi0uQsP5vArodCHwiTsjKCRfq8aty59ma9skYg28RFhra79m1jUGLd6AReiBJXDiaIECUhBC6ouwCJkRfP7czkbdvjxqQia1Xw2tV-EMsghm3IycYS1NhsPtZd_Y4_jWK8eReN7hs9aGodSEadJS6cxulcn9zsXhBQ6Yr-7E5dbqMfJIUzWiy2YDbeMk8A2QG6btyJxdZZ8a0Z1wwLt0Ghyvg5tEHzUcGHaGP7-e70RSv58zyJQ-Y-0yHsolt_wu8e9HM9qKfb7F9Gl_yiBG87Ml1Bg1pfRRd7oSqvoS-OVnilsKUVXmkMtMItrTAwB5-llWkMYEf2FpAqIhM817hPKdyyBHtKPcFnCIUdocxQXdOHZtSWTNGj6-jds939nTHxmT2IpDRfk1miZMZddgOlGGNKSfhRJTQRvM5iVZgN44qnvGJ1DUsGUTERi1SqTCjKZXoDDfVK1zcRjhORMSnyOJcxk4qLZFbMEl5lMq2YGrFNFIf_uZQ-7L3JvrIsg3_jogRoSgNN6aDZRI_bLkcu5svvGrMAXum_CqeMlsC0X3e79W_dbqML3edwBw3Xx019F52XJ-v5p-N7no_fABE3t7o |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+KMnO4+on+the+migration+and+transformation+of+Mn2%2B+and+NH4%2B-N+in+electrolytic+manganese+residue%3A+Autocatalytic+system+of+manganese+%28Mn2%2B-MnO2-Mn2%2B%29&rft.jtitle=Chemical+engineering+science&rft.au=Yang%2C+Huimin&rft.au=Deng%2C+Yaling&rft.au=Shu%2C+Jiancheng&rft.au=Chen%2C+Mengjun&rft.date=2023-12-05&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.volume=282&rft_id=info:doi/10.1016%2Fj.ces.2023.119230&rft.externalDocID=S0009250923007868 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |