Effect of KMnO4 on the migration and transformation of Mn2+ and NH4+-N in electrolytic manganese residue: Autocatalytic system of manganese (Mn2+-MnO2-Mn2+)

[Display omitted] •KMnO4 accelerates the migration and transformation of Mn2+ and NH4+-N in EMR.•NH4+-N was trapped in EMR mainly through electrostatic and ion exchange interactions.•Mn2+ was converted primarily for the new ecologically hydrated MnO2 (NEHMO).•This study provides theoretical support...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science Vol. 282; p. 119230
Main Authors: Yang, Huimin, Deng, Yaling, Shu, Jiancheng, Chen, Mengjun, Yang, Yong, Deng, Zongyu
Format: Journal Article
Language:English
Published: Elsevier Ltd 05.12.2023
Subjects:
ISSN:0009-2509
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •KMnO4 accelerates the migration and transformation of Mn2+ and NH4+-N in EMR.•NH4+-N was trapped in EMR mainly through electrostatic and ion exchange interactions.•Mn2+ was converted primarily for the new ecologically hydrated MnO2 (NEHMO).•This study provides theoretical support for the harmless treatment of EMR. Electrolytic manganese residue (EMR) leachate contains high concentrations of Mn2+, NH4+-N, and heavy metals, seriously damaging the ecological environment. In this study, the effects of different KMnO4 dosages on the migration and transformation of Mn2+ and NH4+-N in EMR were investigated. The results showed that KMnO4 accelerated the migration and transformation of Mn2+ and NH4+-N. Mn2+ was mainly converted to the new ecologically hydrated MnO2 (NEHMO), which adsorbed Mn2+ and then oxidized it to form new active manganese oxides, thus constructing an autocatalytic oxidation reaction system of manganese (Mn2+-MnO2-Mn2+). A part of NH4+-N adsorbed on the NEHMO surface was catalytically oxidized to NO3–-N and NO2–-N. Mn2+on the EMR surface of the KMnO4 system mainly existed in the form of Mn3+, and the manganese oxides formed by the autocatalytic oxidaton of manganese mainly existed in the EMR system in the Fe-Mn oxidation state and residue state. This study provides theoretical support for developing in-situ remediation technology for EMR in residue sites.
AbstractList [Display omitted] •KMnO4 accelerates the migration and transformation of Mn2+ and NH4+-N in EMR.•NH4+-N was trapped in EMR mainly through electrostatic and ion exchange interactions.•Mn2+ was converted primarily for the new ecologically hydrated MnO2 (NEHMO).•This study provides theoretical support for the harmless treatment of EMR. Electrolytic manganese residue (EMR) leachate contains high concentrations of Mn2+, NH4+-N, and heavy metals, seriously damaging the ecological environment. In this study, the effects of different KMnO4 dosages on the migration and transformation of Mn2+ and NH4+-N in EMR were investigated. The results showed that KMnO4 accelerated the migration and transformation of Mn2+ and NH4+-N. Mn2+ was mainly converted to the new ecologically hydrated MnO2 (NEHMO), which adsorbed Mn2+ and then oxidized it to form new active manganese oxides, thus constructing an autocatalytic oxidation reaction system of manganese (Mn2+-MnO2-Mn2+). A part of NH4+-N adsorbed on the NEHMO surface was catalytically oxidized to NO3–-N and NO2–-N. Mn2+on the EMR surface of the KMnO4 system mainly existed in the form of Mn3+, and the manganese oxides formed by the autocatalytic oxidaton of manganese mainly existed in the EMR system in the Fe-Mn oxidation state and residue state. This study provides theoretical support for developing in-situ remediation technology for EMR in residue sites.
ArticleNumber 119230
Author Yang, Huimin
Shu, Jiancheng
Deng, Zongyu
Deng, Yaling
Chen, Mengjun
Yang, Yong
Author_xml – sequence: 1
  givenname: Huimin
  surname: Yang
  fullname: Yang, Huimin
  organization: Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
– sequence: 2
  givenname: Yaling
  surname: Deng
  fullname: Deng, Yaling
  organization: Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
– sequence: 3
  givenname: Jiancheng
  surname: Shu
  fullname: Shu, Jiancheng
  email: sjcees@126.com
  organization: Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
– sequence: 4
  givenname: Mengjun
  surname: Chen
  fullname: Chen, Mengjun
  organization: Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
– sequence: 5
  givenname: Yong
  surname: Yang
  fullname: Yang, Yong
  organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
– sequence: 6
  givenname: Zongyu
  surname: Deng
  fullname: Deng, Zongyu
  organization: Zunyi Manganese Day Magnetic Industry Group Co., Ltd, Zunyi, Guizhou 563000, China
BookMark eNp9UE1PAyEU5FAT2-oP8MZR02wFFvdDT01TrbEfFz0TZB-VpssaoCb9L_5Y2a6JiYee3huYmbyZAerZxgJCV5SMKaHZ7XaswI8ZYemY0pKlpIf6hJAyYXekPEcD77cR5jklffQ90xpUwI3GL0u75rixOHwArs3GyWAikrbCwUnrdePq7imSl5aNjl-rOR8lK2wshl00cs3uEIzCtbQbacEDduBNtYd7PNmHRskgO4I_-AB1a_VHvW5dk3gGS9rt5gKdabnzcPk7h-jtcfY6nSeL9dPzdLJIFGN5SN6pVllBeF7yTGvOudYqgooyKgvIiC5JnpGqSIuKA9AslRWXRKZKZ1KzQqVDlHe-yjXeO9BCmXCMGoObnaBEtMWKrYjFirZY0RUblfSf8tOZWrrDSc1Dp4EY6cuAE14ZsAoq42KDomrMCfUP-BqUog
CitedBy_id crossref_primary_10_1016_j_jece_2025_119041
crossref_primary_10_1016_j_jece_2024_114984
crossref_primary_10_1016_j_seppur_2025_134076
crossref_primary_10_1016_j_carpta_2025_100846
crossref_primary_10_1016_j_seppur_2024_128706
crossref_primary_10_1016_j_seppur_2025_133028
crossref_primary_10_3390_ijms26072928
crossref_primary_10_1016_j_jece_2025_115427
Cites_doi 10.1016/j.scitotenv.2021.152175
10.1016/j.cej.2022.137412
10.1016/j.watres.2023.120219
10.1016/j.seppur.2021.118820
10.1016/j.psep.2021.06.017
10.1016/j.apsusc.2021.150972
10.1016/j.jece.2022.108277
10.1007/s11356-021-18381-7
10.1016/j.ecoenv.2020.111341
10.1016/j.jhazmat.2021.125556
10.1016/j.apsusc.2021.150596
10.1016/j.conbuildmat.2021.123533
10.1016/j.molcata.2015.06.026
10.1016/j.jallcom.2019.151683
10.1016/j.cej.2019.01.139
10.1021/acsestwater.3c00036
10.1016/j.jclepro.2019.117708
10.1016/j.jwpe.2019.100839
10.1016/j.apsusc.2015.12.159
10.1016/j.molstruc.2022.133679
10.1016/j.chemosphere.2022.133804
10.1016/j.ecoenv.2020.111317
10.1016/j.jclepro.2022.131842
10.1016/j.jclepro.2021.127224
10.1016/j.seppur.2021.118798
10.1016/j.chemosphere.2018.01.058
10.1016/j.nanoen.2022.107274
10.1016/j.hydromet.2022.105870
10.1016/j.psep.2021.10.031
10.1016/j.scitotenv.2021.150237
10.1016/j.colsurfa.2022.128804
10.1016/j.jhazmat.2021.125707
10.1016/j.seppur.2022.120959
10.1016/j.chemosphere.2020.126896
10.1016/j.jclepro.2022.134152
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ces.2023.119230
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ces_2023_119230
S0009250923007868
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HVGLF
HZ~
NDZJH
R2-
SC5
T9H
VH1
WUQ
Y6R
ZY4
~HD
ID FETCH-LOGICAL-c227t-b1fc68047946ff444ffc479d121a8e60f90760d838d4ee163ad4a0a3cf6af28c3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001071024600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0009-2509
IngestDate Sat Nov 29 07:33:06 EST 2025
Tue Nov 18 22:22:38 EST 2025
Tue Dec 03 03:44:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mn2
Migration and transformation
NH4+-N
EMR
Autocatalytic system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-b1fc68047946ff444ffc479d121a8e60f90760d838d4ee163ad4a0a3cf6af28c3
ParticipantIDs crossref_citationtrail_10_1016_j_ces_2023_119230
crossref_primary_10_1016_j_ces_2023_119230
elsevier_sciencedirect_doi_10_1016_j_ces_2023_119230
PublicationCentury 2000
PublicationDate 2023-12-05
PublicationDateYYYYMMDD 2023-12-05
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-05
  day: 05
PublicationDecade 2020
PublicationTitle Chemical engineering science
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shu, Wu, Deng, Lei, Huang, Han, Zhang, Zhao, Wei, Chen (b0115) 2021; 270
Lv (b0080) 2022; 98
Wan, Zhou, Deng, Zhan, Zhang (b0125) 2015; 407
Bora, Dutta (b0005) 2019; 31
Li, Yang, Peng, Chen, Deng, Wang, Hong, Li (b0070) 2019; 366
Shu (b0095) 2023; 3
He, Shu, Zeng, Wei, Chen, Tan, Liang (b0030) 2022; 810
Cai, Liu, Yuan, Xu, Zhao, Tong, Lu, He (b0010) 2021; 565
He, Jiang, Hong, Liu (b0025) 2021; 306
Deng, Shu, Lei, Zeng, Li, Chen (b0020) 2021; 270
Wang, Liang, Gao, Ma, He, Zhao, Miao (b0130) 2022; 643
Ilton, Post, Heaney, Ling, Kerisit (b0050) 2016; 366
Li (b0060) 2023; 242
Nkele, Mpenyana-Monyatsi, Masindi (b0090) 2022; 377
Zhou, Xu, Mei, Du, Jv, Hu, Chen (b0190) 2018; 198
Ibrahim, Al-Hossainy, Saha, El-Aal (b0045) 2022; 1268
Wang, Long, Bai, Wang, Yang, Zhou, Zhou (b0135) 2022; 356
Tian, Shu, Chen, Wang, Wang, Luo, Wang, Yang, Xiu, Sun (b0120) 2019; 236
Yang, Tang, Luo, Li, Liang, Snyder (b0150) 2021; 415
Lan, Dong, Xiang, Zhang, Mei, Hou (b0055) 2021; 415
Zhang, Xie (b0175) 2022; 29
Huang, Wang, Yang, Xu, Gu (b0035) 2019; 808
Xu, Jegatheesan, Raveendran, Chatelier (b0145) 2021; 152
Shu, Li, Chen, Sun, Wei, Wang, Wang (b0110) 2020; 253
Shu, Cai, Zhao, Feng, Chen, Zhang, Wu, Yang, Liu (b0100) 2020; 205
Yang, Tang, Bai, Yang, Ding, Chen, Du, Li, Liang (b0155) 2022; 295
Min, Guo, Li, Gu, Guo, Xue, Liang, Hu, Jia, Sun (b0085) 2021; 568
Li, Shu, Wu, Su, Yang, Chen, Liu, Liu (b0075) 2022; 291
Wu, Guo, Liu, Wei, Wang (b0140) 2022; 10
Zeng, Shu, Chen, Wang, He, Wei, Deng, Lei, Liu, Tan, Zhang (b0165) 2022; 211
Huang, Shi, Yang, Dai, Wen, Li, Zi, Luo (b0040) 2022; 446
Chen, Long, Chen, Xie, Xu, Ning, Zhang, Xiao, Yu, Ke, Peng, Li (b0015) 2022; 805
Shu, Wu, Ji, Chen, Wu, Gao, Wei, Zhao, Huo, Liu (b0105) 2020; 206
Zhou (b0180) 2021; 294
Yang, Xue, Liu, Zhang (b0160) 2022; 157
Bora (10.1016/j.ces.2023.119230_b0005) 2019; 31
Shu (10.1016/j.ces.2023.119230_b0110) 2020; 253
Zeng (10.1016/j.ces.2023.119230_b0165) 2022; 211
Ibrahim (10.1016/j.ces.2023.119230_b0045) 2022; 1268
Shu (10.1016/j.ces.2023.119230_b0115) 2021; 270
Tian (10.1016/j.ces.2023.119230_b0120) 2019; 236
Shu (10.1016/j.ces.2023.119230_b0095) 2023; 3
Deng (10.1016/j.ces.2023.119230_b0020) 2021; 270
Chen (10.1016/j.ces.2023.119230_b0015) 2022; 805
Yang (10.1016/j.ces.2023.119230_b0155) 2022; 295
Ilton (10.1016/j.ces.2023.119230_b0050) 2016; 366
He (10.1016/j.ces.2023.119230_b0025) 2021; 306
Li (10.1016/j.ces.2023.119230_b0060) 2023; 242
Wu (10.1016/j.ces.2023.119230_b0140) 2022; 10
Zhou (10.1016/j.ces.2023.119230_b0190) 2018; 198
Min (10.1016/j.ces.2023.119230_b0085) 2021; 568
Shu (10.1016/j.ces.2023.119230_b0105) 2020; 206
Lv (10.1016/j.ces.2023.119230_b0080) 2022; 98
Huang (10.1016/j.ces.2023.119230_b0040) 2022; 446
Zhou (10.1016/j.ces.2023.119230_b0180) 2021; 294
Shu (10.1016/j.ces.2023.119230_b0100) 2020; 205
Huang (10.1016/j.ces.2023.119230_b0035) 2019; 808
Wang (10.1016/j.ces.2023.119230_b0130) 2022; 643
Zhang (10.1016/j.ces.2023.119230_b0175) 2022; 29
Yang (10.1016/j.ces.2023.119230_b0160) 2022; 157
Li (10.1016/j.ces.2023.119230_b0070) 2019; 366
Wan (10.1016/j.ces.2023.119230_b0125) 2015; 407
He (10.1016/j.ces.2023.119230_b0030) 2022; 810
Yang (10.1016/j.ces.2023.119230_b0150) 2021; 415
Lan (10.1016/j.ces.2023.119230_b0055) 2021; 415
Xu (10.1016/j.ces.2023.119230_b0145) 2021; 152
Cai (10.1016/j.ces.2023.119230_b0010) 2021; 565
Wang (10.1016/j.ces.2023.119230_b0135) 2022; 356
Li (10.1016/j.ces.2023.119230_b0075) 2022; 291
Nkele (10.1016/j.ces.2023.119230_b0090) 2022; 377
References_xml – volume: 270
  year: 2021
  ident: b0020
  article-title: A green method for Mn2+ and NH4+-N removal in electrolytic manganese residue leachate by electric field and phosphorus ore flotation tailings
  publication-title: Sep. Purif. Technol.
– volume: 415
  year: 2021
  ident: b0055
  article-title: Selective recovery of manganese from electrolytic manganese residue by using water as extractant under mechanochemical ball grinding: Mechanism and kinetics
  publication-title: J. Hazard. Mater.
– volume: 10
  year: 2022
  ident: b0140
  article-title: Effect of Fe doping on the surface properties of δ-MnO
  publication-title: J. Environ. Chem. Eng.
– volume: 805
  year: 2022
  ident: b0015
  article-title: Multi-step purification of electrolytic manganese residue leachate using hydroxide sedimentation, struvite precipitation, chlorination, and coagulation: Advanced removal of manganese, ammonium, and phosphate
  publication-title: Sci. Total Environ.
– volume: 808
  year: 2019
  ident: b0035
  article-title: Enhanced electrochemical performance of the layered nickel-rich oxide cathode by KMnO
  publication-title: J. Alloy. Compd.
– volume: 98
  year: 2022
  ident: b0080
  article-title: Inexpensive and eco-friendly nanostructured birnessite-type δ-MnO2: A design strategy from oxygen defect engineering and K+ pre-intercalation
  publication-title: Nano Energy
– volume: 206
  year: 2020
  ident: b0105
  article-title: A new electrochemical method for simultaneous removal of Mn2+ and NH4+-N in wastewater with Cu plate as cathode
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 211
  year: 2022
  ident: b0165
  article-title: A cost-effective method for enhancing manganese leaching from rhodochrosite caused by surfactant-regulated crystal growth of CaSO
  publication-title: Hydrometall.
– volume: 565
  year: 2021
  ident: b0010
  article-title: The structural evolution of MnO
  publication-title: Appl. Surf. Sci.
– volume: 31
  year: 2019
  ident: b0005
  article-title: Removal of metals (Pb, Cd, Cu, Cr, Ni, and Co) from drinking water by oxidation-coagulation-absorption at optimized pH
  publication-title: J. Water Process Eng.
– volume: 377
  year: 2022
  ident: b0090
  article-title: Challenges, advances and sustainabilities on the removal and recovery of manganese from wastewater: A review
  publication-title: J. Clean. Prod.
– volume: 291
  year: 2022
  ident: b0075
  article-title: Enhanced removal of Mn2+ and NH4+-N in electrolytic manganese residue leachate by electrochemical and modified phosphate ore flotation tailings
  publication-title: Sep. Purif. Technol.
– volume: 3
  start-page: 2229
  year: 2023
  end-page: 2237
  ident: b0095
  article-title: Migration and transformation behavior of Mn2+ and NH4+-N in electrolytic manganese residue at different leaching ph environments: release kinetic model, physical phase changes, and formation of manganese oxide
  publication-title: ACS ES&T Water
– volume: 236
  year: 2019
  ident: b0120
  article-title: Manganese and ammonia nitrogen recovery from electrolytic manganese residue by electric field enhanced leaching
  publication-title: J. Clean. Prod.
– volume: 1268
  year: 2022
  ident: b0045
  article-title: Removal of bromothymol blue dye by the oxidation method using KMnO4: Accelerating the oxidation reaction by Ru (III) catalyst
  publication-title: J. Mol. Struct.
– volume: 270
  year: 2021
  ident: b0115
  article-title: Enhanced removal of Mn2+ and NH4+-N in electrolytic manganese metal residue using washing and electrolytic oxidation
  publication-title: Sep. Purif. Technol.
– volume: 407
  start-page: 67
  year: 2015
  end-page: 74
  ident: b0125
  article-title: Oxidative degradation of sulfamethoxazole by different MnO
  publication-title: J. Mol. Catal. A Chem.
– volume: 198
  start-page: 482
  year: 2018
  end-page: 491
  ident: b0190
  article-title: Polyaniline/β-MnO
  publication-title: Chemosphere
– volume: 643
  year: 2022
  ident: b0130
  article-title: Robust structural stability of flower-like δ-MnO
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 366
  start-page: 475
  year: 2016
  end-page: 485
  ident: b0050
  article-title: XPS determination of Mn oxidation states in Mn (hydr)oxides
  publication-title: Appl. Surf. Sci.
– volume: 366
  start-page: 92
  year: 2019
  end-page: 99
  ident: b0070
  article-title: Enhanced low-temperature activity of LaMnO
  publication-title: Chem. Eng. J.
– volume: 157
  start-page: 509
  year: 2022
  end-page: 526
  ident: b0160
  article-title: Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: A review
  publication-title: Process Saf. Environ. Prot.
– volume: 446
  year: 2022
  ident: b0040
  article-title: Mechanism of CO selective catalytic reduction denitration on Fe–Mn/AC catalysts at medium and low temperatures under oxygen atmosphere
  publication-title: Chem. Eng. J.
– volume: 294
  year: 2021
  ident: b0180
  article-title: Reusing electrolytic manganese residue as an activator: The effect of calcination on its mineralogy and activity
  publication-title: Constr. Build. Mater.
– volume: 152
  start-page: 327
  year: 2021
  end-page: 337
  ident: b0145
  article-title: Option study to remove Mn(2+) by KMnO4 at a water treatment plant
  publication-title: Process Saf. Environ. Prot.
– volume: 205
  year: 2020
  ident: b0100
  article-title: A low cost of phosphate-based binder for Mn2+ and NH4+-N simultaneous stabilization in electrolytic manganese residue
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 810
  year: 2022
  ident: b0030
  article-title: Synergistic solidification/stabilization of electrolytic manganese residue and carbide slag
  publication-title: Sci. Total Environ.
– volume: 242
  year: 2023
  ident: b0060
  article-title: Fe, Mn and me
  publication-title: Water Res.
– volume: 568
  year: 2021
  ident: b0085
  article-title: Enhancement of toluene removal over α@δ-MnO
  publication-title: Appl. Surf. Sci.
– volume: 356
  year: 2022
  ident: b0135
  article-title: Cleaner and safer disposal of electrolytic manganese residues in cement-based materials using direct electric curing
  publication-title: J. Clean. Prod.
– volume: 253
  year: 2020
  ident: b0110
  article-title: An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material
  publication-title: Chemosphere
– volume: 306
  year: 2021
  ident: b0025
  article-title: Hazard-free treatment and resource utilisation of electrolytic manganese residue: A review
  publication-title: J. Clean. Prod.
– volume: 295
  year: 2022
  ident: b0155
  article-title: Synergistic effects of prokaryotes and oxidants in rapid sand filters treatment of groundwater versus surface water: Purification efficacy, stability and associated mechanisms
  publication-title: Chemosphere
– volume: 29
  start-page: 36295
  year: 2022
  end-page: 36312
  ident: b0175
  article-title: Effects of Mn(II) addition on Cd(II) removal by hydrated manganese dioxide
  publication-title: Environ. Sci. Pollut. Res.
– volume: 415
  year: 2021
  ident: b0150
  article-title: Oxidants-assisted sand filter to enhance the simultaneous removals of manganese, iron and ammonia from groundwater: Formation of active MnO
  publication-title: J. Hazard. Mater.
– volume: 810
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0030
  article-title: Synergistic solidification/stabilization of electrolytic manganese residue and carbide slag
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.152175
– volume: 446
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0040
  article-title: Mechanism of CO selective catalytic reduction denitration on Fe–Mn/AC catalysts at medium and low temperatures under oxygen atmosphere
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137412
– volume: 242
  year: 2023
  ident: 10.1016/j.ces.2023.119230_b0060
  article-title: Fe, Mn and me
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.120219
– volume: 270
  year: 2021
  ident: 10.1016/j.ces.2023.119230_b0020
  article-title: A green method for Mn2+ and NH4+-N removal in electrolytic manganese residue leachate by electric field and phosphorus ore flotation tailings
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118820
– volume: 152
  start-page: 327
  year: 2021
  ident: 10.1016/j.ces.2023.119230_b0145
  article-title: Option study to remove Mn(2+) by KMnO4 at a water treatment plant
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.06.017
– volume: 568
  year: 2021
  ident: 10.1016/j.ces.2023.119230_b0085
  article-title: Enhancement of toluene removal over α@δ-MnO2 composites prepared via one-pot by modifying the molar ratio of KMnO4 to MnSO4·H2O
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150972
– volume: 10
  issue: 5
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0140
  article-title: Effect of Fe doping on the surface properties of δ-MnO2 nanomaterials and its decomposition of formaldehyde at room temperature
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.108277
– volume: 29
  start-page: 36295
  issue: 24
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0175
  article-title: Effects of Mn(II) addition on Cd(II) removal by hydrated manganese dioxide
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-18381-7
– volume: 206
  year: 2020
  ident: 10.1016/j.ces.2023.119230_b0105
  article-title: A new electrochemical method for simultaneous removal of Mn2+ and NH4+-N in wastewater with Cu plate as cathode
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111341
– volume: 415
  year: 2021
  ident: 10.1016/j.ces.2023.119230_b0055
  article-title: Selective recovery of manganese from electrolytic manganese residue by using water as extractant under mechanochemical ball grinding: Mechanism and kinetics
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125556
– volume: 565
  year: 2021
  ident: 10.1016/j.ces.2023.119230_b0010
  article-title: The structural evolution of MnOx with calcination temperature and their catalytic performance for propane total oxidation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150596
– volume: 294
  year: 2021
  ident: 10.1016/j.ces.2023.119230_b0180
  article-title: Reusing electrolytic manganese residue as an activator: The effect of calcination on its mineralogy and activity
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123533
– volume: 407
  start-page: 67
  year: 2015
  ident: 10.1016/j.ces.2023.119230_b0125
  article-title: Oxidative degradation of sulfamethoxazole by different MnO2 nanocrystals in aqueous solution
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/j.molcata.2015.06.026
– volume: 808
  year: 2019
  ident: 10.1016/j.ces.2023.119230_b0035
  article-title: Enhanced electrochemical performance of the layered nickel-rich oxide cathode by KMnO4 treatment precursor
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.151683
– volume: 366
  start-page: 92
  year: 2019
  ident: 10.1016/j.ces.2023.119230_b0070
  article-title: Enhanced low-temperature activity of LaMnO3 for toluene oxidation: The effect of treatment with an acidic KMnO4
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.139
– volume: 3
  start-page: 2229
  issue: 8
  year: 2023
  ident: 10.1016/j.ces.2023.119230_b0095
  article-title: Migration and transformation behavior of Mn2+ and NH4+-N in electrolytic manganese residue at different leaching ph environments: release kinetic model, physical phase changes, and formation of manganese oxide
  publication-title: ACS ES&T Water
  doi: 10.1021/acsestwater.3c00036
– volume: 236
  year: 2019
  ident: 10.1016/j.ces.2023.119230_b0120
  article-title: Manganese and ammonia nitrogen recovery from electrolytic manganese residue by electric field enhanced leaching
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.117708
– volume: 31
  year: 2019
  ident: 10.1016/j.ces.2023.119230_b0005
  article-title: Removal of metals (Pb, Cd, Cu, Cr, Ni, and Co) from drinking water by oxidation-coagulation-absorption at optimized pH
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2019.100839
– volume: 366
  start-page: 475
  year: 2016
  ident: 10.1016/j.ces.2023.119230_b0050
  article-title: XPS determination of Mn oxidation states in Mn (hydr)oxides
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.12.159
– volume: 1268
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0045
  article-title: Removal of bromothymol blue dye by the oxidation method using KMnO4: Accelerating the oxidation reaction by Ru (III) catalyst
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2022.133679
– volume: 295
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0155
  article-title: Synergistic effects of prokaryotes and oxidants in rapid sand filters treatment of groundwater versus surface water: Purification efficacy, stability and associated mechanisms
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.133804
– volume: 205
  year: 2020
  ident: 10.1016/j.ces.2023.119230_b0100
  article-title: A low cost of phosphate-based binder for Mn2+ and NH4+-N simultaneous stabilization in electrolytic manganese residue
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111317
– volume: 356
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0135
  article-title: Cleaner and safer disposal of electrolytic manganese residues in cement-based materials using direct electric curing
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131842
– volume: 306
  year: 2021
  ident: 10.1016/j.ces.2023.119230_b0025
  article-title: Hazard-free treatment and resource utilisation of electrolytic manganese residue: A review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127224
– volume: 270
  year: 2021
  ident: 10.1016/j.ces.2023.119230_b0115
  article-title: Enhanced removal of Mn2+ and NH4+-N in electrolytic manganese metal residue using washing and electrolytic oxidation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118798
– volume: 198
  start-page: 482
  year: 2018
  ident: 10.1016/j.ces.2023.119230_b0190
  article-title: Polyaniline/β-MnO2 nanocomposites as cathode electrocatalyst for oxygen reduction reaction in microbial fuel cells
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.058
– volume: 98
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0080
  article-title: Inexpensive and eco-friendly nanostructured birnessite-type δ-MnO2: A design strategy from oxygen defect engineering and K+ pre-intercalation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107274
– volume: 211
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0165
  article-title: A cost-effective method for enhancing manganese leaching from rhodochrosite caused by surfactant-regulated crystal growth of CaSO4·2H2O
  publication-title: Hydrometall.
  doi: 10.1016/j.hydromet.2022.105870
– volume: 157
  start-page: 509
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0160
  article-title: Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: A review
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.10.031
– volume: 805
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0015
  article-title: Multi-step purification of electrolytic manganese residue leachate using hydroxide sedimentation, struvite precipitation, chlorination, and coagulation: Advanced removal of manganese, ammonium, and phosphate
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150237
– volume: 643
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0130
  article-title: Robust structural stability of flower-like δ-MnO2 as cathode for aqueous zinc ion battery
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2022.128804
– volume: 415
  year: 2021
  ident: 10.1016/j.ces.2023.119230_b0150
  article-title: Oxidants-assisted sand filter to enhance the simultaneous removals of manganese, iron and ammonia from groundwater: Formation of active MnOx and involved mechanisms
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125707
– volume: 291
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0075
  article-title: Enhanced removal of Mn2+ and NH4+-N in electrolytic manganese residue leachate by electrochemical and modified phosphate ore flotation tailings
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.120959
– volume: 253
  year: 2020
  ident: 10.1016/j.ces.2023.119230_b0110
  article-title: An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126896
– volume: 377
  year: 2022
  ident: 10.1016/j.ces.2023.119230_b0090
  article-title: Challenges, advances and sustainabilities on the removal and recovery of manganese from wastewater: A review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.134152
SSID ssj0007710
Score 2.4794228
Snippet [Display omitted] •KMnO4 accelerates the migration and transformation of Mn2+ and NH4+-N in EMR.•NH4+-N was trapped in EMR mainly through electrostatic and ion...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119230
SubjectTerms Autocatalytic system
EMR
Migration and transformation
Mn2
NH4+-N
Title Effect of KMnO4 on the migration and transformation of Mn2+ and NH4+-N in electrolytic manganese residue: Autocatalytic system of manganese (Mn2+-MnO2-Mn2+)
URI https://dx.doi.org/10.1016/j.ces.2023.119230
Volume 282
WOSCitedRecordID wos001071024600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0009-2509
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007710
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IK5i3OQHkIDIU-K4icPbmIbKZQWJgcpT5DrxaNW502im8V_4CfxIjm9Jxk2AxEvkOrYT9fvic3x8fA5C92MqklFdCcJkMSKw_kpJwWhCcsE5CEBYgNg0ne9f5ZMJn06LN4PB13AW5mSZa81PT4uj_wo11AHY5ujsX8DdDgoVUAbQ4Qqww_WPgPfxiEEJfLmnXzO_GxAdzg882NZnsqevOo1xT9MH9Km9ORkzKJKJDSfi0uQsP5vArodCHwiTsjKCRfq8aty59ma9skYg28RFhra79m1jUGLd6AReiBJXDiaIECUhBC6ouwCJkRfP7czkbdvjxqQia1Xw2tV-EMsghm3IycYS1NhsPtZd_Y4_jWK8eReN7hs9aGodSEadJS6cxulcn9zsXhBQ6Yr-7E5dbqMfJIUzWiy2YDbeMk8A2QG6btyJxdZZ8a0Z1wwLt0Ghyvg5tEHzUcGHaGP7-e70RSv58zyJQ-Y-0yHsolt_wu8e9HM9qKfb7F9Gl_yiBG87Ml1Bg1pfRRd7oSqvoS-OVnilsKUVXmkMtMItrTAwB5-llWkMYEf2FpAqIhM817hPKdyyBHtKPcFnCIUdocxQXdOHZtSWTNGj6-jds939nTHxmT2IpDRfk1miZMZddgOlGGNKSfhRJTQRvM5iVZgN44qnvGJ1DUsGUTERi1SqTCjKZXoDDfVK1zcRjhORMSnyOJcxk4qLZFbMEl5lMq2YGrFNFIf_uZQ-7L3JvrIsg3_jogRoSgNN6aDZRI_bLkcu5svvGrMAXum_CqeMlsC0X3e79W_dbqML3edwBw3Xx019F52XJ-v5p-N7no_fABE3t7o
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+KMnO4+on+the+migration+and+transformation+of+Mn2%2B+and+NH4%2B-N+in+electrolytic+manganese+residue%3A+Autocatalytic+system+of+manganese+%28Mn2%2B-MnO2-Mn2%2B%29&rft.jtitle=Chemical+engineering+science&rft.au=Yang%2C+Huimin&rft.au=Deng%2C+Yaling&rft.au=Shu%2C+Jiancheng&rft.au=Chen%2C+Mengjun&rft.date=2023-12-05&rft.pub=Elsevier+Ltd&rft.issn=0009-2509&rft.volume=282&rft_id=info:doi/10.1016%2Fj.ces.2023.119230&rft.externalDocID=S0009250923007868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon