Offline approximate value iteration for dynamic solutions to the multivehicle routing problem with stochastic demand
The multivehicle routing problem with stochastic demand (MVRPSD) is an important issue both in theory and practice. However, solving the MVRPSD through traditional methods, such as a priori optimization or rollout-algorithm-based dynamic programming is generally limited by the issues of computation...
Uložené v:
| Vydané v: | Computers & operations research Ročník 146; s. 105884 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.10.2022
|
| Predmet: | |
| ISSN: | 0305-0548, 1873-765X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The multivehicle routing problem with stochastic demand (MVRPSD) is an important issue both in theory and practice. However, solving the MVRPSD through traditional methods, such as a priori optimization or rollout-algorithm-based dynamic programming is generally limited by the issues of computation efficiency and solution quality. Under increasing demand for efficient real-time logistics, we propose a novel offline approximate value iteration (OAVI) algorithm for dynamic solutions to the MVRPSD. Our algorithm benefits from offline training and thus can provide fast and effective online dynamic routing solutions. Adopting such a novel and effective algorithm presents two challenges: first, we must define a proper cost structure for the dynamic routing decision; second, we must efficiently address the curse of dimensionality of the multivehicle problem. To solve these problems, we first describe the cost structure through the value function approximation (VFA) with basis functions involving a priori cost and a priori credibility; we then design two strategies, recourse reduction (RR) and neighborhood reduction (NR), to prune the action space. The numerical experiments show that our algorithm can substantially enhance computation efficiency and solution quality compared to traditional methods.
•Dynamic solutions to the multivehicle routing problem with stochastic demand are studied.•An offline approximation value iteration algorithm is designed to solve the problem.•Basis function set and two pruning strategies are proposed to improve performance.•We analyze the algorithmic performance and application insights behind.•The algorithm proposed significantly outperforms the traditional method. |
|---|---|
| AbstractList | The multivehicle routing problem with stochastic demand (MVRPSD) is an important issue both in theory and practice. However, solving the MVRPSD through traditional methods, such as a priori optimization or rollout-algorithm-based dynamic programming is generally limited by the issues of computation efficiency and solution quality. Under increasing demand for efficient real-time logistics, we propose a novel offline approximate value iteration (OAVI) algorithm for dynamic solutions to the MVRPSD. Our algorithm benefits from offline training and thus can provide fast and effective online dynamic routing solutions. Adopting such a novel and effective algorithm presents two challenges: first, we must define a proper cost structure for the dynamic routing decision; second, we must efficiently address the curse of dimensionality of the multivehicle problem. To solve these problems, we first describe the cost structure through the value function approximation (VFA) with basis functions involving a priori cost and a priori credibility; we then design two strategies, recourse reduction (RR) and neighborhood reduction (NR), to prune the action space. The numerical experiments show that our algorithm can substantially enhance computation efficiency and solution quality compared to traditional methods.
•Dynamic solutions to the multivehicle routing problem with stochastic demand are studied.•An offline approximation value iteration algorithm is designed to solve the problem.•Basis function set and two pruning strategies are proposed to improve performance.•We analyze the algorithmic performance and application insights behind.•The algorithm proposed significantly outperforms the traditional method. |
| ArticleNumber | 105884 |
| Author | Zhang, Xiaonan Fan, Xiaoqing Zhang, Jianxiong |
| Author_xml | – sequence: 1 givenname: Xiaonan surname: Zhang fullname: Zhang, Xiaonan email: zhangxiaonan@sust.edu.cn organization: College of Management and Economics, Tianjin University, Tianjin 300072, China – sequence: 2 givenname: Jianxiong surname: Zhang fullname: Zhang, Jianxiong email: jxzhang@tju.edu.cn organization: College of Management and Economics, Tianjin University, Tianjin 300072, China – sequence: 3 givenname: Xiaoqing orcidid: 0000-0002-4284-3124 surname: Fan fullname: Fan, Xiaoqing email: xqfan@tju.edu.cn organization: College of Management and Economics, Tianjin University, Tianjin 300072, China |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG_5A1vzsdvN4kmKX1DoRcFbyCYTm7K7KUla7b83tZ48dC7DzPAMvM8EjQY_AEK3lMwoofO7zUz7MGOEsTxXQpQXaExFzYt6Xn2M0JhwUhWkKsUVmsS4IblqRscorazt3ABYbbfBf7teJcB71e0AuwRBJecHbH3A5jCo3mkcfbc7LiNOHqc14H7XJbeHtdMd4ODzcfjE-VfbQY-_XFrjmLxeq5gybaBXg7lGl1Z1EW7--hS9Pz2-LV6K5er5dfGwLDRjdSqUptwaA1TZplHWVBUnddOIusmzbU2lFeEtb5gthWhZaxrChLaW29LONSF8iurTXx18jAGs1C79RkpBuU5SIo_y5EZmefIoT57kZZL-I7chuwmHs8z9iYEcae8gyKgdDBqMC6CTNN6doX8Ab0iN8g |
| CitedBy_id | crossref_primary_10_1287_trsc_2023_0111 crossref_primary_10_1016_j_apenergy_2024_124823 crossref_primary_10_1016_j_eswa_2025_127818 crossref_primary_10_1016_j_ijpe_2022_108751 crossref_primary_10_1007_s10479_024_06061_x crossref_primary_10_1016_j_cie_2024_110747 crossref_primary_10_1016_j_oceaneng_2024_118251 |
| Cites_doi | 10.1016/j.ejor.2020.03.007 10.1287/trsc.2017.0773 10.1016/j.cor.2021.105211 10.1016/j.ejor.2018.07.039 10.1016/j.ejor.2018.02.038 10.1016/j.cor.2019.03.017 10.1016/j.eswa.2009.07.021 10.1287/opre.49.5.796.10608 10.1016/j.ejor.2011.09.027 10.1002/net.21855 10.1287/trsc.2017.0767 10.1287/trsc.1090.0295 10.1016/j.cor.2020.104996 10.1016/j.eswa.2020.113959 10.1080/00207543.2016.1231431 10.1016/j.ejor.2012.08.015 10.1016/j.ejor.2017.06.034 10.1287/trsc.1100.0324 10.1287/trsc.2016.0719 10.1016/j.tre.2015.11.004 10.1016/j.eswa.2021.114820 10.1016/j.ejor.2011.09.023 10.1287/opre.1120.1127 10.1287/trsc.34.1.99.12278 10.1016/j.ejor.2007.12.037 10.1016/j.cor.2014.03.028 10.1287/trsc.1060.0180 10.1016/S0305-0548(99)00146-X 10.1007/s13676-018-0126-y 10.1016/j.cor.2021.105377 10.1016/j.ejor.2018.03.034 10.1016/j.ejor.2018.05.049 10.1287/trsc.2015.0591 10.1016/j.ejor.2008.03.023 10.1016/j.cor.2018.06.012 10.1016/j.cor.2018.10.019 10.1023/A:1018995927636 10.1287/trsc.2020.0976 10.1287/opre.1080.0520 10.1287/opre.2019.1901 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cor.2022.105884 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1873-765X |
| ExternalDocumentID | 10_1016_j_cor_2022_105884 S0305054822001538 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEFWE AEHXG AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UAO UPT VH1 WUQ XFK XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c227t-ac13fdde1af99afd5530799879f99fbd5ca03b392f488b2bd9028cff3f4f6c003 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000809914300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-0548 |
| IngestDate | Sat Nov 29 07:21:38 EST 2025 Tue Nov 18 21:49:54 EST 2025 Fri Feb 23 02:39:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Offline approximate value iteration Markov decision process Multivehicle routing problem with stochastic demands Basis function Computational efficiency |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c227t-ac13fdde1af99afd5530799879f99fbd5ca03b392f488b2bd9028cff3f4f6c003 |
| ORCID | 0000-0002-4284-3124 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cor_2022_105884 crossref_primary_10_1016_j_cor_2022_105884 elsevier_sciencedirect_doi_10_1016_j_cor_2022_105884 |
| PublicationCentury | 2000 |
| PublicationDate | October 2022 2022-10-00 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & operations research |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Benjamin, Bin, Gunther R (b2) 2018 Cheng, Liao, Hua (b8) 2017; 55 Ulmer, Thomas (b44) 2018; 72 Novoa, Storer (b24) 2009; 196 Goodson, Ohlmann, Thomas (b14) 2012; 217 Li, Mirchandani, Borenstein (b21) 2009; 194 Powell (b29) 2011 Fan, Zhang, Tian, Lv, Fan (b11) 2021; 129 Secomandi (b34) 2000; 27 Secomandi (b35) 2001; 49 Ak, Erera (b1) 2007; 41 Gauvin, Desaulniers, Gendreau (b13) 2014; 50 Luo, Qin, Zhang, Lim (b22) 2016; 85 Bertolini, Mezzogori, Neroni, Zammori (b5) 2021; 175 Park, Son, Koo, Jeong (b27) 2021; 165 Hjorring, Holt (b19) 1999 Bertazzi, Secomandi (b3) 2018; 270 Ulmer, Soeffker, Mattfeld (b42) 2018; 269 Ulmer, Mattfeld, Köster (b41) 2018; 52 Secomandi, Margot (b36) 2009; 57 Fan, Wang, Fan, Ning (b10) 2006 Pillac, Gendreau, Guéret, Medaglia (b28) 2013; 225 Zhu, Sheu (b49) 2018; 271 Ulmer, Streng (b43) 2019; 108 Van Heeswijk, Mes, Schutten (b46) 2019; 53 Yang, Mathur, Ballou (b47) 2000; 34 Ulmer (b39) 2017; 10 Ning, Gou, Zhang (b23) 2019; 37 Savelsbergh, Goetschalckx (b33) 1995; 16 Bertazzi, Secomandi (b4) 2020; 68 Erera, Morales, Savelsbergh (b9) 2010; 44 Salavati-Khoshghalb, Gendreau, Jabali, Rei (b31) 2019; 273 Salavati-Khoshghalb, Gendreau, Jabali, Rei (b32) 2019; 8 Yang, Strauss (b48) 2017; 263 Bruglieri, Mancini, Pezzella, Pisacane (b6) 2019; 103 Keenan, Panadero, Juan, Martí, McGarraghy (b20) 2021; 133 Ulmer, Goodson, Mattfeld, Hennig (b40) 2019; 53 Cao, Lai (b7) 2010; 37 Ojeda Rios, Xavier, Miyazawa, Amorim, Curcio, Santos (b25) 2021; 160 Hesam Sadati, Aksen, Aras (b18) 2020; 123 Rei, Gendreau, Soriano (b30) 2010; 44 Goodson, Thomas, Ohlmann (b16) 2016; 50 Ulmer, Thomas (b45) 2019; 53 Gutierrez, Dieulle, Labadie, Velasco (b17) 2018; 99 Pandelis, Kyriakidis, Dimitrakos (b26) 2012; 217 Strauss, Gülpınar, Zheng (b37) 2021; 294 Sutton, Barto (b38) 1998 Goodson, Ohlmann, Thomas (b15) 2013; 61 Florio, Hartl, Minner (b12) 2020; 54 Goodson (10.1016/j.cor.2022.105884_b16) 2016; 50 Ulmer (10.1016/j.cor.2022.105884_b41) 2018; 52 Hjorring (10.1016/j.cor.2022.105884_b19) 1999 Pandelis (10.1016/j.cor.2022.105884_b26) 2012; 217 Rei (10.1016/j.cor.2022.105884_b30) 2010; 44 Salavati-Khoshghalb (10.1016/j.cor.2022.105884_b32) 2019; 8 Bertolini (10.1016/j.cor.2022.105884_b5) 2021; 175 Goodson (10.1016/j.cor.2022.105884_b15) 2013; 61 Pillac (10.1016/j.cor.2022.105884_b28) 2013; 225 Ulmer (10.1016/j.cor.2022.105884_b40) 2019; 53 Goodson (10.1016/j.cor.2022.105884_b14) 2012; 217 Novoa (10.1016/j.cor.2022.105884_b24) 2009; 196 Bertazzi (10.1016/j.cor.2022.105884_b4) 2020; 68 Secomandi (10.1016/j.cor.2022.105884_b36) 2009; 57 Ojeda Rios (10.1016/j.cor.2022.105884_b25) 2021; 160 Erera (10.1016/j.cor.2022.105884_b9) 2010; 44 Fan (10.1016/j.cor.2022.105884_b10) 2006 Fan (10.1016/j.cor.2022.105884_b11) 2021; 129 Ulmer (10.1016/j.cor.2022.105884_b42) 2018; 269 Ning (10.1016/j.cor.2022.105884_b23) 2019; 37 Bruglieri (10.1016/j.cor.2022.105884_b6) 2019; 103 Hesam Sadati (10.1016/j.cor.2022.105884_b18) 2020; 123 Florio (10.1016/j.cor.2022.105884_b12) 2020; 54 Ulmer (10.1016/j.cor.2022.105884_b39) 2017; 10 Van Heeswijk (10.1016/j.cor.2022.105884_b46) 2019; 53 Sutton (10.1016/j.cor.2022.105884_b38) 1998 Cheng (10.1016/j.cor.2022.105884_b8) 2017; 55 Park (10.1016/j.cor.2022.105884_b27) 2021; 165 Yang (10.1016/j.cor.2022.105884_b47) 2000; 34 Ulmer (10.1016/j.cor.2022.105884_b43) 2019; 108 Ulmer (10.1016/j.cor.2022.105884_b44) 2018; 72 Powell (10.1016/j.cor.2022.105884_b29) 2011 Gutierrez (10.1016/j.cor.2022.105884_b17) 2018; 99 Benjamin (10.1016/j.cor.2022.105884_b2) 2018 Luo (10.1016/j.cor.2022.105884_b22) 2016; 85 Salavati-Khoshghalb (10.1016/j.cor.2022.105884_b31) 2019; 273 Gauvin (10.1016/j.cor.2022.105884_b13) 2014; 50 Li (10.1016/j.cor.2022.105884_b21) 2009; 194 Ulmer (10.1016/j.cor.2022.105884_b45) 2019; 53 Cao (10.1016/j.cor.2022.105884_b7) 2010; 37 Yang (10.1016/j.cor.2022.105884_b48) 2017; 263 Bertazzi (10.1016/j.cor.2022.105884_b3) 2018; 270 Secomandi (10.1016/j.cor.2022.105884_b35) 2001; 49 Strauss (10.1016/j.cor.2022.105884_b37) 2021; 294 Zhu (10.1016/j.cor.2022.105884_b49) 2018; 271 Ak (10.1016/j.cor.2022.105884_b1) 2007; 41 Savelsbergh (10.1016/j.cor.2022.105884_b33) 1995; 16 Keenan (10.1016/j.cor.2022.105884_b20) 2021; 133 Secomandi (10.1016/j.cor.2022.105884_b34) 2000; 27 |
| References_xml | – volume: 160 year: 2021 ident: b25 article-title: Recent dynamic vehicle routing problems: A survey publication-title: Comput. Ind. Eng. – volume: 294 start-page: 1022 year: 2021 end-page: 1041 ident: b37 article-title: Dynamic pricing of flexible time slots for attended home delivery publication-title: European J. Oper. Res. – volume: 10 year: 2017 ident: b39 article-title: Delivery deadlines in same-day delivery publication-title: Logist. Res. – volume: 269 start-page: 883 year: 2018 end-page: 899 ident: b42 article-title: Value function approximation for dynamic multi-period vehicle routing publication-title: European J. Oper. Res. – volume: 165 year: 2021 ident: b27 article-title: Waiting strategy for the vehicle routing problem with simultaneous pickup and delivery using genetic algorithm publication-title: Expert Syst. Appl. – volume: 44 start-page: 136 year: 2010 end-page: 146 ident: b30 article-title: A hybrid Monte Carlo local branching algorithm for the single vehicle routing problem with stochastic demands publication-title: Transp. Sci. – volume: 270 start-page: 487 year: 2018 end-page: 497 ident: b3 article-title: Faster rollout search for the vehicle routing problem with stochastic demands and restocking publication-title: European J. Oper. Res. – volume: 8 start-page: 269 year: 2019 end-page: 298 ident: b32 article-title: A hybrid recourse policy for the vehicle routing problem with stochastic demands publication-title: EURO J. Transp. Logist. – volume: 16 start-page: 163 year: 1995 end-page: 187 ident: b33 article-title: A comparison of the efficiency of fixed versus variable vehicle routes publication-title: J. Bus. Logist. – volume: 52 start-page: 20 year: 2018 end-page: 37 ident: b41 article-title: Budgeting time for dynamic vehicle routing with stochastic customer requests publication-title: Transp. Sci. – year: 2006 ident: b10 article-title: A multiple vehicles routing problem algorithm with stochastic demand publication-title: World Congress on Intelligent Control & Automation – volume: 133 year: 2021 ident: b20 article-title: A strategic oscillation simheuristic for the time capacitated arc routing problem with stochastic demands publication-title: Comput. Oper. Res. – volume: 57 start-page: 214 year: 2009 end-page: 230 ident: b36 article-title: Reoptimization approaches for the vehicle-routing problem with stochastic demands publication-title: Oper. Res. – volume: 44 start-page: 474 year: 2010 end-page: 492 ident: b9 article-title: The vehicle routing problem with stochastic demand and duration constraints publication-title: Transp. Sci. – year: 1999 ident: b19 article-title: New optimality cuts for a single-vehicle stochastic routing problem publication-title: Ann. Oper. Res. – volume: 37 start-page: 8371 year: 2019 end-page: 8379 ident: b23 article-title: Disruption management strategy of terminal logistics under accidental travel time delay based on prospect theory publication-title: J. Intell. Fuzzy Syst. – volume: 54 start-page: 1073 year: 2020 end-page: 1090 ident: b12 article-title: New exact algorithm for the vehicle routing problem with stochastic demands publication-title: Transp. Sci. – volume: 50 start-page: 141 year: 2014 end-page: 153 ident: b13 article-title: A branch-cut-and-price algorithm for the vehicle routing problem with stochastic demands publication-title: Comput. Oper. Res. – volume: 34 start-page: 99 year: 2000 end-page: 112 ident: b47 article-title: Stochastic vehicle routing problem with restocking publication-title: Transp. Sci. – volume: 27 start-page: 1201 year: 2000 end-page: 1225 ident: b34 article-title: Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands publication-title: Comput. Oper. Res. – volume: 85 start-page: 69 year: 2016 end-page: 89 ident: b22 article-title: Adaptive large neighborhood search heuristics for the vehicle routing problem with stochastic demands and weight-related cost publication-title: Transp. Res. Part E – volume: 68 start-page: 671 year: 2020 end-page: 675 ident: b4 article-title: Technical note—Worst-case benefit of restocking for the vehicle routing problem with stochastic demands publication-title: Oper. Res. – volume: 225 start-page: 1 year: 2013 end-page: 11 ident: b28 article-title: A review of dynamic vehicle routing problems publication-title: European J. Oper. Res. – volume: 108 start-page: 1 year: 2019 end-page: 19 ident: b43 article-title: Same-day delivery with pickup stations and autonomous vehicles publication-title: Comput. Opera. Res. – volume: 273 start-page: 175 year: 2019 end-page: 189 ident: b31 article-title: An exact algorithm to solve the vehicle routing problem with stochastic demands under an optimal restocking policy publication-title: European J. Oper. Res. – volume: 53 start-page: 185 year: 2019 end-page: 202 ident: b40 article-title: Offline-online approximate dynamic programming for dynamic vehicle routing with stochastic requests publication-title: Transp. Sci. – year: 2018 ident: b2 article-title: A genetic algorithm in combination with a solution archive for solving the generalized vehicle routing problem with stochastic demands publication-title: Transp. Sci. – year: 2011 ident: b29 article-title: Approximate Dynamic Programming: Solving the Curses of Dimensionality – volume: 49 start-page: 796 year: 2001 end-page: 802 ident: b35 article-title: A rollout policy for the vehicle routing problem with stochastic demands publication-title: Oper. Res. – volume: 37 start-page: 2405 year: 2010 end-page: 2411 ident: b7 article-title: The open vehicle routing problem with fuzzy demands publication-title: Expert Syst. Appl. – volume: 103 start-page: 109 year: 2019 end-page: 122 ident: b6 article-title: A path-based solution approach for the green vehicle routing problem publication-title: Comput. Oper. Res. – volume: 196 start-page: 509 year: 2009 end-page: 515 ident: b24 article-title: An approximate dynamic programming approach for the vehicle routing problem with stochastic demands publication-title: European J. Oper. Res. – volume: 175 year: 2021 ident: b5 article-title: Machine learning for industrial applications: A comprehensive literature review publication-title: Expert Syst. Appl. – volume: 217 start-page: 324 year: 2012 end-page: 332 ident: b26 article-title: Single vehicle routing problems with a predefined customer sequence, compartmentalized load and stochastic demands publication-title: European J. Oper. Res. – volume: 123 year: 2020 ident: b18 article-title: A trilevel r-interdiction selective multi-depot vehicle routing problem with depot protection publication-title: Comput. Oper. Res. – volume: 194 start-page: 711 year: 2009 end-page: 727 ident: b21 article-title: Real-time vehicle rerouting problems with time windows publication-title: European J. Oper. Res. – volume: 271 start-page: 896 year: 2018 end-page: 912 ident: b49 article-title: Failure-specific cooperative recourse strategy for simultaneous pickup and delivery problem with stochastic demands publication-title: European J. Oper. Res. – volume: 53 start-page: 203 year: 2019 end-page: 221 ident: b46 article-title: The delivery dispatching problem with time windows for urban consolidation centers publication-title: Transp. Sci. – volume: 55 start-page: 2470 year: 2017 end-page: 2488 ident: b8 article-title: A policy of picking up parcels for express courier service in dynamic environments publication-title: Int. J. Prod. Res. – volume: 217 start-page: 312 year: 2012 end-page: 323 ident: b14 article-title: Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand publication-title: European J. Oper. Res. – volume: 263 start-page: 935 year: 2017 end-page: 945 ident: b48 article-title: An approximate dynamic programming approach to attended home delivery management publication-title: European J. Oper. Res. – volume: 41 start-page: 222 year: 2007 end-page: 237 ident: b1 article-title: A paired-vehicle recourse strategy for the vehicle-routing problem with stochastic demands publication-title: Transp. Sci. – volume: 61 start-page: 138 year: 2013 end-page: 154 ident: b15 article-title: Rollout policies for dynamic solutions to the multivehicle routing problem with stochastic demand and duration limits publication-title: Oper. Res. – volume: 99 start-page: 135 year: 2018 end-page: 147 ident: b17 article-title: A hybrid metaheuristic algorithm for the vehicle routing problem with stochastic demands publication-title: Comput. Oper. Res. – volume: 53 start-page: 897 year: 2019 end-page: 916 ident: b45 article-title: Enough waiting for the cable guy—Estimating arrival times for service vehicle routing publication-title: Transp. Sci. – volume: 129 year: 2021 ident: b11 article-title: Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance publication-title: Comput. Oper. Res. – volume: 50 start-page: 591 year: 2016 end-page: 607 ident: b16 article-title: Restocking-based rollout policies for the vehicle routing problem with stochastic demand and duration limits publication-title: Transp. Sci. – year: 1998 ident: b38 article-title: Reinforcement learning:an introduction publication-title: Reinforcement Learning:An Introduction – volume: 72 start-page: 475 year: 2018 end-page: 505 ident: b44 article-title: Same-day delivery with heterogeneous fleets of drones and vehicles publication-title: Networks – volume: 294 start-page: 1022 issue: 3 year: 2021 ident: 10.1016/j.cor.2022.105884_b37 article-title: Dynamic pricing of flexible time slots for attended home delivery publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2020.03.007 – volume: 53 start-page: 203 issue: 1 year: 2019 ident: 10.1016/j.cor.2022.105884_b46 article-title: The delivery dispatching problem with time windows for urban consolidation centers publication-title: Transp. Sci. doi: 10.1287/trsc.2017.0773 – volume: 129 year: 2021 ident: 10.1016/j.cor.2022.105884_b11 article-title: Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105211 – volume: 273 start-page: 175 issue: 1 year: 2019 ident: 10.1016/j.cor.2022.105884_b31 article-title: An exact algorithm to solve the vehicle routing problem with stochastic demands under an optimal restocking policy publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2018.07.039 – volume: 269 start-page: 883 issue: 3 year: 2018 ident: 10.1016/j.cor.2022.105884_b42 article-title: Value function approximation for dynamic multi-period vehicle routing publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2018.02.038 – year: 2011 ident: 10.1016/j.cor.2022.105884_b29 – volume: 108 start-page: 1 year: 2019 ident: 10.1016/j.cor.2022.105884_b43 article-title: Same-day delivery with pickup stations and autonomous vehicles publication-title: Comput. Opera. Res. doi: 10.1016/j.cor.2019.03.017 – volume: 37 start-page: 2405 issue: 3 year: 2010 ident: 10.1016/j.cor.2022.105884_b7 article-title: The open vehicle routing problem with fuzzy demands publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.07.021 – volume: 49 start-page: 796 issue: 5 year: 2001 ident: 10.1016/j.cor.2022.105884_b35 article-title: A rollout policy for the vehicle routing problem with stochastic demands publication-title: Oper. Res. doi: 10.1287/opre.49.5.796.10608 – volume: 217 start-page: 324 issue: 2 year: 2012 ident: 10.1016/j.cor.2022.105884_b26 article-title: Single vehicle routing problems with a predefined customer sequence, compartmentalized load and stochastic demands publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2011.09.027 – volume: 72 start-page: 475 issue: 4, SI year: 2018 ident: 10.1016/j.cor.2022.105884_b44 article-title: Same-day delivery with heterogeneous fleets of drones and vehicles publication-title: Networks doi: 10.1002/net.21855 – volume: 53 start-page: 897 issue: 3 year: 2019 ident: 10.1016/j.cor.2022.105884_b45 article-title: Enough waiting for the cable guy—Estimating arrival times for service vehicle routing publication-title: Transp. Sci. – volume: 53 start-page: 185 issue: 1 year: 2019 ident: 10.1016/j.cor.2022.105884_b40 article-title: Offline-online approximate dynamic programming for dynamic vehicle routing with stochastic requests publication-title: Transp. Sci. doi: 10.1287/trsc.2017.0767 – volume: 44 start-page: 136 issue: 1 year: 2010 ident: 10.1016/j.cor.2022.105884_b30 article-title: A hybrid Monte Carlo local branching algorithm for the single vehicle routing problem with stochastic demands publication-title: Transp. Sci. doi: 10.1287/trsc.1090.0295 – volume: 37 start-page: 8371 issue: 6 year: 2019 ident: 10.1016/j.cor.2022.105884_b23 article-title: Disruption management strategy of terminal logistics under accidental travel time delay based on prospect theory publication-title: J. Intell. Fuzzy Syst. – volume: 123 year: 2020 ident: 10.1016/j.cor.2022.105884_b18 article-title: A trilevel r-interdiction selective multi-depot vehicle routing problem with depot protection publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2020.104996 – volume: 165 year: 2021 ident: 10.1016/j.cor.2022.105884_b27 article-title: Waiting strategy for the vehicle routing problem with simultaneous pickup and delivery using genetic algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113959 – volume: 55 start-page: 2470 issue: 9 year: 2017 ident: 10.1016/j.cor.2022.105884_b8 article-title: A policy of picking up parcels for express courier service in dynamic environments publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2016.1231431 – volume: 225 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.cor.2022.105884_b28 article-title: A review of dynamic vehicle routing problems publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2012.08.015 – volume: 263 start-page: 935 issue: 3 year: 2017 ident: 10.1016/j.cor.2022.105884_b48 article-title: An approximate dynamic programming approach to attended home delivery management publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2017.06.034 – volume: 160 year: 2021 ident: 10.1016/j.cor.2022.105884_b25 article-title: Recent dynamic vehicle routing problems: A survey publication-title: Comput. Ind. Eng. – volume: 44 start-page: 474 issue: 4 year: 2010 ident: 10.1016/j.cor.2022.105884_b9 article-title: The vehicle routing problem with stochastic demand and duration constraints publication-title: Transp. Sci. doi: 10.1287/trsc.1100.0324 – volume: 52 start-page: 20 issue: 1 year: 2018 ident: 10.1016/j.cor.2022.105884_b41 article-title: Budgeting time for dynamic vehicle routing with stochastic customer requests publication-title: Transp. Sci. doi: 10.1287/trsc.2016.0719 – year: 2018 ident: 10.1016/j.cor.2022.105884_b2 article-title: A genetic algorithm in combination with a solution archive for solving the generalized vehicle routing problem with stochastic demands publication-title: Transp. Sci. – volume: 10 issue: 1 year: 2017 ident: 10.1016/j.cor.2022.105884_b39 article-title: Delivery deadlines in same-day delivery publication-title: Logist. Res. – volume: 85 start-page: 69 year: 2016 ident: 10.1016/j.cor.2022.105884_b22 article-title: Adaptive large neighborhood search heuristics for the vehicle routing problem with stochastic demands and weight-related cost publication-title: Transp. Res. Part E doi: 10.1016/j.tre.2015.11.004 – year: 1998 ident: 10.1016/j.cor.2022.105884_b38 article-title: Reinforcement learning:an introduction – volume: 175 year: 2021 ident: 10.1016/j.cor.2022.105884_b5 article-title: Machine learning for industrial applications: A comprehensive literature review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114820 – volume: 217 start-page: 312 issue: 2 year: 2012 ident: 10.1016/j.cor.2022.105884_b14 article-title: Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2011.09.023 – volume: 61 start-page: 138 issue: 1 year: 2013 ident: 10.1016/j.cor.2022.105884_b15 article-title: Rollout policies for dynamic solutions to the multivehicle routing problem with stochastic demand and duration limits publication-title: Oper. Res. doi: 10.1287/opre.1120.1127 – volume: 34 start-page: 99 issue: 1 year: 2000 ident: 10.1016/j.cor.2022.105884_b47 article-title: Stochastic vehicle routing problem with restocking publication-title: Transp. Sci. doi: 10.1287/trsc.34.1.99.12278 – volume: 194 start-page: 711 issue: 3 year: 2009 ident: 10.1016/j.cor.2022.105884_b21 article-title: Real-time vehicle rerouting problems with time windows publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2007.12.037 – volume: 50 start-page: 141 year: 2014 ident: 10.1016/j.cor.2022.105884_b13 article-title: A branch-cut-and-price algorithm for the vehicle routing problem with stochastic demands publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2014.03.028 – volume: 41 start-page: 222 issue: 2 year: 2007 ident: 10.1016/j.cor.2022.105884_b1 article-title: A paired-vehicle recourse strategy for the vehicle-routing problem with stochastic demands publication-title: Transp. Sci. doi: 10.1287/trsc.1060.0180 – volume: 27 start-page: 1201 issue: 11 year: 2000 ident: 10.1016/j.cor.2022.105884_b34 article-title: Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(99)00146-X – volume: 8 start-page: 269 issue: 3 year: 2019 ident: 10.1016/j.cor.2022.105884_b32 article-title: A hybrid recourse policy for the vehicle routing problem with stochastic demands publication-title: EURO J. Transp. Logist. doi: 10.1007/s13676-018-0126-y – volume: 133 year: 2021 ident: 10.1016/j.cor.2022.105884_b20 article-title: A strategic oscillation simheuristic for the time capacitated arc routing problem with stochastic demands publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105377 – volume: 270 start-page: 487 issue: 2 year: 2018 ident: 10.1016/j.cor.2022.105884_b3 article-title: Faster rollout search for the vehicle routing problem with stochastic demands and restocking publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2018.03.034 – volume: 271 start-page: 896 issue: 3 year: 2018 ident: 10.1016/j.cor.2022.105884_b49 article-title: Failure-specific cooperative recourse strategy for simultaneous pickup and delivery problem with stochastic demands publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2018.05.049 – volume: 50 start-page: 591 issue: 2 year: 2016 ident: 10.1016/j.cor.2022.105884_b16 article-title: Restocking-based rollout policies for the vehicle routing problem with stochastic demand and duration limits publication-title: Transp. Sci. doi: 10.1287/trsc.2015.0591 – year: 2006 ident: 10.1016/j.cor.2022.105884_b10 article-title: A multiple vehicles routing problem algorithm with stochastic demand – volume: 196 start-page: 509 issue: 2 year: 2009 ident: 10.1016/j.cor.2022.105884_b24 article-title: An approximate dynamic programming approach for the vehicle routing problem with stochastic demands publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2008.03.023 – volume: 99 start-page: 135 year: 2018 ident: 10.1016/j.cor.2022.105884_b17 article-title: A hybrid metaheuristic algorithm for the vehicle routing problem with stochastic demands publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2018.06.012 – volume: 103 start-page: 109 year: 2019 ident: 10.1016/j.cor.2022.105884_b6 article-title: A path-based solution approach for the green vehicle routing problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2018.10.019 – volume: 16 start-page: 163 issue: 1 year: 1995 ident: 10.1016/j.cor.2022.105884_b33 article-title: A comparison of the efficiency of fixed versus variable vehicle routes publication-title: J. Bus. Logist. – year: 1999 ident: 10.1016/j.cor.2022.105884_b19 article-title: New optimality cuts for a single-vehicle stochastic routing problem publication-title: Ann. Oper. Res. doi: 10.1023/A:1018995927636 – volume: 54 start-page: 1073 issue: 4 year: 2020 ident: 10.1016/j.cor.2022.105884_b12 article-title: New exact algorithm for the vehicle routing problem with stochastic demands publication-title: Transp. Sci. doi: 10.1287/trsc.2020.0976 – volume: 57 start-page: 214 issue: 1 year: 2009 ident: 10.1016/j.cor.2022.105884_b36 article-title: Reoptimization approaches for the vehicle-routing problem with stochastic demands publication-title: Oper. Res. doi: 10.1287/opre.1080.0520 – volume: 68 start-page: 671 issue: 3 year: 2020 ident: 10.1016/j.cor.2022.105884_b4 article-title: Technical note—Worst-case benefit of restocking for the vehicle routing problem with stochastic demands publication-title: Oper. Res. doi: 10.1287/opre.2019.1901 |
| SSID | ssj0000721 |
| Score | 2.4130101 |
| Snippet | The multivehicle routing problem with stochastic demand (MVRPSD) is an important issue both in theory and practice. However, solving the MVRPSD through... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105884 |
| SubjectTerms | Basis function Computational efficiency Markov decision process Multivehicle routing problem with stochastic demands Offline approximate value iteration |
| Title | Offline approximate value iteration for dynamic solutions to the multivehicle routing problem with stochastic demand |
| URI | https://dx.doi.org/10.1016/j.cor.2022.105884 |
| Volume | 146 |
| WOSCitedRecordID | wos000809914300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-765X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000721 issn: 0305-0548 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhtB4GFCYNm7yA09EQa2b1PHjhDbBhAYPA_UtcnxhnUbSdVnVH8AP5_iasDHEHniJWstxrJ6vPp-dc76D0JuCFxNJpirVnKo0m2qZciJ1SkdjTccqZ8wKaX_7RI-Pi9mMfRkMfoZcmNU5retivWaL_2pqaANjm9TZO5g7DgoN8BmMDlcwO1z_yfCftbbU0aqFr-fASFViJL1V4hSUQ2yhdLXokzibQENtjOFKnZqBk2Vz1bqEdVt4xoe0t4045UbhOZHqh6sB0ukd-DoRlxZVzcI_07ye6J2c9c-qZ3MO-4H6RvsRQHcNt36PIHOntab_RXC5_sQCNrsh9i1mapmAwdwpbMZVOOuvo8D6Clc67sYS704bzsBCRs6VkHdd39_ltK-5uRh8GOLazkoYojRDlG6Ie2iT0JzB8r65__FgdtR5dGrz9-K8w9txGyd4bR5_5jc9znLyGG37zQbedyB5ggaqHqIHIddhiB4FW2G_xA_Rw55A5VPUejDhHpiwBROOYMIAJuzBhCOYcNtgABPugwl7MGEPJmzAhDswYQemZ-jr4cHJ-w-pr9ORCkJom3Ixnmhwk2OuGeNamkpUFLbxlMF3Xclc8NGkAiKuwVtUpJJGMUhoPdGZngpwKztoo25qtYtwJoBBEgbE3wQgZ7wacQIcVeVcwsZWyz00Cr9uKbyIvamlcl7eatU99DbesnAKLn_rnAWTlZ6COmpZAvxuv-35XZ7xAm11_4qXaKNdXqlX6L5YtfPL5WuPvV-Wi6z2 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Offline+approximate+value+iteration+for+dynamic+solutions+to+the+multivehicle+routing+problem+with+stochastic+demand&rft.jtitle=Computers+%26+operations+research&rft.au=Zhang%2C+Xiaonan&rft.au=Zhang%2C+Jianxiong&rft.au=Fan%2C+Xiaoqing&rft.date=2022-10-01&rft.issn=0305-0548&rft.volume=146&rft.spage=105884&rft_id=info:doi/10.1016%2Fj.cor.2022.105884&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2022_105884 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |