Distributed parallel deep learning with a hybrid backpropagation-particle swarm optimization for community detection in large complex networks

In this paper, a parallel deep learning-based community detection method in large complex networks (CNs) is proposed. First, a CN partitioning method is employed to divide the CN into multiple chunks to improve the efficiency in terms of space and time complexities. Next, the method is integrated wi...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 600; pp. 94 - 117
Main Authors: Nasser Al-Andoli, Mohammed, Chiang Tan, Shing, Ping Cheah, Wooi
Format: Journal Article
Language:English
Published: Elsevier Inc 01.07.2022
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a parallel deep learning-based community detection method in large complex networks (CNs) is proposed. First, a CN partitioning method is employed to divide the CN into multiple chunks to improve the efficiency in terms of space and time complexities. Next, the method is integrated with two optimization algorithms: (1) backpropagation (BP), which optimizes deep learning locally within each local chunk of the CN; (2) particle swarm optimization (PSO), which is used to improve the BP optimization involving all CN chunks. PSO utilizes a multi-objective function to improve the effectiveness of the proposed method. In addition, a distributed environment is set up to conduct parallel optimization of the proposed method so that multi-local optimizations could be performed simultaneously. A set of 16 real-world CNs in a range from small to large size are used to verify the effectiveness and efficiency of the method in a benchmark study. The proposed method is implemented in multi-machines with central processing unit (CPU) and graphics processing unit (GPU) devices. The results reveal the effective role of the proposed deep learning with hybrid BP–PSO optimization in detecting communities in large CNs, which requires minimum execution time on both CPU and GPU devices.
AbstractList In this paper, a parallel deep learning-based community detection method in large complex networks (CNs) is proposed. First, a CN partitioning method is employed to divide the CN into multiple chunks to improve the efficiency in terms of space and time complexities. Next, the method is integrated with two optimization algorithms: (1) backpropagation (BP), which optimizes deep learning locally within each local chunk of the CN; (2) particle swarm optimization (PSO), which is used to improve the BP optimization involving all CN chunks. PSO utilizes a multi-objective function to improve the effectiveness of the proposed method. In addition, a distributed environment is set up to conduct parallel optimization of the proposed method so that multi-local optimizations could be performed simultaneously. A set of 16 real-world CNs in a range from small to large size are used to verify the effectiveness and efficiency of the method in a benchmark study. The proposed method is implemented in multi-machines with central processing unit (CPU) and graphics processing unit (GPU) devices. The results reveal the effective role of the proposed deep learning with hybrid BP–PSO optimization in detecting communities in large CNs, which requires minimum execution time on both CPU and GPU devices.
Author Nasser Al-Andoli, Mohammed
Chiang Tan, Shing
Ping Cheah, Wooi
Author_xml – sequence: 1
  givenname: Mohammed
  surname: Nasser Al-Andoli
  fullname: Nasser Al-Andoli, Mohammed
  organization: Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, Melaka, Malaysia
– sequence: 2
  givenname: Shing
  surname: Chiang Tan
  fullname: Chiang Tan, Shing
  email: sctan@mmu.edu.my
  organization: Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, Melaka, Malaysia
– sequence: 3
  givenname: Wooi
  surname: Ping Cheah
  fullname: Ping Cheah, Wooi
  organization: School of Computer Science, Faculty of Science and Engineering, University of Nottingham Ningbo China, Taikang East Road, Ningbo 315100 China
BookMark eNp9kM9O3DAQhy1EJRbaB-DmF0g6cTYOiBOCliIhcaFny38myyyOHdmmy_IQPHOzCycOXGak-en7SfMds8MQAzJ22kDdQCN_rmsKuRYgRA1tDV17wBbNWS8qKc6bQ7YAEFCB6LojdpzzGgCWvZQL9nZNuSQyzwUdn3TS3qPnDnHiHnUKFFZ8Q-WRa_64NYkcN9o-TSlOeqULxVDNUCHrkeeNTiOPU6GRXvcZH2LiNo7jc6CynVsL2v2dAvc6rXAXTh5feMCyiekpf2ffBu0z_vjYJ-zv718PV3-qu_ub26vLu8oK0ZdKG-MGe25BiqUdbC8MGKOllVqetRK0cIOUA7bzbJdG9K7rpOycaPtBiA5ce8Ka916bYs4JBzUlGnXaqgbUTqhaq1mo2glV0KpZ6Mz0nxhLZf9nSZr8l-TFO4nzS_8Ik8qWMFh0lGYjykX6gv4PNzmX5Q
CitedBy_id crossref_primary_10_1016_j_csite_2025_106677
crossref_primary_10_1109_ACCESS_2024_3409689
crossref_primary_10_1007_s10586_024_05024_y
crossref_primary_10_1016_j_ins_2022_07_165
crossref_primary_10_3233_JIFS_230258
crossref_primary_10_1016_j_neucom_2024_127704
crossref_primary_10_3390_app142210121
crossref_primary_10_1016_j_jocs_2024_102423
crossref_primary_10_3233_JIFS_230255
crossref_primary_10_1016_j_asoc_2025_113767
crossref_primary_10_3233_JIFS_230172
crossref_primary_10_3233_JIFS_220811
crossref_primary_10_1016_j_ins_2023_02_090
crossref_primary_10_1109_ACCESS_2023_3296789
crossref_primary_10_1109_ACCESS_2024_3399883
crossref_primary_10_2478_jaiscr_2023_0020
crossref_primary_10_1109_ACCESS_2023_3267089
crossref_primary_10_3233_JIFS_221174
crossref_primary_10_1016_j_future_2024_107575
crossref_primary_10_1109_ACCESS_2024_3354699
crossref_primary_10_3390_s23136035
crossref_primary_10_1016_j_asoc_2024_111895
crossref_primary_10_1080_00207721_2022_2135976
crossref_primary_10_1016_j_ins_2024_120376
crossref_primary_10_3390_diagnostics15162060
crossref_primary_10_1016_j_eswa_2023_120552
Cites_doi 10.1007/s00521-016-2728-3
10.1111/coin.12273
10.1109/TCYB.2020.2983860
10.1016/j.ins.2021.03.060
10.1109/TEVC.2018.2808689
10.1016/j.ins.2021.06.089
10.1016/j.patcog.2018.03.026
10.1016/j.jpdc.2017.09.006
10.1109/ACCESS.2021.3095335
10.1371/journal.pone.0157551
10.1016/j.swevo.2019.05.010
10.1007/s10489-019-01541-1
10.1016/j.ins.2016.08.087
10.1609/aaai.v28i1.8916
10.1109/TEVC.2004.826076
10.1016/j.ins.2019.10.056
10.1016/j.future.2018.10.045
10.1145/3269206.3271697
10.1016/j.apenergy.2017.01.003
10.1109/ACCESS.2021.3068477
10.1016/j.neucom.2018.09.066
10.14311/NNW.2016.26.034
10.1109/TCSS.2020.2964027
10.1016/j.ins.2019.04.018
10.1109/CEC.2018.8477769
10.1007/s13042-021-01285-w
10.1109/ACCESS.2020.3011502
10.1016/j.knosys.2020.105935
10.1109/SIS.2003.1202255
10.1109/ICNN.1995.488968
10.3390/app11020744
10.3724/SP.J.1004.2013.00381
10.1007/s11042-019-7473-z
10.1007/978-3-030-36987-3_15
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.03.053
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 117
ExternalDocumentID 10_1016_j_ins_2022_03_053
S0020025522002663
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c227t-abbdfc9c0624cfc72b0bba6c6a68360a2df66fe3f6634b27d55665d237f2250d3
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793056000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:30:03 EST 2025
Tue Nov 18 22:11:15 EST 2025
Fri Feb 23 02:39:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Community detection
Backpropagation algorithm
Distributed and parallel computing
Particle swarm optimization
Complex networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-abbdfc9c0624cfc72b0bba6c6a68360a2df66fe3f6634b27d55665d237f2250d3
PageCount 24
ParticipantIDs crossref_primary_10_1016_j_ins_2022_03_053
crossref_citationtrail_10_1016_j_ins_2022_03_053
elsevier_sciencedirect_doi_10_1016_j_ins_2022_03_053
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Akay, Karaboga, Akay (b0005) 2021
Li (b0110) 2021; 21
M. Dhilber and S. D. Bhavani, Community detection in social networks using deep learning, in International Conference on Distributed Computing and Internet Technology, 2020: Springer, pp. 241-250, https://doi.org/10.1007/978-3-030-36987-3_15.
Sun, Xue, Zhang, Yen, Lv (b0195) 2020; 50
F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, Learning deep representations for graph clustering, in Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014
V. G. Gudise and G. K. Venayagamoorthy, Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks, in Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No. 03EX706), 2003: IEEE, pp. 110-117, https://doi.org/10.1109/SIS.2003.1202255.
R. Eberhart and J. Kennedy, Particle swarm optimization, in Proceedings of the IEEE international conference on neural networks, 1995, vol. 4: Citeseer, pp. 1942-1948, https://doi.org/10.1.1.931.1264.
Al-Andoli, Tan, Cheah, Tan (b0015) 2021; 9
Saranya, Nagarajan (b0185) 2020
Bhatia, Rani (b0025) 2019; 94
.
Wu, Pan, Chen, Long, Zhang, Philip (b0215) 2020
Zarei, Meybodi (b0245) 2020; 36
Li, Fan, Zhangy, Xia (b0115) 2016; 26
Wu, Zhang, Chen, Guo, Wang (b0210) 2020
Xie, Gong, Wang, Yu (b0220) 2018; 81
Dong, Wang, Liu (b0065) 2020; 512
L. Ma et al., NeuGraph: Parallel deep neural network computation on large graphs, in 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019, pp. 443-458, https://dl.acm.org/doi/abs/10.5555/3358807.3358845.
Yu, Jiao, Yao, Wang (b0240) 2016; 373
Pinaya, Vieira, Garcia-Dias, Mechelli (b0165) 2020
Ding, Zhang, Yang (b0060) 2020; 198
J. Dean et al., Large scale distributed deep networks, in Advances in neural information processing systems, 2012, pp. 1223-1231, https://research.google/pubs/pub40565/.
Martín, Lara-Cabrera, Fuentes-Hurtado, Naranjo, Camacho (b0140) 2018; 117
Cao, Cui, Shi, Jiao (b0030) 2016; 11
Lee, Kim, Kang, Kang, Park (b0105) 2021; 11
Pan, Li, Zhou, Li, Gao (b0150) 2013; 39
Makkie, Huang, Zhao, Vasilakos, Liu (b0135) 2019; 325
De Pinho Pinheiro, Nedjah, de Macedo Mourelle (b0045) 2020; 79
F. Ye, C. Chen, and Z. Zheng, Deep autoencoder-like nonnegative matrix factorization for community detection, in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: ACM, pp. 1393-1402, https://doi.org/10.1145/3269206.3271697.
Chiang, Liu, Si, Li, Bengio, Hsieh (b0035) 2019
Yang, Cao, He, Wang, Wang, Zhang (b0230) 2016; 16
Junior, Yen (b0095) 2019; 49
Sun, Yen, Yi (b0200) 2018; 23
I. M. Coelho, V. N. Coelho, E. J. d. S. Luz, L. S. Ochi, F. G. Guimarães, and E. Rios, A GPU deep learning metaheuristic based model for time series forecasting, Applied Energy, vol. 201, pp. 412-418, 2017, https://doi.org/10.1016/j.apenergy.2017.01.003.
T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, Evolution strategies as a scalable alternative to reinforcement learning, arXiv preprint arXiv:1703.03864, 2017, https://arxiv.org/abs/1703.03864.
J. Pierezan and L. D. S. Coelho, Coyote optimization algorithm: a new metaheuristic for global optimization problems, in 2018 IEEE congress on evolutionary computation (CEC), 2018: IEEE, pp. 1-8, https://doi.org/10.1109/CEC.2018.8477769.
Guo, He, Chen, Guo, Zheng (b0080) 2020; 50
Aurangzeb, Aslam, Alhussein, Naqvi, Arsalan, Haider (b0020) 2021; 9
Liu, Wang, Zeng, Alsaadi, Liu (b0120) 2021; 12
Al-Andoli, Cheah, Tan (b0010) 2020
Su, Zhou, Zhang, Cheng, Zheng (b0190) 2021; 576
Guo, Li, Tang, Li (b0085) 2017; 2017
A. Harlap et al., Pipedream: Fast and efficient pipeline parallel dnn training, arXiv preprint arXiv:1806.03377, 2018, https://arxiv.org/abs/1806.03377.
Liu, Du, Jiang, Zeng (b0125) 2020; 7
Parsopoulos, Vrahatis (b0160) 2004; 8
Xie, Wang, Jiang, Xu (b0225) 2019; 493
Kan, Fan, Fang, Cao, Xiong, Yang, Li (b0100) 2021; 568
Mohamad, Armaghani, Momeni, Yazdavar, Ebrahimi (b0145) 2018; 30
Rajagopal (b0170) 2020; 8
Al-Andoli (10.1016/j.ins.2022.03.053_b0010) 2020
Li (10.1016/j.ins.2022.03.053_b0110) 2021; 21
Yu (10.1016/j.ins.2022.03.053_b0240) 2016; 373
Wu (10.1016/j.ins.2022.03.053_b0210) 2020
Ding (10.1016/j.ins.2022.03.053_b0060) 2020; 198
Saranya (10.1016/j.ins.2022.03.053_b0185) 2020
Wu (10.1016/j.ins.2022.03.053_b0215) 2020
Martín (10.1016/j.ins.2022.03.053_b0140) 2018; 117
Liu (10.1016/j.ins.2022.03.053_b0120) 2021; 12
10.1016/j.ins.2022.03.053_b0090
De Pinho Pinheiro (10.1016/j.ins.2022.03.053_b0045) 2020; 79
Pan (10.1016/j.ins.2022.03.053_b0150) 2013; 39
10.1016/j.ins.2022.03.053_b0070
Sun (10.1016/j.ins.2022.03.053_b0200) 2018; 23
Chiang (10.1016/j.ins.2022.03.053_b0035) 2019
10.1016/j.ins.2022.03.053_b0050
Mohamad (10.1016/j.ins.2022.03.053_b0145) 2018; 30
Su (10.1016/j.ins.2022.03.053_b0190) 2021; 576
Parsopoulos (10.1016/j.ins.2022.03.053_b0160) 2004; 8
Sun (10.1016/j.ins.2022.03.053_b0195) 2020; 50
Xie (10.1016/j.ins.2022.03.053_b0225) 2019; 493
10.1016/j.ins.2022.03.053_b0175
10.1016/j.ins.2022.03.053_b0075
10.1016/j.ins.2022.03.053_b0130
10.1016/j.ins.2022.03.053_b0155
10.1016/j.ins.2022.03.053_b0055
Yang (10.1016/j.ins.2022.03.053_b0230) 2016; 16
Rajagopal (10.1016/j.ins.2022.03.053_b0170) 2020; 8
10.1016/j.ins.2022.03.053_b0235
Xie (10.1016/j.ins.2022.03.053_b0220) 2018; 81
Akay (10.1016/j.ins.2022.03.053_b0005) 2021
Al-Andoli (10.1016/j.ins.2022.03.053_b0015) 2021; 9
Bhatia (10.1016/j.ins.2022.03.053_b0025) 2019; 94
Makkie (10.1016/j.ins.2022.03.053_b0135) 2019; 325
Aurangzeb (10.1016/j.ins.2022.03.053_b0020) 2021; 9
Dong (10.1016/j.ins.2022.03.053_b0065) 2020; 512
Li (10.1016/j.ins.2022.03.053_b0115) 2016; 26
Lee (10.1016/j.ins.2022.03.053_b0105) 2021; 11
Liu (10.1016/j.ins.2022.03.053_b0125) 2020; 7
Guo (10.1016/j.ins.2022.03.053_b0085) 2017; 2017
Junior (10.1016/j.ins.2022.03.053_b0095) 2019; 49
10.1016/j.ins.2022.03.053_b0040
Pinaya (10.1016/j.ins.2022.03.053_b0165) 2020
Cao (10.1016/j.ins.2022.03.053_b0030) 2016; 11
10.1016/j.ins.2022.03.053_b0205
Zarei (10.1016/j.ins.2022.03.053_b0245) 2020; 36
Guo (10.1016/j.ins.2022.03.053_b0080) 2020; 50
Kan (10.1016/j.ins.2022.03.053_b0100) 2021; 568
References_xml – year: 2020
  ident: b0210
  article-title: Deep learning techniques for community detection in social networks
  publication-title: IEEE Access
– reference: M. Dhilber and S. D. Bhavani, Community detection in social networks using deep learning, in International Conference on Distributed Computing and Internet Technology, 2020: Springer, pp. 241-250, https://doi.org/10.1007/978-3-030-36987-3_15.
– volume: 94
  start-page: 16
  year: 2019
  end-page: 26
  ident: b0025
  article-title: A distributed overlapping community detection model for large graphs using autoencoder
  publication-title: Future Generat. Comput. Syst.
– volume: 117
  start-page: 180
  year: 2018
  end-page: 191
  ident: b0140
  article-title: EvoDeep: a new evolutionary approach for automatic deep neural networks parametrisation
  publication-title: J. Parallel Distrib. Comput.
– start-page: 193
  year: 2020
  end-page: 208
  ident: b0165
  article-title: Autoencoders, in machine learning
  publication-title: Elsevier
– volume: 16
  start-page: 2252
  year: 2016
  end-page: 2258
  ident: b0230
  article-title: Modularity based community detection with deep learning
  publication-title: IJCAI
– reference: J. Dean et al., Large scale distributed deep networks, in Advances in neural information processing systems, 2012, pp. 1223-1231, https://research.google/pubs/pub40565/.
– volume: 50
  start-page: 328
  year: 2020
  end-page: 340
  ident: b0080
  article-title: A local community detection algorithm based on internal force between nodes
  publication-title: Appl. Intell.
– reference: A. Harlap et al., Pipedream: Fast and efficient pipeline parallel dnn training, arXiv preprint arXiv:1806.03377, 2018, https://arxiv.org/abs/1806.03377.
– start-page: 1
  year: 2021
  end-page: 66
  ident: b0005
  article-title: A comprehensive survey on optimizing deep learning models by metaheuristics
  publication-title: Artif. Intell. Rev.
– reference: T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, Evolution strategies as a scalable alternative to reinforcement learning, arXiv preprint arXiv:1703.03864, 2017, https://arxiv.org/abs/1703.03864.
– volume: 512
  start-page: 1360
  year: 2020
  end-page: 1371
  ident: b0065
  article-title: Spectral based hypothesis testing for community detection in complex networks
  publication-title: Inf. Sci.
– volume: 12
  start-page: 1939
  year: 2021
  end-page: 1948
  ident: b0120
  article-title: A PSO-based deep learning approach to classifying patients from emergency departments
  publication-title: Int. J. Mach. Learn. Cybern.
– start-page: 1
  year: 2020
  end-page: 11
  ident: b0185
  article-title: Efficient agricultural yield prediction using metaheuristic optimized artificial neural network using Hadoop framework
  publication-title: Soft. Comput.
– reference: V. G. Gudise and G. K. Venayagamoorthy, Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks, in Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No. 03EX706), 2003: IEEE, pp. 110-117, https://doi.org/10.1109/SIS.2003.1202255.
– volume: 576
  start-page: 374
  year: 2021
  end-page: 392
  ident: b0190
  article-title: A parallel multi-objective evolutionary algorithm for community detection in large-scale complex networks
  publication-title: Inf. Sci.
– volume: 49
  start-page: 62
  year: 2019
  end-page: 74
  ident: b0095
  article-title: Particle swarm optimization of deep neural networks architectures for image classification
  publication-title: Swarm Evol. Comput.
– reference: L. Ma et al., NeuGraph: Parallel deep neural network computation on large graphs, in 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019, pp. 443-458, https://dl.acm.org/doi/abs/10.5555/3358807.3358845.
– volume: 8
  start-page: 135383
  year: 2020
  end-page: 135393
  ident: b0170
  article-title: A Deep learning model based on multi-objective particle swarm optimization for scene classification in unmanned aerial vehicles
  publication-title: IEEE Access
– volume: 50
  start-page: 3840
  year: 2020
  end-page: 3854
  ident: b0195
  article-title: Automatically designing CNN architectures using the genetic algorithm for image classification
  publication-title: IEEE Trans. Cybern.
– volume: 9
  start-page: 96501
  year: 2021
  end-page: 96527
  ident: b0015
  article-title: A review on community detection in large complex networks from conventional to deep learning methods: a call for the use of parallel meta-heuristic algorithms
  publication-title: IEEE Access
– volume: 493
  start-page: 75
  year: 2019
  end-page: 90
  ident: b0225
  article-title: High-performance community detection in social networks using a deep transitive autoencoder
  publication-title: Inf. Sci.
– volume: 23
  start-page: 89
  year: 2018
  end-page: 103
  ident: b0200
  article-title: Evolving unsupervised deep neural networks for learning meaningful representations
  publication-title: IEEE Trans. Evol. Comput.
– reference: F. Ye, C. Chen, and Z. Zheng, Deep autoencoder-like nonnegative matrix factorization for community detection, in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: ACM, pp. 1393-1402, https://doi.org/10.1145/3269206.3271697.
– volume: 373
  start-page: 21
  year: 2016
  end-page: 41
  ident: b0240
  article-title: Detecting and refining overlapping regions in complex networks with three-way decisions
  publication-title: Inf. Sci.
– volume: 9
  start-page: 47930
  year: 2021
  end-page: 47945
  ident: b0020
  article-title: Contrast enhancement of fundus images by employing modified PSO for improving the performance of deep learning models
  publication-title: IEEE Access
– volume: 2017
  year: 2017
  ident: b0085
  article-title: Heuristic artificial bee colony algorithm for uncovering community in complex networks
  publication-title: Mathemat. Problems Eng.
– volume: 30
  start-page: 1635
  year: 2018
  end-page: 1646
  ident: b0145
  article-title: Rock strength estimation: a PSO-based BP approach
  publication-title: Neural Comput. Appl.
– start-page: 257
  year: 2019
  end-page: 266
  ident: b0035
  article-title: Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks
  publication-title: In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– volume: 7
  start-page: 437
  year: 2020
  end-page: 449
  ident: b0125
  article-title: Multiobjective particle swarm optimization based on network embedding for complex network community detection
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 79
  start-page: 15437
  year: 2020
  end-page: 15465
  ident: b0045
  article-title: Detection and classification of pulmonary nodules using deep learning and swarm intelligence
  publication-title: Multimedia Tools Appl.
– volume: 11
  start-page: 744
  year: 2021
  ident: b0105
  article-title: Genetic algorithm based deep learning neural network structure and hyperparameter optimization
  publication-title: Appl. Sci.
– reference: J. Pierezan and L. D. S. Coelho, Coyote optimization algorithm: a new metaheuristic for global optimization problems, in 2018 IEEE congress on evolutionary computation (CEC), 2018: IEEE, pp. 1-8, https://doi.org/10.1109/CEC.2018.8477769.
– volume: 8
  start-page: 211
  year: 2004
  end-page: 224
  ident: b0160
  article-title: On the computation of all global minimizers through particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 1
  year: 2021
  end-page: 15
  ident: b0110
  article-title: A particle swarm optimization improved BP neural network intelligent model for electrocardiogram classification
  publication-title: BMC Med. Inf. Decis. Making
– start-page: 1
  year: 2020
  end-page: 19
  ident: b0010
  article-title: Deep learning-based community detection in complex networks with network partitioning and reduction of trainable parameters
  publication-title: J. Ambient Intell. Humanized Comput.
– volume: 11
  year: 2016
  ident: b0030
  article-title: Big data: a parallel particle swarm optimization-back-propagation neural network algorithm based on MapReduce
  publication-title: PLoS ONE
– volume: 325
  start-page: 20
  year: 2019
  end-page: 30
  ident: b0135
  article-title: Fast and scalable distributed deep convolutional autoencoder for fMRI big data analytics
  publication-title: Neurocomputing
– year: 2020
  ident: b0215
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– reference: R. Eberhart and J. Kennedy, Particle swarm optimization, in Proceedings of the IEEE international conference on neural networks, 1995, vol. 4: Citeseer, pp. 1942-1948, https://doi.org/10.1.1.931.1264.
– volume: 36
  start-page: 824
  year: 2020
  end-page: 860
  ident: b0245
  article-title: Detecting community structure in complex networks using genetic algorithm based on object migrating automata
  publication-title: Comput. Intell.
– volume: 81
  start-page: 50
  year: 2018
  end-page: 59
  ident: b0220
  article-title: Community discovery in networks with deep sparse filtering
  publication-title: Pattern Recogn.
– volume: 26
  start-page: 589
  year: 2016
  ident: b0115
  article-title: Community detection algorithm based on local expansion k-means
  publication-title: Neural Network World
– reference: .
– reference: F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, Learning deep representations for graph clustering, in Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014,
– reference: I. M. Coelho, V. N. Coelho, E. J. d. S. Luz, L. S. Ochi, F. G. Guimarães, and E. Rios, A GPU deep learning metaheuristic based model for time series forecasting, Applied Energy, vol. 201, pp. 412-418, 2017, https://doi.org/10.1016/j.apenergy.2017.01.003.
– volume: 39
  start-page: 381
  year: 2013
  end-page: 389
  ident: b0150
  article-title: Analysis of standard particle swarm optimization algorithm based on Markov chain
  publication-title: Acta Autom. Sin.
– volume: 568
  start-page: 147
  year: 2021
  end-page: 162
  ident: b0100
  article-title: A novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network
  publication-title: Inf. Sci.
– volume: 198
  year: 2020
  ident: b0060
  article-title: Node-community membership diversifies community structures: an overlapping community detection algorithm based on local expansion and boundary re-checking
  publication-title: Knowl.-Based Syst.
– volume: 30
  start-page: 1635
  issue: 5
  year: 2018
  ident: 10.1016/j.ins.2022.03.053_b0145
  article-title: Rock strength estimation: a PSO-based BP approach
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2728-3
– start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0185
  article-title: Efficient agricultural yield prediction using metaheuristic optimized artificial neural network using Hadoop framework
  publication-title: Soft. Comput.
– volume: 36
  start-page: 824
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0245
  article-title: Detecting community structure in complex networks using genetic algorithm based on object migrating automata
  publication-title: Comput. Intell.
  doi: 10.1111/coin.12273
– ident: 10.1016/j.ins.2022.03.053_b0090
– volume: 50
  start-page: 3840
  issue: 9
  year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0195
  article-title: Automatically designing CNN architectures using the genetic algorithm for image classification
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2983860
– volume: 568
  start-page: 147
  year: 2021
  ident: 10.1016/j.ins.2022.03.053_b0100
  article-title: A novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.03.060
– volume: 23
  start-page: 89
  issue: 1
  year: 2018
  ident: 10.1016/j.ins.2022.03.053_b0200
  article-title: Evolving unsupervised deep neural networks for learning meaningful representations
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2808689
– volume: 2017
  year: 2017
  ident: 10.1016/j.ins.2022.03.053_b0085
  article-title: Heuristic artificial bee colony algorithm for uncovering community in complex networks
  publication-title: Mathemat. Problems Eng.
– start-page: 193
  year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0165
  article-title: Autoencoders, in machine learning
  publication-title: Elsevier
– volume: 576
  start-page: 374
  year: 2021
  ident: 10.1016/j.ins.2022.03.053_b0190
  article-title: A parallel multi-objective evolutionary algorithm for community detection in large-scale complex networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.06.089
– ident: 10.1016/j.ins.2022.03.053_b0130
– volume: 81
  start-page: 50
  year: 2018
  ident: 10.1016/j.ins.2022.03.053_b0220
  article-title: Community discovery in networks with deep sparse filtering
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.03.026
– volume: 117
  start-page: 180
  year: 2018
  ident: 10.1016/j.ins.2022.03.053_b0140
  article-title: EvoDeep: a new evolutionary approach for automatic deep neural networks parametrisation
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2017.09.006
– volume: 9
  start-page: 96501
  year: 2021
  ident: 10.1016/j.ins.2022.03.053_b0015
  article-title: A review on community detection in large complex networks from conventional to deep learning methods: a call for the use of parallel meta-heuristic algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3095335
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.ins.2022.03.053_b0030
  article-title: Big data: a parallel particle swarm optimization-back-propagation neural network algorithm based on MapReduce
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0157551
– ident: 10.1016/j.ins.2022.03.053_b0050
– volume: 49
  start-page: 62
  year: 2019
  ident: 10.1016/j.ins.2022.03.053_b0095
  article-title: Particle swarm optimization of deep neural networks architectures for image classification
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.05.010
– volume: 50
  start-page: 328
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0080
  article-title: A local community detection algorithm based on internal force between nodes
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01541-1
– volume: 373
  start-page: 21
  year: 2016
  ident: 10.1016/j.ins.2022.03.053_b0240
  article-title: Detecting and refining overlapping regions in complex networks with three-way decisions
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.08.087
– ident: 10.1016/j.ins.2022.03.053_b0205
  doi: 10.1609/aaai.v28i1.8916
– volume: 8
  start-page: 211
  issue: 3
  year: 2004
  ident: 10.1016/j.ins.2022.03.053_b0160
  article-title: On the computation of all global minimizers through particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826076
– volume: 512
  start-page: 1360
  year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0065
  article-title: Spectral based hypothesis testing for community detection in complex networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.10.056
– volume: 94
  start-page: 16
  year: 2019
  ident: 10.1016/j.ins.2022.03.053_b0025
  article-title: A distributed overlapping community detection model for large graphs using autoencoder
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2018.10.045
– ident: 10.1016/j.ins.2022.03.053_b0235
  doi: 10.1145/3269206.3271697
– ident: 10.1016/j.ins.2022.03.053_b0040
  doi: 10.1016/j.apenergy.2017.01.003
– volume: 9
  start-page: 47930
  year: 2021
  ident: 10.1016/j.ins.2022.03.053_b0020
  article-title: Contrast enhancement of fundus images by employing modified PSO for improving the performance of deep learning models
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3068477
– year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0210
  article-title: Deep learning techniques for community detection in social networks
  publication-title: IEEE Access
– start-page: 257
  year: 2019
  ident: 10.1016/j.ins.2022.03.053_b0035
  article-title: Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks
– volume: 325
  start-page: 20
  year: 2019
  ident: 10.1016/j.ins.2022.03.053_b0135
  article-title: Fast and scalable distributed deep convolutional autoencoder for fMRI big data analytics
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.066
– volume: 26
  start-page: 589
  issue: 6
  year: 2016
  ident: 10.1016/j.ins.2022.03.053_b0115
  article-title: Community detection algorithm based on local expansion k-means
  publication-title: Neural Network World
  doi: 10.14311/NNW.2016.26.034
– volume: 7
  start-page: 437
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0125
  article-title: Multiobjective particle swarm optimization based on network embedding for complex network community detection
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2020.2964027
– volume: 493
  start-page: 75
  year: 2019
  ident: 10.1016/j.ins.2022.03.053_b0225
  article-title: High-performance community detection in social networks using a deep transitive autoencoder
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.04.018
– ident: 10.1016/j.ins.2022.03.053_b0155
  doi: 10.1109/CEC.2018.8477769
– ident: 10.1016/j.ins.2022.03.053_b0175
– volume: 21
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.ins.2022.03.053_b0110
  article-title: A particle swarm optimization improved BP neural network intelligent model for electrocardiogram classification
  publication-title: BMC Med. Inf. Decis. Making
– volume: 12
  start-page: 1939
  issue: 7
  year: 2021
  ident: 10.1016/j.ins.2022.03.053_b0120
  article-title: A PSO-based deep learning approach to classifying patients from emergency departments
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-021-01285-w
– volume: 8
  start-page: 135383
  year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0170
  article-title: A Deep learning model based on multi-objective particle swarm optimization for scene classification in unmanned aerial vehicles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011502
– start-page: 1
  year: 2021
  ident: 10.1016/j.ins.2022.03.053_b0005
  article-title: A comprehensive survey on optimizing deep learning models by metaheuristics
  publication-title: Artif. Intell. Rev.
– year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0215
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 198
  year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0060
  article-title: Node-community membership diversifies community structures: an overlapping community detection algorithm based on local expansion and boundary re-checking
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105935
– ident: 10.1016/j.ins.2022.03.053_b0075
  doi: 10.1109/SIS.2003.1202255
– ident: 10.1016/j.ins.2022.03.053_b0070
  doi: 10.1109/ICNN.1995.488968
– volume: 11
  start-page: 744
  issue: 2
  year: 2021
  ident: 10.1016/j.ins.2022.03.053_b0105
  article-title: Genetic algorithm based deep learning neural network structure and hyperparameter optimization
  publication-title: Appl. Sci.
  doi: 10.3390/app11020744
– volume: 39
  start-page: 381
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2022.03.053_b0150
  article-title: Analysis of standard particle swarm optimization algorithm based on Markov chain
  publication-title: Acta Autom. Sin.
  doi: 10.3724/SP.J.1004.2013.00381
– volume: 79
  start-page: 15437
  issue: 21
  year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0045
  article-title: Detection and classification of pulmonary nodules using deep learning and swarm intelligence
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-019-7473-z
– ident: 10.1016/j.ins.2022.03.053_b0055
  doi: 10.1007/978-3-030-36987-3_15
– start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2022.03.053_b0010
  article-title: Deep learning-based community detection in complex networks with network partitioning and reduction of trainable parameters
  publication-title: J. Ambient Intell. Humanized Comput.
– volume: 16
  start-page: 2252
  year: 2016
  ident: 10.1016/j.ins.2022.03.053_b0230
  article-title: Modularity based community detection with deep learning
  publication-title: IJCAI
SSID ssj0004766
Score 2.504179
Snippet In this paper, a parallel deep learning-based community detection method in large complex networks (CNs) is proposed. First, a CN partitioning method is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 94
SubjectTerms Backpropagation algorithm
Community detection
Complex networks
Deep learning
Distributed and parallel computing
Particle swarm optimization
Title Distributed parallel deep learning with a hybrid backpropagation-particle swarm optimization for community detection in large complex networks
URI https://dx.doi.org/10.1016/j.ins.2022.03.053
Volume 600
WOSCitedRecordID wos000793056000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELbKLgc4IFhALLBoDogDUSTX-XFzrGARIFFxKKK3yLEd2iWbVG1ZykvwIrwk49hOw0IRe-BiVVHtpJ3P85f5xoQ8RaeTYWSVhGqoIkPJwS01QmUopCp5mWaqoPawCT6ZjGaz7P1g8MNzYS4qXtej7TZb_ldR4zUUtqHOXkHc3aJ4AT-j0HFEseP4T4J_aVrhmlOs0JU0jb2rSleB0nrpT4hwyVcRzL8ZulZQCPkZ9ShqllZK4dItGqy_itV50KBSOXdszbYoUVpOCXrvSm-09NWSlakptyXqehvUtrx83Xd-HfWpneAsb-fRT4SpCwjGVTiuVWM52--aucmrq10JAmL5UzB1Odu5t7pGs7flC2hY2izRx6ZZ9NMZbFf6uqMX0NAEOn0VnVLaU7L2VGRnroeW-vmbJbBJiTMMX0xTdsbaVra2L_GvXbcvWcOuRtGXv53luERulshplOMS18gh40mGKvRw_OZ09nZHw-X21bj_Bf4leltOeOk5_uwG9Vyb6W1yy8UkMLZiv0MGuj4iN3udKo_IieO3wDPoSRGcZbhLvvdQBx51YFAHHnVgUAcCLOpgH-qgRR30UQd4Q-hQBx3qYFFDizpwqAOPunvkw6vT6YvXoTvqI5SM8U0oikKVMpM0ZbEsJWcFLQqRylSkhmUkmCrTtNQRjlFcMK4SDEMSxSJeokGiKrpPDuqm1g8IcIz4eRmNIhVjLDCMhaSJ5CbxIcthEcfHhPp_PpeuD745jqXK90r8mDzvpixtE5i_fTn24szdXrLeaY7Q3D_t4VXu8Yjc2O2dx-Rgs_qiT8h1ebFZrFdPHC5_AhAQxfU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+parallel+deep+learning+with+a+hybrid+backpropagation-particle+swarm+optimization+for+community+detection+in+large+complex+networks&rft.jtitle=Information+sciences&rft.au=Nasser+Al-Andoli%2C+Mohammed&rft.au=Chiang+Tan%2C+Shing&rft.au=Ping+Cheah%2C+Wooi&rft.date=2022-07-01&rft.issn=0020-0255&rft.volume=600&rft.spage=94&rft.epage=117&rft_id=info:doi/10.1016%2Fj.ins.2022.03.053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_03_053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon