Distributed parallel deep learning with a hybrid backpropagation-particle swarm optimization for community detection in large complex networks
In this paper, a parallel deep learning-based community detection method in large complex networks (CNs) is proposed. First, a CN partitioning method is employed to divide the CN into multiple chunks to improve the efficiency in terms of space and time complexities. Next, the method is integrated wi...
Saved in:
| Published in: | Information sciences Vol. 600; pp. 94 - 117 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.07.2022
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, a parallel deep learning-based community detection method in large complex networks (CNs) is proposed. First, a CN partitioning method is employed to divide the CN into multiple chunks to improve the efficiency in terms of space and time complexities. Next, the method is integrated with two optimization algorithms: (1) backpropagation (BP), which optimizes deep learning locally within each local chunk of the CN; (2) particle swarm optimization (PSO), which is used to improve the BP optimization involving all CN chunks. PSO utilizes a multi-objective function to improve the effectiveness of the proposed method. In addition, a distributed environment is set up to conduct parallel optimization of the proposed method so that multi-local optimizations could be performed simultaneously. A set of 16 real-world CNs in a range from small to large size are used to verify the effectiveness and efficiency of the method in a benchmark study. The proposed method is implemented in multi-machines with central processing unit (CPU) and graphics processing unit (GPU) devices. The results reveal the effective role of the proposed deep learning with hybrid BP–PSO optimization in detecting communities in large CNs, which requires minimum execution time on both CPU and GPU devices. |
|---|---|
| AbstractList | In this paper, a parallel deep learning-based community detection method in large complex networks (CNs) is proposed. First, a CN partitioning method is employed to divide the CN into multiple chunks to improve the efficiency in terms of space and time complexities. Next, the method is integrated with two optimization algorithms: (1) backpropagation (BP), which optimizes deep learning locally within each local chunk of the CN; (2) particle swarm optimization (PSO), which is used to improve the BP optimization involving all CN chunks. PSO utilizes a multi-objective function to improve the effectiveness of the proposed method. In addition, a distributed environment is set up to conduct parallel optimization of the proposed method so that multi-local optimizations could be performed simultaneously. A set of 16 real-world CNs in a range from small to large size are used to verify the effectiveness and efficiency of the method in a benchmark study. The proposed method is implemented in multi-machines with central processing unit (CPU) and graphics processing unit (GPU) devices. The results reveal the effective role of the proposed deep learning with hybrid BP–PSO optimization in detecting communities in large CNs, which requires minimum execution time on both CPU and GPU devices. |
| Author | Nasser Al-Andoli, Mohammed Chiang Tan, Shing Ping Cheah, Wooi |
| Author_xml | – sequence: 1 givenname: Mohammed surname: Nasser Al-Andoli fullname: Nasser Al-Andoli, Mohammed organization: Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, Melaka, Malaysia – sequence: 2 givenname: Shing surname: Chiang Tan fullname: Chiang Tan, Shing email: sctan@mmu.edu.my organization: Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, Melaka, Malaysia – sequence: 3 givenname: Wooi surname: Ping Cheah fullname: Ping Cheah, Wooi organization: School of Computer Science, Faculty of Science and Engineering, University of Nottingham Ningbo China, Taikang East Road, Ningbo 315100 China |
| BookMark | eNp9kM9O3DAQhy1EJRbaB-DmF0g6cTYOiBOCliIhcaFny38myyyOHdmmy_IQPHOzCycOXGak-en7SfMds8MQAzJ22kDdQCN_rmsKuRYgRA1tDV17wBbNWS8qKc6bQ7YAEFCB6LojdpzzGgCWvZQL9nZNuSQyzwUdn3TS3qPnDnHiHnUKFFZ8Q-WRa_64NYkcN9o-TSlOeqULxVDNUCHrkeeNTiOPU6GRXvcZH2LiNo7jc6CynVsL2v2dAvc6rXAXTh5feMCyiekpf2ffBu0z_vjYJ-zv718PV3-qu_ub26vLu8oK0ZdKG-MGe25BiqUdbC8MGKOllVqetRK0cIOUA7bzbJdG9K7rpOycaPtBiA5ce8Ka916bYs4JBzUlGnXaqgbUTqhaq1mo2glV0KpZ6Mz0nxhLZf9nSZr8l-TFO4nzS_8Ik8qWMFh0lGYjykX6gv4PNzmX5Q |
| CitedBy_id | crossref_primary_10_1016_j_csite_2025_106677 crossref_primary_10_1109_ACCESS_2024_3409689 crossref_primary_10_1007_s10586_024_05024_y crossref_primary_10_1016_j_ins_2022_07_165 crossref_primary_10_3233_JIFS_230258 crossref_primary_10_1016_j_neucom_2024_127704 crossref_primary_10_3390_app142210121 crossref_primary_10_1016_j_jocs_2024_102423 crossref_primary_10_3233_JIFS_230255 crossref_primary_10_1016_j_asoc_2025_113767 crossref_primary_10_3233_JIFS_230172 crossref_primary_10_3233_JIFS_220811 crossref_primary_10_1016_j_ins_2023_02_090 crossref_primary_10_1109_ACCESS_2023_3296789 crossref_primary_10_1109_ACCESS_2024_3399883 crossref_primary_10_2478_jaiscr_2023_0020 crossref_primary_10_1109_ACCESS_2023_3267089 crossref_primary_10_3233_JIFS_221174 crossref_primary_10_1016_j_future_2024_107575 crossref_primary_10_1109_ACCESS_2024_3354699 crossref_primary_10_3390_s23136035 crossref_primary_10_1016_j_asoc_2024_111895 crossref_primary_10_1080_00207721_2022_2135976 crossref_primary_10_1016_j_ins_2024_120376 crossref_primary_10_3390_diagnostics15162060 crossref_primary_10_1016_j_eswa_2023_120552 |
| Cites_doi | 10.1007/s00521-016-2728-3 10.1111/coin.12273 10.1109/TCYB.2020.2983860 10.1016/j.ins.2021.03.060 10.1109/TEVC.2018.2808689 10.1016/j.ins.2021.06.089 10.1016/j.patcog.2018.03.026 10.1016/j.jpdc.2017.09.006 10.1109/ACCESS.2021.3095335 10.1371/journal.pone.0157551 10.1016/j.swevo.2019.05.010 10.1007/s10489-019-01541-1 10.1016/j.ins.2016.08.087 10.1609/aaai.v28i1.8916 10.1109/TEVC.2004.826076 10.1016/j.ins.2019.10.056 10.1016/j.future.2018.10.045 10.1145/3269206.3271697 10.1016/j.apenergy.2017.01.003 10.1109/ACCESS.2021.3068477 10.1016/j.neucom.2018.09.066 10.14311/NNW.2016.26.034 10.1109/TCSS.2020.2964027 10.1016/j.ins.2019.04.018 10.1109/CEC.2018.8477769 10.1007/s13042-021-01285-w 10.1109/ACCESS.2020.3011502 10.1016/j.knosys.2020.105935 10.1109/SIS.2003.1202255 10.1109/ICNN.1995.488968 10.3390/app11020744 10.3724/SP.J.1004.2013.00381 10.1007/s11042-019-7473-z 10.1007/978-3-030-36987-3_15 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2022.03.053 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 117 |
| ExternalDocumentID | 10_1016_j_ins_2022_03_053 S0020025522002663 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c227t-abbdfc9c0624cfc72b0bba6c6a68360a2df66fe3f6634b27d55665d237f2250d3 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793056000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 07:30:03 EST 2025 Tue Nov 18 22:11:15 EST 2025 Fri Feb 23 02:39:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Community detection Backpropagation algorithm Distributed and parallel computing Particle swarm optimization Complex networks |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c227t-abbdfc9c0624cfc72b0bba6c6a68360a2df66fe3f6634b27d55665d237f2250d3 |
| PageCount | 24 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2022_03_053 crossref_citationtrail_10_1016_j_ins_2022_03_053 elsevier_sciencedirect_doi_10_1016_j_ins_2022_03_053 |
| PublicationCentury | 2000 |
| PublicationDate | July 2022 2022-07-00 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Akay, Karaboga, Akay (b0005) 2021 Li (b0110) 2021; 21 M. Dhilber and S. D. Bhavani, Community detection in social networks using deep learning, in International Conference on Distributed Computing and Internet Technology, 2020: Springer, pp. 241-250, https://doi.org/10.1007/978-3-030-36987-3_15. Sun, Xue, Zhang, Yen, Lv (b0195) 2020; 50 F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, Learning deep representations for graph clustering, in Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014 V. G. Gudise and G. K. Venayagamoorthy, Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks, in Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No. 03EX706), 2003: IEEE, pp. 110-117, https://doi.org/10.1109/SIS.2003.1202255. R. Eberhart and J. Kennedy, Particle swarm optimization, in Proceedings of the IEEE international conference on neural networks, 1995, vol. 4: Citeseer, pp. 1942-1948, https://doi.org/10.1.1.931.1264. Al-Andoli, Tan, Cheah, Tan (b0015) 2021; 9 Saranya, Nagarajan (b0185) 2020 Bhatia, Rani (b0025) 2019; 94 . Wu, Pan, Chen, Long, Zhang, Philip (b0215) 2020 Zarei, Meybodi (b0245) 2020; 36 Li, Fan, Zhangy, Xia (b0115) 2016; 26 Wu, Zhang, Chen, Guo, Wang (b0210) 2020 Xie, Gong, Wang, Yu (b0220) 2018; 81 Dong, Wang, Liu (b0065) 2020; 512 L. Ma et al., NeuGraph: Parallel deep neural network computation on large graphs, in 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019, pp. 443-458, https://dl.acm.org/doi/abs/10.5555/3358807.3358845. Yu, Jiao, Yao, Wang (b0240) 2016; 373 Pinaya, Vieira, Garcia-Dias, Mechelli (b0165) 2020 Ding, Zhang, Yang (b0060) 2020; 198 J. Dean et al., Large scale distributed deep networks, in Advances in neural information processing systems, 2012, pp. 1223-1231, https://research.google/pubs/pub40565/. Martín, Lara-Cabrera, Fuentes-Hurtado, Naranjo, Camacho (b0140) 2018; 117 Cao, Cui, Shi, Jiao (b0030) 2016; 11 Lee, Kim, Kang, Kang, Park (b0105) 2021; 11 Pan, Li, Zhou, Li, Gao (b0150) 2013; 39 Makkie, Huang, Zhao, Vasilakos, Liu (b0135) 2019; 325 De Pinho Pinheiro, Nedjah, de Macedo Mourelle (b0045) 2020; 79 F. Ye, C. Chen, and Z. Zheng, Deep autoencoder-like nonnegative matrix factorization for community detection, in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: ACM, pp. 1393-1402, https://doi.org/10.1145/3269206.3271697. Chiang, Liu, Si, Li, Bengio, Hsieh (b0035) 2019 Yang, Cao, He, Wang, Wang, Zhang (b0230) 2016; 16 Junior, Yen (b0095) 2019; 49 Sun, Yen, Yi (b0200) 2018; 23 I. M. Coelho, V. N. Coelho, E. J. d. S. Luz, L. S. Ochi, F. G. Guimarães, and E. Rios, A GPU deep learning metaheuristic based model for time series forecasting, Applied Energy, vol. 201, pp. 412-418, 2017, https://doi.org/10.1016/j.apenergy.2017.01.003. T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, Evolution strategies as a scalable alternative to reinforcement learning, arXiv preprint arXiv:1703.03864, 2017, https://arxiv.org/abs/1703.03864. J. Pierezan and L. D. S. Coelho, Coyote optimization algorithm: a new metaheuristic for global optimization problems, in 2018 IEEE congress on evolutionary computation (CEC), 2018: IEEE, pp. 1-8, https://doi.org/10.1109/CEC.2018.8477769. Guo, He, Chen, Guo, Zheng (b0080) 2020; 50 Aurangzeb, Aslam, Alhussein, Naqvi, Arsalan, Haider (b0020) 2021; 9 Liu, Wang, Zeng, Alsaadi, Liu (b0120) 2021; 12 Al-Andoli, Cheah, Tan (b0010) 2020 Su, Zhou, Zhang, Cheng, Zheng (b0190) 2021; 576 Guo, Li, Tang, Li (b0085) 2017; 2017 A. Harlap et al., Pipedream: Fast and efficient pipeline parallel dnn training, arXiv preprint arXiv:1806.03377, 2018, https://arxiv.org/abs/1806.03377. Liu, Du, Jiang, Zeng (b0125) 2020; 7 Parsopoulos, Vrahatis (b0160) 2004; 8 Xie, Wang, Jiang, Xu (b0225) 2019; 493 Kan, Fan, Fang, Cao, Xiong, Yang, Li (b0100) 2021; 568 Mohamad, Armaghani, Momeni, Yazdavar, Ebrahimi (b0145) 2018; 30 Rajagopal (b0170) 2020; 8 Al-Andoli (10.1016/j.ins.2022.03.053_b0010) 2020 Li (10.1016/j.ins.2022.03.053_b0110) 2021; 21 Yu (10.1016/j.ins.2022.03.053_b0240) 2016; 373 Wu (10.1016/j.ins.2022.03.053_b0210) 2020 Ding (10.1016/j.ins.2022.03.053_b0060) 2020; 198 Saranya (10.1016/j.ins.2022.03.053_b0185) 2020 Wu (10.1016/j.ins.2022.03.053_b0215) 2020 Martín (10.1016/j.ins.2022.03.053_b0140) 2018; 117 Liu (10.1016/j.ins.2022.03.053_b0120) 2021; 12 10.1016/j.ins.2022.03.053_b0090 De Pinho Pinheiro (10.1016/j.ins.2022.03.053_b0045) 2020; 79 Pan (10.1016/j.ins.2022.03.053_b0150) 2013; 39 10.1016/j.ins.2022.03.053_b0070 Sun (10.1016/j.ins.2022.03.053_b0200) 2018; 23 Chiang (10.1016/j.ins.2022.03.053_b0035) 2019 10.1016/j.ins.2022.03.053_b0050 Mohamad (10.1016/j.ins.2022.03.053_b0145) 2018; 30 Su (10.1016/j.ins.2022.03.053_b0190) 2021; 576 Parsopoulos (10.1016/j.ins.2022.03.053_b0160) 2004; 8 Sun (10.1016/j.ins.2022.03.053_b0195) 2020; 50 Xie (10.1016/j.ins.2022.03.053_b0225) 2019; 493 10.1016/j.ins.2022.03.053_b0175 10.1016/j.ins.2022.03.053_b0075 10.1016/j.ins.2022.03.053_b0130 10.1016/j.ins.2022.03.053_b0155 10.1016/j.ins.2022.03.053_b0055 Yang (10.1016/j.ins.2022.03.053_b0230) 2016; 16 Rajagopal (10.1016/j.ins.2022.03.053_b0170) 2020; 8 10.1016/j.ins.2022.03.053_b0235 Xie (10.1016/j.ins.2022.03.053_b0220) 2018; 81 Akay (10.1016/j.ins.2022.03.053_b0005) 2021 Al-Andoli (10.1016/j.ins.2022.03.053_b0015) 2021; 9 Bhatia (10.1016/j.ins.2022.03.053_b0025) 2019; 94 Makkie (10.1016/j.ins.2022.03.053_b0135) 2019; 325 Aurangzeb (10.1016/j.ins.2022.03.053_b0020) 2021; 9 Dong (10.1016/j.ins.2022.03.053_b0065) 2020; 512 Li (10.1016/j.ins.2022.03.053_b0115) 2016; 26 Lee (10.1016/j.ins.2022.03.053_b0105) 2021; 11 Liu (10.1016/j.ins.2022.03.053_b0125) 2020; 7 Guo (10.1016/j.ins.2022.03.053_b0085) 2017; 2017 Junior (10.1016/j.ins.2022.03.053_b0095) 2019; 49 10.1016/j.ins.2022.03.053_b0040 Pinaya (10.1016/j.ins.2022.03.053_b0165) 2020 Cao (10.1016/j.ins.2022.03.053_b0030) 2016; 11 10.1016/j.ins.2022.03.053_b0205 Zarei (10.1016/j.ins.2022.03.053_b0245) 2020; 36 Guo (10.1016/j.ins.2022.03.053_b0080) 2020; 50 Kan (10.1016/j.ins.2022.03.053_b0100) 2021; 568 |
| References_xml | – year: 2020 ident: b0210 article-title: Deep learning techniques for community detection in social networks publication-title: IEEE Access – reference: M. Dhilber and S. D. Bhavani, Community detection in social networks using deep learning, in International Conference on Distributed Computing and Internet Technology, 2020: Springer, pp. 241-250, https://doi.org/10.1007/978-3-030-36987-3_15. – volume: 94 start-page: 16 year: 2019 end-page: 26 ident: b0025 article-title: A distributed overlapping community detection model for large graphs using autoencoder publication-title: Future Generat. Comput. Syst. – volume: 117 start-page: 180 year: 2018 end-page: 191 ident: b0140 article-title: EvoDeep: a new evolutionary approach for automatic deep neural networks parametrisation publication-title: J. Parallel Distrib. Comput. – start-page: 193 year: 2020 end-page: 208 ident: b0165 article-title: Autoencoders, in machine learning publication-title: Elsevier – volume: 16 start-page: 2252 year: 2016 end-page: 2258 ident: b0230 article-title: Modularity based community detection with deep learning publication-title: IJCAI – reference: J. Dean et al., Large scale distributed deep networks, in Advances in neural information processing systems, 2012, pp. 1223-1231, https://research.google/pubs/pub40565/. – volume: 50 start-page: 328 year: 2020 end-page: 340 ident: b0080 article-title: A local community detection algorithm based on internal force between nodes publication-title: Appl. Intell. – reference: A. Harlap et al., Pipedream: Fast and efficient pipeline parallel dnn training, arXiv preprint arXiv:1806.03377, 2018, https://arxiv.org/abs/1806.03377. – start-page: 1 year: 2021 end-page: 66 ident: b0005 article-title: A comprehensive survey on optimizing deep learning models by metaheuristics publication-title: Artif. Intell. Rev. – reference: T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, Evolution strategies as a scalable alternative to reinforcement learning, arXiv preprint arXiv:1703.03864, 2017, https://arxiv.org/abs/1703.03864. – volume: 512 start-page: 1360 year: 2020 end-page: 1371 ident: b0065 article-title: Spectral based hypothesis testing for community detection in complex networks publication-title: Inf. Sci. – volume: 12 start-page: 1939 year: 2021 end-page: 1948 ident: b0120 article-title: A PSO-based deep learning approach to classifying patients from emergency departments publication-title: Int. J. Mach. Learn. Cybern. – start-page: 1 year: 2020 end-page: 11 ident: b0185 article-title: Efficient agricultural yield prediction using metaheuristic optimized artificial neural network using Hadoop framework publication-title: Soft. Comput. – reference: V. G. Gudise and G. K. Venayagamoorthy, Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks, in Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No. 03EX706), 2003: IEEE, pp. 110-117, https://doi.org/10.1109/SIS.2003.1202255. – volume: 576 start-page: 374 year: 2021 end-page: 392 ident: b0190 article-title: A parallel multi-objective evolutionary algorithm for community detection in large-scale complex networks publication-title: Inf. Sci. – volume: 49 start-page: 62 year: 2019 end-page: 74 ident: b0095 article-title: Particle swarm optimization of deep neural networks architectures for image classification publication-title: Swarm Evol. Comput. – reference: L. Ma et al., NeuGraph: Parallel deep neural network computation on large graphs, in 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019, pp. 443-458, https://dl.acm.org/doi/abs/10.5555/3358807.3358845. – volume: 8 start-page: 135383 year: 2020 end-page: 135393 ident: b0170 article-title: A Deep learning model based on multi-objective particle swarm optimization for scene classification in unmanned aerial vehicles publication-title: IEEE Access – volume: 50 start-page: 3840 year: 2020 end-page: 3854 ident: b0195 article-title: Automatically designing CNN architectures using the genetic algorithm for image classification publication-title: IEEE Trans. Cybern. – volume: 9 start-page: 96501 year: 2021 end-page: 96527 ident: b0015 article-title: A review on community detection in large complex networks from conventional to deep learning methods: a call for the use of parallel meta-heuristic algorithms publication-title: IEEE Access – volume: 493 start-page: 75 year: 2019 end-page: 90 ident: b0225 article-title: High-performance community detection in social networks using a deep transitive autoencoder publication-title: Inf. Sci. – volume: 23 start-page: 89 year: 2018 end-page: 103 ident: b0200 article-title: Evolving unsupervised deep neural networks for learning meaningful representations publication-title: IEEE Trans. Evol. Comput. – reference: F. Ye, C. Chen, and Z. Zheng, Deep autoencoder-like nonnegative matrix factorization for community detection, in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: ACM, pp. 1393-1402, https://doi.org/10.1145/3269206.3271697. – volume: 373 start-page: 21 year: 2016 end-page: 41 ident: b0240 article-title: Detecting and refining overlapping regions in complex networks with three-way decisions publication-title: Inf. Sci. – volume: 9 start-page: 47930 year: 2021 end-page: 47945 ident: b0020 article-title: Contrast enhancement of fundus images by employing modified PSO for improving the performance of deep learning models publication-title: IEEE Access – volume: 2017 year: 2017 ident: b0085 article-title: Heuristic artificial bee colony algorithm for uncovering community in complex networks publication-title: Mathemat. Problems Eng. – volume: 30 start-page: 1635 year: 2018 end-page: 1646 ident: b0145 article-title: Rock strength estimation: a PSO-based BP approach publication-title: Neural Comput. Appl. – start-page: 257 year: 2019 end-page: 266 ident: b0035 article-title: Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks publication-title: In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – volume: 7 start-page: 437 year: 2020 end-page: 449 ident: b0125 article-title: Multiobjective particle swarm optimization based on network embedding for complex network community detection publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 79 start-page: 15437 year: 2020 end-page: 15465 ident: b0045 article-title: Detection and classification of pulmonary nodules using deep learning and swarm intelligence publication-title: Multimedia Tools Appl. – volume: 11 start-page: 744 year: 2021 ident: b0105 article-title: Genetic algorithm based deep learning neural network structure and hyperparameter optimization publication-title: Appl. Sci. – reference: J. Pierezan and L. D. S. Coelho, Coyote optimization algorithm: a new metaheuristic for global optimization problems, in 2018 IEEE congress on evolutionary computation (CEC), 2018: IEEE, pp. 1-8, https://doi.org/10.1109/CEC.2018.8477769. – volume: 8 start-page: 211 year: 2004 end-page: 224 ident: b0160 article-title: On the computation of all global minimizers through particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – volume: 21 start-page: 1 year: 2021 end-page: 15 ident: b0110 article-title: A particle swarm optimization improved BP neural network intelligent model for electrocardiogram classification publication-title: BMC Med. Inf. Decis. Making – start-page: 1 year: 2020 end-page: 19 ident: b0010 article-title: Deep learning-based community detection in complex networks with network partitioning and reduction of trainable parameters publication-title: J. Ambient Intell. Humanized Comput. – volume: 11 year: 2016 ident: b0030 article-title: Big data: a parallel particle swarm optimization-back-propagation neural network algorithm based on MapReduce publication-title: PLoS ONE – volume: 325 start-page: 20 year: 2019 end-page: 30 ident: b0135 article-title: Fast and scalable distributed deep convolutional autoencoder for fMRI big data analytics publication-title: Neurocomputing – year: 2020 ident: b0215 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Networks Learn. Syst. – reference: R. Eberhart and J. Kennedy, Particle swarm optimization, in Proceedings of the IEEE international conference on neural networks, 1995, vol. 4: Citeseer, pp. 1942-1948, https://doi.org/10.1.1.931.1264. – volume: 36 start-page: 824 year: 2020 end-page: 860 ident: b0245 article-title: Detecting community structure in complex networks using genetic algorithm based on object migrating automata publication-title: Comput. Intell. – volume: 81 start-page: 50 year: 2018 end-page: 59 ident: b0220 article-title: Community discovery in networks with deep sparse filtering publication-title: Pattern Recogn. – volume: 26 start-page: 589 year: 2016 ident: b0115 article-title: Community detection algorithm based on local expansion k-means publication-title: Neural Network World – reference: . – reference: F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, Learning deep representations for graph clustering, in Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014, – reference: I. M. Coelho, V. N. Coelho, E. J. d. S. Luz, L. S. Ochi, F. G. Guimarães, and E. Rios, A GPU deep learning metaheuristic based model for time series forecasting, Applied Energy, vol. 201, pp. 412-418, 2017, https://doi.org/10.1016/j.apenergy.2017.01.003. – volume: 39 start-page: 381 year: 2013 end-page: 389 ident: b0150 article-title: Analysis of standard particle swarm optimization algorithm based on Markov chain publication-title: Acta Autom. Sin. – volume: 568 start-page: 147 year: 2021 end-page: 162 ident: b0100 article-title: A novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network publication-title: Inf. Sci. – volume: 198 year: 2020 ident: b0060 article-title: Node-community membership diversifies community structures: an overlapping community detection algorithm based on local expansion and boundary re-checking publication-title: Knowl.-Based Syst. – volume: 30 start-page: 1635 issue: 5 year: 2018 ident: 10.1016/j.ins.2022.03.053_b0145 article-title: Rock strength estimation: a PSO-based BP approach publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2728-3 – start-page: 1 year: 2020 ident: 10.1016/j.ins.2022.03.053_b0185 article-title: Efficient agricultural yield prediction using metaheuristic optimized artificial neural network using Hadoop framework publication-title: Soft. Comput. – volume: 36 start-page: 824 issue: 2 year: 2020 ident: 10.1016/j.ins.2022.03.053_b0245 article-title: Detecting community structure in complex networks using genetic algorithm based on object migrating automata publication-title: Comput. Intell. doi: 10.1111/coin.12273 – ident: 10.1016/j.ins.2022.03.053_b0090 – volume: 50 start-page: 3840 issue: 9 year: 2020 ident: 10.1016/j.ins.2022.03.053_b0195 article-title: Automatically designing CNN architectures using the genetic algorithm for image classification publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2983860 – volume: 568 start-page: 147 year: 2021 ident: 10.1016/j.ins.2022.03.053_b0100 article-title: A novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.03.060 – volume: 23 start-page: 89 issue: 1 year: 2018 ident: 10.1016/j.ins.2022.03.053_b0200 article-title: Evolving unsupervised deep neural networks for learning meaningful representations publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2808689 – volume: 2017 year: 2017 ident: 10.1016/j.ins.2022.03.053_b0085 article-title: Heuristic artificial bee colony algorithm for uncovering community in complex networks publication-title: Mathemat. Problems Eng. – start-page: 193 year: 2020 ident: 10.1016/j.ins.2022.03.053_b0165 article-title: Autoencoders, in machine learning publication-title: Elsevier – volume: 576 start-page: 374 year: 2021 ident: 10.1016/j.ins.2022.03.053_b0190 article-title: A parallel multi-objective evolutionary algorithm for community detection in large-scale complex networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.06.089 – ident: 10.1016/j.ins.2022.03.053_b0130 – volume: 81 start-page: 50 year: 2018 ident: 10.1016/j.ins.2022.03.053_b0220 article-title: Community discovery in networks with deep sparse filtering publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2018.03.026 – volume: 117 start-page: 180 year: 2018 ident: 10.1016/j.ins.2022.03.053_b0140 article-title: EvoDeep: a new evolutionary approach for automatic deep neural networks parametrisation publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2017.09.006 – volume: 9 start-page: 96501 year: 2021 ident: 10.1016/j.ins.2022.03.053_b0015 article-title: A review on community detection in large complex networks from conventional to deep learning methods: a call for the use of parallel meta-heuristic algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3095335 – volume: 11 issue: 6 year: 2016 ident: 10.1016/j.ins.2022.03.053_b0030 article-title: Big data: a parallel particle swarm optimization-back-propagation neural network algorithm based on MapReduce publication-title: PLoS ONE doi: 10.1371/journal.pone.0157551 – ident: 10.1016/j.ins.2022.03.053_b0050 – volume: 49 start-page: 62 year: 2019 ident: 10.1016/j.ins.2022.03.053_b0095 article-title: Particle swarm optimization of deep neural networks architectures for image classification publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.05.010 – volume: 50 start-page: 328 issue: 2 year: 2020 ident: 10.1016/j.ins.2022.03.053_b0080 article-title: A local community detection algorithm based on internal force between nodes publication-title: Appl. Intell. doi: 10.1007/s10489-019-01541-1 – volume: 373 start-page: 21 year: 2016 ident: 10.1016/j.ins.2022.03.053_b0240 article-title: Detecting and refining overlapping regions in complex networks with three-way decisions publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.08.087 – ident: 10.1016/j.ins.2022.03.053_b0205 doi: 10.1609/aaai.v28i1.8916 – volume: 8 start-page: 211 issue: 3 year: 2004 ident: 10.1016/j.ins.2022.03.053_b0160 article-title: On the computation of all global minimizers through particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826076 – volume: 512 start-page: 1360 year: 2020 ident: 10.1016/j.ins.2022.03.053_b0065 article-title: Spectral based hypothesis testing for community detection in complex networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.10.056 – volume: 94 start-page: 16 year: 2019 ident: 10.1016/j.ins.2022.03.053_b0025 article-title: A distributed overlapping community detection model for large graphs using autoencoder publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2018.10.045 – ident: 10.1016/j.ins.2022.03.053_b0235 doi: 10.1145/3269206.3271697 – ident: 10.1016/j.ins.2022.03.053_b0040 doi: 10.1016/j.apenergy.2017.01.003 – volume: 9 start-page: 47930 year: 2021 ident: 10.1016/j.ins.2022.03.053_b0020 article-title: Contrast enhancement of fundus images by employing modified PSO for improving the performance of deep learning models publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3068477 – year: 2020 ident: 10.1016/j.ins.2022.03.053_b0210 article-title: Deep learning techniques for community detection in social networks publication-title: IEEE Access – start-page: 257 year: 2019 ident: 10.1016/j.ins.2022.03.053_b0035 article-title: Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks – volume: 325 start-page: 20 year: 2019 ident: 10.1016/j.ins.2022.03.053_b0135 article-title: Fast and scalable distributed deep convolutional autoencoder for fMRI big data analytics publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.066 – volume: 26 start-page: 589 issue: 6 year: 2016 ident: 10.1016/j.ins.2022.03.053_b0115 article-title: Community detection algorithm based on local expansion k-means publication-title: Neural Network World doi: 10.14311/NNW.2016.26.034 – volume: 7 start-page: 437 issue: 2 year: 2020 ident: 10.1016/j.ins.2022.03.053_b0125 article-title: Multiobjective particle swarm optimization based on network embedding for complex network community detection publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2020.2964027 – volume: 493 start-page: 75 year: 2019 ident: 10.1016/j.ins.2022.03.053_b0225 article-title: High-performance community detection in social networks using a deep transitive autoencoder publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.04.018 – ident: 10.1016/j.ins.2022.03.053_b0155 doi: 10.1109/CEC.2018.8477769 – ident: 10.1016/j.ins.2022.03.053_b0175 – volume: 21 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.ins.2022.03.053_b0110 article-title: A particle swarm optimization improved BP neural network intelligent model for electrocardiogram classification publication-title: BMC Med. Inf. Decis. Making – volume: 12 start-page: 1939 issue: 7 year: 2021 ident: 10.1016/j.ins.2022.03.053_b0120 article-title: A PSO-based deep learning approach to classifying patients from emergency departments publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-021-01285-w – volume: 8 start-page: 135383 year: 2020 ident: 10.1016/j.ins.2022.03.053_b0170 article-title: A Deep learning model based on multi-objective particle swarm optimization for scene classification in unmanned aerial vehicles publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011502 – start-page: 1 year: 2021 ident: 10.1016/j.ins.2022.03.053_b0005 article-title: A comprehensive survey on optimizing deep learning models by metaheuristics publication-title: Artif. Intell. Rev. – year: 2020 ident: 10.1016/j.ins.2022.03.053_b0215 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 198 year: 2020 ident: 10.1016/j.ins.2022.03.053_b0060 article-title: Node-community membership diversifies community structures: an overlapping community detection algorithm based on local expansion and boundary re-checking publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105935 – ident: 10.1016/j.ins.2022.03.053_b0075 doi: 10.1109/SIS.2003.1202255 – ident: 10.1016/j.ins.2022.03.053_b0070 doi: 10.1109/ICNN.1995.488968 – volume: 11 start-page: 744 issue: 2 year: 2021 ident: 10.1016/j.ins.2022.03.053_b0105 article-title: Genetic algorithm based deep learning neural network structure and hyperparameter optimization publication-title: Appl. Sci. doi: 10.3390/app11020744 – volume: 39 start-page: 381 issue: 4 year: 2013 ident: 10.1016/j.ins.2022.03.053_b0150 article-title: Analysis of standard particle swarm optimization algorithm based on Markov chain publication-title: Acta Autom. Sin. doi: 10.3724/SP.J.1004.2013.00381 – volume: 79 start-page: 15437 issue: 21 year: 2020 ident: 10.1016/j.ins.2022.03.053_b0045 article-title: Detection and classification of pulmonary nodules using deep learning and swarm intelligence publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-019-7473-z – ident: 10.1016/j.ins.2022.03.053_b0055 doi: 10.1007/978-3-030-36987-3_15 – start-page: 1 year: 2020 ident: 10.1016/j.ins.2022.03.053_b0010 article-title: Deep learning-based community detection in complex networks with network partitioning and reduction of trainable parameters publication-title: J. Ambient Intell. Humanized Comput. – volume: 16 start-page: 2252 year: 2016 ident: 10.1016/j.ins.2022.03.053_b0230 article-title: Modularity based community detection with deep learning publication-title: IJCAI |
| SSID | ssj0004766 |
| Score | 2.504179 |
| Snippet | In this paper, a parallel deep learning-based community detection method in large complex networks (CNs) is proposed. First, a CN partitioning method is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 94 |
| SubjectTerms | Backpropagation algorithm Community detection Complex networks Deep learning Distributed and parallel computing Particle swarm optimization |
| Title | Distributed parallel deep learning with a hybrid backpropagation-particle swarm optimization for community detection in large complex networks |
| URI | https://dx.doi.org/10.1016/j.ins.2022.03.053 |
| Volume | 600 |
| WOSCitedRecordID | wos000793056000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEBQQBYr2gDhgWVqvnd3kGEERIIg4BMjN2pdJimtHSSjhT_Bv-H_MvhJTKAIkLk5kZW0r83leO98MQg-zzJgKPPGUaAkBSq6zVGpapVLx_jDTwvTd0L53r_h4PJhOh296vW-RC3NW86YZbDbDxX8VNZwDYVvq7F-Ie3tROAHfQehwBLHD8Y8E_9S2wrVTrMCVtI2969rUiTZmESdEhOSrSGZfLF0rkUJ9BD0KmsVJKV2Eiyarz2J5mrSgVE4DW9MVJSrPKQHvXZu1UbFasrY15b5E3WySxpeXr7rOb6A-uQXB8m49-rGwdQHJqE5HjW49Z_t1O7N5db0rQQAsf0gmIWc7i1bXanZXvgCGxWWJ3rftvJvOoLvS15BjizybH8pArVOb2ujHWy2vqgecpoz6WV9RlzNCOtrYj08Odj3zHNGfTIbPXpxAnGO7t1Pqet76BsbnOnHbjW0Xg1H7Aa7aJbRPAdKgTPdHL46nL3eEXO43yeNjx-10V1h47ka_dog6Ts7kOroWohM88gC4gXqmOUBXOz0rD9BRYLrgR7gjTxxsxE30tYM_HPGHLf5wxB-2-MMCe_zhi_CHHf5wF38Yboi3-MNb_OF5gx3-cMAfjvi7hd4-O548eZ6GoR-popSvUyGlrtRQEUYLVSlOJZFSMMUEs3wjQXXFWGVyOOaFpFz3ISDpa5rzCkwT0flttNe0jbmDsNE8U5QJSpgsClGJjA-IJGBRuZSy0oeIxH--VKEjvh3MUpex9PGkBGGVVlglyUsQ1iF6vF2y8O1gfvfjIoqzDG-V91NLwN7Fy-7-27J76MrufbqP9tbLT-YIXVZn6_lq-SAg9Du6Xs4o |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+parallel+deep+learning+with+a+hybrid+backpropagation-particle+swarm+optimization+for+community+detection+in+large+complex+networks&rft.jtitle=Information+sciences&rft.au=Nasser+Al-Andoli%2C+Mohammed&rft.au=Chiang+Tan%2C+Shing&rft.au=Ping+Cheah%2C+Wooi&rft.date=2022-07-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=600&rft.spage=94&rft.epage=117&rft_id=info:doi/10.1016%2Fj.ins.2022.03.053&rft.externalDocID=S0020025522002663 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |