Hovering efficiency optimization of the ducted propeller with weight penalty taken into account
The ducted propeller is superior to the open propeller in hovering efficiency. However, the overall system efficiency of a ducted propeller is reduced due to its heavy structure. If the weight penalty is taken into account, will the ducted propeller still be superior to an open propeller? And in thi...
Uložené v:
| Vydané v: | Aerospace science and technology Ročník 117; s. 106937 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Masson SAS
01.10.2021
|
| Predmet: | |
| ISSN: | 1270-9638, 1626-3219 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The ducted propeller is superior to the open propeller in hovering efficiency. However, the overall system efficiency of a ducted propeller is reduced due to its heavy structure. If the weight penalty is taken into account, will the ducted propeller still be superior to an open propeller? And in this scenario, how will a ducted propeller with better efficiency than an open propeller be designed? This paper investigates these questions by parametric analysis based on experiments and then parametric optimization that involves hovering efficiency and structural weight in objective functions. Both multi-disciplinary design optimization and multi-objective programming are performed by surrogate-based optimization. An in-house automatic structured mesh generation module is developed to deal with significant geometry variation in design space. Finally, the optimization results are validated by post-optimization experiments. The results of experiment and optimization indicate that the effects of weight penalty play a leading role at low disk loading and hence in this case, the one with lighter structure is superior. But at high disk loading, as thrust gets higher, the leading factor turns into aerodynamic hovering efficiency, therefore the one with higher aerodynamic hovering efficiency prevails. The multi-objective optimization produces an L-shaped Pareto front, and the optimum of multi-disciplinary optimization is quite close to the Pareto front knee point. The designs in this region encounter limited aerodynamic hovering efficiency loss but gain significant weight reduction. Therefore, we can obtain a ducted propeller superior to an open propeller in system efficiency with pretty low disk loading, although the weight penalty is considered. These designs feature a relatively large inner lip radius, a small outer lip radius, and a short or even no diffuser. This means that the inner lip radius contributes the most to the aerodynamic hovering efficiency, followed by the diffuser and outer lip. These designs have very low height to diameter ratio therefore they can be easily integrated into aircraft structure. |
|---|---|
| AbstractList | The ducted propeller is superior to the open propeller in hovering efficiency. However, the overall system efficiency of a ducted propeller is reduced due to its heavy structure. If the weight penalty is taken into account, will the ducted propeller still be superior to an open propeller? And in this scenario, how will a ducted propeller with better efficiency than an open propeller be designed? This paper investigates these questions by parametric analysis based on experiments and then parametric optimization that involves hovering efficiency and structural weight in objective functions. Both multi-disciplinary design optimization and multi-objective programming are performed by surrogate-based optimization. An in-house automatic structured mesh generation module is developed to deal with significant geometry variation in design space. Finally, the optimization results are validated by post-optimization experiments. The results of experiment and optimization indicate that the effects of weight penalty play a leading role at low disk loading and hence in this case, the one with lighter structure is superior. But at high disk loading, as thrust gets higher, the leading factor turns into aerodynamic hovering efficiency, therefore the one with higher aerodynamic hovering efficiency prevails. The multi-objective optimization produces an L-shaped Pareto front, and the optimum of multi-disciplinary optimization is quite close to the Pareto front knee point. The designs in this region encounter limited aerodynamic hovering efficiency loss but gain significant weight reduction. Therefore, we can obtain a ducted propeller superior to an open propeller in system efficiency with pretty low disk loading, although the weight penalty is considered. These designs feature a relatively large inner lip radius, a small outer lip radius, and a short or even no diffuser. This means that the inner lip radius contributes the most to the aerodynamic hovering efficiency, followed by the diffuser and outer lip. These designs have very low height to diameter ratio therefore they can be easily integrated into aircraft structure. |
| ArticleNumber | 106937 |
| Author | Qing, Ji xiang Conrad, Zachary J. Cao, Jia Ning Zhang, Xue Peng Hu, Yu Liu, Zhong Huan |
| Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0003-2739-3492 surname: Hu fullname: Hu, Yu email: huyu1974@nwpu.edu.cn – sequence: 2 givenname: Ji xiang surname: Qing fullname: Qing, Ji xiang – sequence: 3 givenname: Zhong Huan surname: Liu fullname: Liu, Zhong Huan – sequence: 4 givenname: Zachary J. surname: Conrad fullname: Conrad, Zachary J. – sequence: 5 givenname: Jia Ning surname: Cao fullname: Cao, Jia Ning – sequence: 6 givenname: Xue Peng surname: Zhang fullname: Zhang, Xue Peng |
| BookMark | eNp9kM1OAjEUhRuDiYg-gLu-wGB_hpk2rgxRMSFxo-umtLdQHNpJp0Dw6R3AlQtW557Fd5Pz3aJBiAEQeqBkTAmtHtdj3eUxI4z2vZK8vkJDWrGq4IzKQX-zmhSy4uIG3XbdmhDCZMmGSM3iDpIPSwzOeeMhmAOObfYb_6OzjwFHh_MKsN2aDBa3KbbQNJDw3ucV3oNfrjJuIegmH3DW3xCwDzlibUzchnyHrp1uOrj_yxH6en35nM6K-cfb-_R5XhjG6lzIBV8wYhdc1poSybh0ZSWcAEG5LSdEMCE5l9QSTpkUVGhbG1k6aqg1E1rzEaLnvybFrkvgVJv8RqeDokQdDam16g2poyF1NtQz9T_G-HwanZP2zUXy6UxCP2nnIanupA6sT2CystFfoH8BsJ2DVA |
| CitedBy_id | crossref_primary_10_1016_j_ast_2023_108142 crossref_primary_10_1016_j_est_2021_103685 crossref_primary_10_1016_j_ast_2021_107299 crossref_primary_10_3390_mi13111924 crossref_primary_10_1117_1_JEI_31_6_061819 crossref_primary_10_1016_j_cja_2025_103487 crossref_primary_10_1080_17455030_2023_2165735 crossref_primary_10_3390_electronics11193164 crossref_primary_10_1016_j_ijhydene_2022_04_228 crossref_primary_10_1016_j_ijhydene_2022_07_161 crossref_primary_10_3390_mi12101192 crossref_primary_10_1080_03067319_2021_1986035 crossref_primary_10_3390_sym15030608 crossref_primary_10_1080_17455030_2023_2220821 crossref_primary_10_3390_pr9111930 crossref_primary_10_3390_app15148013 crossref_primary_10_1177_09544100221130384 crossref_primary_10_1016_j_asoc_2023_110513 crossref_primary_10_1016_j_compstruct_2022_115195 crossref_primary_10_1080_15567036_2022_2123574 crossref_primary_10_1016_j_ast_2024_109226 crossref_primary_10_1080_00986445_2021_1990888 crossref_primary_10_1080_17455030_2021_1998726 crossref_primary_10_1016_j_icheatmasstransfer_2022_106543 crossref_primary_10_3390_ma16062508 crossref_primary_10_1016_j_ijhydene_2022_05_046 crossref_primary_10_1016_j_ast_2022_107689 crossref_primary_10_1016_j_icheatmasstransfer_2022_106509 crossref_primary_10_1080_15376494_2023_2217653 crossref_primary_10_1109_JIOT_2023_3237661 crossref_primary_10_1016_j_enganabound_2023_05_045 crossref_primary_10_1016_j_actaastro_2022_03_002 crossref_primary_10_1016_j_energy_2023_128119 crossref_primary_10_1155_2023_9918890 crossref_primary_10_1007_s42405_022_00497_w crossref_primary_10_1016_j_istruc_2023_06_105 crossref_primary_10_1016_j_ast_2021_107193 crossref_primary_10_1016_j_ijhydene_2022_08_140 crossref_primary_10_3390_drones7010053 crossref_primary_10_1016_j_ast_2024_108963 crossref_primary_10_1080_17455030_2021_2024918 crossref_primary_10_1016_j_ast_2022_107876 crossref_primary_10_1016_j_ast_2021_107236 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123183 crossref_primary_10_1177_16878132231206330 crossref_primary_10_1016_j_ast_2023_108607 crossref_primary_10_3389_fenrg_2021_769374 crossref_primary_10_1016_j_ijhydene_2021_10_121 crossref_primary_10_1145_3571728 crossref_primary_10_1007_s00339_021_04984_x crossref_primary_10_1093_jcde_qwac139 crossref_primary_10_1038_s41598_023_28127_9 crossref_primary_10_3390_s22145421 crossref_primary_10_1007_s00707_022_03368_3 crossref_primary_10_1038_s41598_022_20046_5 crossref_primary_10_1007_s11370_022_00452_4 crossref_primary_10_1016_j_oceaneng_2022_110784 crossref_primary_10_1016_j_energy_2023_128142 crossref_primary_10_1016_j_ijhydene_2022_01_070 crossref_primary_10_1007_s11276_022_03208_1 crossref_primary_10_3390_ma15062175 crossref_primary_10_1016_j_matchemphys_2024_130211 crossref_primary_10_1063_5_0275588 crossref_primary_10_1007_s11277_022_09625_x crossref_primary_10_1016_j_energy_2022_124834 |
| Cites_doi | 10.1007/s10898-015-0370-8 10.1016/j.ast.2021.106563 10.1016/j.ast.2015.06.005 10.1016/0378-3758(94)90115-5 10.1016/j.ast.2020.106399 10.1080/02664768700000020 10.1017/aer.2019.164 10.1214/15-STS531 10.1016/j.apm.2012.07.025 10.2514/1.C031562 10.1016/j.ast.2020.105895 10.2514/1.C031934 10.1016/j.ast.2020.106356 10.4050/JAHS.38.14 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Masson SAS |
| Copyright_xml | – notice: 2021 Elsevier Masson SAS |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ast.2021.106937 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1626-3219 |
| ExternalDocumentID | 10_1016_j_ast_2021_106937 S1270963821004478 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H VH1 XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c227t-9b3b20db397a109239f468f8e813d45082893391d03129818ad7c94f1c1dc5173 |
| ISICitedReferencesCount | 79 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687130700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1270-9638 |
| IngestDate | Tue Nov 18 22:23:44 EST 2025 Sat Nov 29 07:04:01 EST 2025 Fri Feb 23 02:43:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-disciplinary optimization Multi-objective programming UAV Surrogate assisted optimization Ducted propeller |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c227t-9b3b20db397a109239f468f8e813d45082893391d03129818ad7c94f1c1dc5173 |
| ORCID | 0000-0003-2739-3492 |
| ParticipantIDs | crossref_primary_10_1016_j_ast_2021_106937 crossref_citationtrail_10_1016_j_ast_2021_106937 elsevier_sciencedirect_doi_10_1016_j_ast_2021_106937 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Aerospace science and technology |
| PublicationYear | 2021 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | Akturk, Camci (br0120) 2012; 49 Martinez, Herrero (br0320) 2016; 64 Ruzicka, Strawn (br0130) 2004 Pereira (br0060) 2008 Shen, Zhao (br0070) 2015 Shewry, Wynn (br0250) 1987; 14 Rajagopalan, Zhang (br0160) 1989 Schonlau (br0310) 1997 Rajagopalan, Mathur (br0170) 1993; 38 Chen, Loeppky, Sacks, Welch (br0280) 2016; 31 Yilmaz, Erdema, Kavsaoglu (br0030) 2015; 45 Couckuyt, Dhaene, Demeester (br0300) 2014; 15 Loureiro, Oliveira, Hallak, Bastos, Rocha (br0110) 2021; 108 Sacks, Welch, Mitchell, Wynn (br0240) 1989; 4 Polyzos, Vouros, Goulos, Pachidis (br0260) 2020; 107 Taylor (br0040) 1958 Youngren, Drela, Sanders (br0100) Dec. 2005 Mian, Wang, Zhou, Wu (br0270) 2021; 111 Chang, Rajagopalan (br0190) 2003 Leishman (br0330) 2006 Rostami, Farajollahi (br0010) 2021; 108 Ahn, Lee (br0080) 2004 Fletcher (br0090) 1957 Bontempo, Manna (br0210) 2016; 2016 Park (br0230) 1994; 39 Malki, Williams, Croft, Togneri, Masters (br0200) 2013; 37 Zhang, Barakos (br0150) 2020; 124 Graf (br0050) 2005 Deng, Wang, Zhang (br0020) 2020; 103 Kim, Park (br0180) 2013; 50 McKay, Beckman, Conover (br0220) 1979; 21 Rubio, Diaz, Yoon (br0140) 2019 Stein (br0290) 1999 Ahn (10.1016/j.ast.2021.106937_br0080) 2004 Fletcher (10.1016/j.ast.2021.106937_br0090) 1957 Park (10.1016/j.ast.2021.106937_br0230) 1994; 39 Malki (10.1016/j.ast.2021.106937_br0200) 2013; 37 Stein (10.1016/j.ast.2021.106937_br0290) 1999 Deng (10.1016/j.ast.2021.106937_br0020) 2020; 103 Zhang (10.1016/j.ast.2021.106937_br0150) 2020; 124 Kim (10.1016/j.ast.2021.106937_br0180) 2013; 50 Mian (10.1016/j.ast.2021.106937_br0270) 2021; 111 Shen (10.1016/j.ast.2021.106937_br0070) 2015 Youngren (10.1016/j.ast.2021.106937_br0100) Bontempo (10.1016/j.ast.2021.106937_br0210) 2016; 2016 McKay (10.1016/j.ast.2021.106937_br0220) 1979; 21 Loureiro (10.1016/j.ast.2021.106937_br0110) 2021; 108 Leishman (10.1016/j.ast.2021.106937_br0330) 2006 Shewry (10.1016/j.ast.2021.106937_br0250) 1987; 14 Polyzos (10.1016/j.ast.2021.106937_br0260) 2020; 107 Schonlau (10.1016/j.ast.2021.106937_br0310) 1997 Chen (10.1016/j.ast.2021.106937_br0280) 2016; 31 Akturk (10.1016/j.ast.2021.106937_br0120) 2012; 49 Rajagopalan (10.1016/j.ast.2021.106937_br0170) 1993; 38 Chang (10.1016/j.ast.2021.106937_br0190) 2003 Graf (10.1016/j.ast.2021.106937_br0050) 2005 Rubio (10.1016/j.ast.2021.106937_br0140) 2019 Couckuyt (10.1016/j.ast.2021.106937_br0300) 2014; 15 Pereira (10.1016/j.ast.2021.106937_br0060) 2008 Sacks (10.1016/j.ast.2021.106937_br0240) 1989; 4 Taylor (10.1016/j.ast.2021.106937_br0040) 1958 Rostami (10.1016/j.ast.2021.106937_br0010) 2021; 108 Ruzicka (10.1016/j.ast.2021.106937_br0130) 2004 Yilmaz (10.1016/j.ast.2021.106937_br0030) 2015; 45 Rajagopalan (10.1016/j.ast.2021.106937_br0160) 1989 Martinez (10.1016/j.ast.2021.106937_br0320) 2016; 64 |
| References_xml | – volume: 108 year: 2021 ident: br0110 article-title: Evaluation of low fidelity and cfd methods for the aerodynamic performance of a small propeller publication-title: Aerosp. Sci. Technol. – volume: 15 start-page: 3183 year: 2014 end-page: 3186 ident: br0300 article-title: Oodace toolbox: a flexible object-oriented Kriging implementation publication-title: J. Mach. Learn. Res. – year: 1997 ident: br0310 article-title: Computer experiments and global optimization – volume: 111 year: 2021 ident: br0270 article-title: Optimization of thin electric propeller using physics-based surrogate model with space mapping publication-title: Aerosp. Sci. Technol. – volume: 103 year: 2020 ident: br0020 article-title: Aerodynamic performance assessment of a ducted fan uav for vtol applications publication-title: Aerosp. Sci. Technol. – year: 1999 ident: br0290 article-title: Interpolation of Spatial Data: Some Theory for Kriging – year: 1958 ident: br0040 article-title: Experimental investigation of the effects of some shroud design variables on the static thrust characteristics of a small-scale shrouded propeller submerged in a wing – volume: 108 year: 2021 ident: br0010 article-title: Aerodynamic performance of mutual interaction tandem propellers with ducted uav publication-title: Aerosp. Sci. Technol. – year: 1989 ident: br0160 article-title: Performance and flow field of a ducted propeller publication-title: AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference – volume: 37 start-page: 3006 year: 2013 end-page: 3020 ident: br0200 article-title: A coupled blade element momentum–computational fluid dynamics model for evaluating tidal stream turbine performance publication-title: Appl. Math. Model. – volume: 124 start-page: 941 year: 2020 end-page: 974 ident: br0150 article-title: Review on ducted fans for compound rotorcraft publication-title: Aeronaut. J. – volume: 45 start-page: 376 year: 2015 end-page: 386 ident: br0030 article-title: Performance of a ducted propeller designed for uav applications at zero angle of attack flight: an experimental study publication-title: Aerosp. Sci. Technol. – year: 2003 ident: br0190 article-title: Cfd analysis for ducted fans with validation publication-title: 21st AIAA Applied Aerodynamics Conference – year: 2004 ident: br0130 article-title: Discrete blade cfd analysis of ducted tail fan flow publication-title: 42nd AIAA Aerospace Sciences Meeting and Exhibit – year: 1957 ident: br0090 article-title: Experimental investigation of lift, drag, and pitching moment of five annular airfoils – volume: 50 start-page: 324 year: 2013 end-page: 327 ident: br0180 article-title: Unsteady momentum source method for efficient simulation of rotor aerodynamics publication-title: J. Aircr. – volume: 31 start-page: 40 year: 2016 end-page: 60 ident: br0280 article-title: Analysis methods for computer experiments: how to assess and what counts? publication-title: Stat. Sci. – year: 2004 ident: br0080 article-title: Performance prediction and design of a ducted fan system publication-title: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit – year: 2008 ident: br0060 article-title: Hover and wind-tunnel testing of shrouded rotors for improved micro air vehicle design – year: 2015 ident: br0070 article-title: Numerical investigations of ducted fan hover performance for fan-in-wing applications publication-title: 53rd AIAA Aerospace Sciences Meeting – volume: 38 start-page: 14 year: 1993 end-page: 25 ident: br0170 article-title: Three dimensional analysis of a rotor in forward flight publication-title: J. Am. Helicopter Soc. – volume: 4 start-page: 409 year: 1989 end-page: 423 ident: br0240 article-title: Design and analysis of computer experiments publication-title: Stat. Sci. – volume: 107 year: 2020 ident: br0260 article-title: Multi-disciplinary optimization of variable rotor speed and active blade twist rotorcraft: trade-off between noise and emissions publication-title: Aerosp. Sci. Technol. – year: 2019 ident: br0140 article-title: High-fidelity computational analysis of ducted and coaxial rotors for urban air mobility publication-title: Proceedings of the 75th Annual Forum – volume: 14 start-page: 165 year: 1987 end-page: 170 ident: br0250 article-title: Maximum entropy design publication-title: J. Appl. Stat. – volume: 39 start-page: 95 year: 1994 end-page: 111 ident: br0230 article-title: Optimal Latin-hypercube designs for computer experiments publication-title: J. Stat. Plan. Inference – volume: 21 start-page: 239 year: 1979 end-page: 245 ident: br0220 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 2016 year: 2016 ident: br0210 article-title: Effects of duct cross section camber and thickness on the performance of ducted propulsion systems for aeronautical applications publication-title: Int. J. Aerosp. Eng. – volume: 64 start-page: 97 year: 2016 end-page: 115 ident: br0320 article-title: Kriging-based infill sampling criterion for constraint handling in multi-objective optimization publication-title: J. Glob. Optim. – year: 2005 ident: br0050 article-title: Effects of duct lip shaping and various control devices on the hover and forward flight performance of ducted fan uavs – year: 2006 ident: br0330 article-title: Principles of Helicopter Aerodynamics – year: Dec. 2005 ident: br0100 article-title: Ducted fan design code – volume: 49 start-page: 885 year: 2012 end-page: 897 ident: br0120 article-title: Experimental and computational assessment of a ducted-fan rotor flow model publication-title: J. Aircr. – year: 2015 ident: 10.1016/j.ast.2021.106937_br0070 article-title: Numerical investigations of ducted fan hover performance for fan-in-wing applications – year: 1999 ident: 10.1016/j.ast.2021.106937_br0290 – year: 2008 ident: 10.1016/j.ast.2021.106937_br0060 – volume: 64 start-page: 97 year: 2016 ident: 10.1016/j.ast.2021.106937_br0320 article-title: Kriging-based infill sampling criterion for constraint handling in multi-objective optimization publication-title: J. Glob. Optim. doi: 10.1007/s10898-015-0370-8 – volume: 111 year: 2021 ident: 10.1016/j.ast.2021.106937_br0270 article-title: Optimization of thin electric propeller using physics-based surrogate model with space mapping publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106563 – volume: 45 start-page: 376 year: 2015 ident: 10.1016/j.ast.2021.106937_br0030 article-title: Performance of a ducted propeller designed for uav applications at zero angle of attack flight: an experimental study publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2015.06.005 – volume: 39 start-page: 95 issue: 1 year: 1994 ident: 10.1016/j.ast.2021.106937_br0230 article-title: Optimal Latin-hypercube designs for computer experiments publication-title: J. Stat. Plan. Inference doi: 10.1016/0378-3758(94)90115-5 – year: 1997 ident: 10.1016/j.ast.2021.106937_br0310 – volume: 108 year: 2021 ident: 10.1016/j.ast.2021.106937_br0010 article-title: Aerodynamic performance of mutual interaction tandem propellers with ducted uav publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106399 – volume: 15 start-page: 3183 issue: 1 year: 2014 ident: 10.1016/j.ast.2021.106937_br0300 article-title: Oodace toolbox: a flexible object-oriented Kriging implementation publication-title: J. Mach. Learn. Res. – volume: 14 start-page: 165 issue: 2 year: 1987 ident: 10.1016/j.ast.2021.106937_br0250 article-title: Maximum entropy design publication-title: J. Appl. Stat. doi: 10.1080/02664768700000020 – volume: 4 start-page: 409 issue: 4 year: 1989 ident: 10.1016/j.ast.2021.106937_br0240 article-title: Design and analysis of computer experiments publication-title: Stat. Sci. – volume: 2016 year: 2016 ident: 10.1016/j.ast.2021.106937_br0210 article-title: Effects of duct cross section camber and thickness on the performance of ducted propulsion systems for aeronautical applications publication-title: Int. J. Aerosp. Eng. – volume: 124 start-page: 941 year: 2020 ident: 10.1016/j.ast.2021.106937_br0150 article-title: Review on ducted fans for compound rotorcraft publication-title: Aeronaut. J. doi: 10.1017/aer.2019.164 – year: 1958 ident: 10.1016/j.ast.2021.106937_br0040 – volume: 31 start-page: 40 issue: 1 year: 2016 ident: 10.1016/j.ast.2021.106937_br0280 article-title: Analysis methods for computer experiments: how to assess and what counts? publication-title: Stat. Sci. doi: 10.1214/15-STS531 – year: 2004 ident: 10.1016/j.ast.2021.106937_br0080 article-title: Performance prediction and design of a ducted fan system – volume: 37 start-page: 3006 issue: 5 year: 2013 ident: 10.1016/j.ast.2021.106937_br0200 article-title: A coupled blade element momentum–computational fluid dynamics model for evaluating tidal stream turbine performance publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.07.025 – volume: 49 start-page: 885 issue: 3 year: 2012 ident: 10.1016/j.ast.2021.106937_br0120 article-title: Experimental and computational assessment of a ducted-fan rotor flow model publication-title: J. Aircr. doi: 10.2514/1.C031562 – volume: 103 year: 2020 ident: 10.1016/j.ast.2021.106937_br0020 article-title: Aerodynamic performance assessment of a ducted fan uav for vtol applications publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.105895 – year: 1957 ident: 10.1016/j.ast.2021.106937_br0090 – volume: 50 start-page: 324 issue: 1 year: 2013 ident: 10.1016/j.ast.2021.106937_br0180 article-title: Unsteady momentum source method for efficient simulation of rotor aerodynamics publication-title: J. Aircr. doi: 10.2514/1.C031934 – volume: 108 year: 2021 ident: 10.1016/j.ast.2021.106937_br0110 article-title: Evaluation of low fidelity and cfd methods for the aerodynamic performance of a small propeller publication-title: Aerosp. Sci. Technol. – year: 2004 ident: 10.1016/j.ast.2021.106937_br0130 article-title: Discrete blade cfd analysis of ducted tail fan flow – year: 2019 ident: 10.1016/j.ast.2021.106937_br0140 article-title: High-fidelity computational analysis of ducted and coaxial rotors for urban air mobility – year: 2005 ident: 10.1016/j.ast.2021.106937_br0050 – year: 2003 ident: 10.1016/j.ast.2021.106937_br0190 article-title: Cfd analysis for ducted fans with validation – volume: 21 start-page: 239 issue: 2 year: 1979 ident: 10.1016/j.ast.2021.106937_br0220 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – year: 2006 ident: 10.1016/j.ast.2021.106937_br0330 – year: 1989 ident: 10.1016/j.ast.2021.106937_br0160 article-title: Performance and flow field of a ducted propeller – volume: 107 year: 2020 ident: 10.1016/j.ast.2021.106937_br0260 article-title: Multi-disciplinary optimization of variable rotor speed and active blade twist rotorcraft: trade-off between noise and emissions publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106356 – ident: 10.1016/j.ast.2021.106937_br0100 – volume: 38 start-page: 14 issue: 3 year: 1993 ident: 10.1016/j.ast.2021.106937_br0170 article-title: Three dimensional analysis of a rotor in forward flight publication-title: J. Am. Helicopter Soc. doi: 10.4050/JAHS.38.14 |
| SSID | ssj0002942 |
| Score | 2.542858 |
| Snippet | The ducted propeller is superior to the open propeller in hovering efficiency. However, the overall system efficiency of a ducted propeller is reduced due to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106937 |
| SubjectTerms | Ducted propeller Multi-disciplinary optimization Multi-objective programming Surrogate assisted optimization UAV |
| Title | Hovering efficiency optimization of the ducted propeller with weight penalty taken into account |
| URI | https://dx.doi.org/10.1016/j.ast.2021.106937 |
| Volume | 117 |
| WOSCitedRecordID | wos000687130700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1626-3219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002942 issn: 1270-9638 databaseCode: AIEXJ dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKBE6tUiePE8XFVFS0rUSG1SKteIid2YNuSXW13y3LllzPjRzZqAQESlyiy4jjyfB6PJzPfEPLasFjp2uSR4qyKeJMaWHOCR3kRp2AtwBpT2habEEdHxXQqPwwG30MuzNWFaNtis5GL_ypqaANhY-rsX4i7eyk0wD0IHa4gdrj-keDHGJSJDgBj2SFsauUcFMMXn3EZogKQ6NUgScAcf8CYpXPJfrWu0uHCwDhgn6_UucFYSLBQlasr0bdmRwb2WDh0m2HIDrLxmDe89eO11fTrzsvqC6lMZsMNwPNTFxU0sw-efsYCSOP1FrgHWATBYvFUYZ7Yt-Fkv--vYEkX-eadaCGR5j0cDlAljo576peJOEKV4HYn1wZHrigNijXobJfweUP_O1fE2b66xDhZlkBLLh2rzDVa7WMcC4diljNPFLfILhOZBM24O3p3OJ10-zmTtgRT923h37iNErw20M-tm57FcnKf3PNHDTpyEHlABqZ9SO72CCgfkTKAhW7BQvtgofOGAlioAwvtwEIRLNSBhXqwUAsWimChHiyPyce3hycH48iX3IhqxsQqklVasVhXYKWqJAbjXzY8L5rCFEmqeYZ8hzJNZaJhL2ASjD2lRS15k9SJrrNEpE_ITjtvzVNCjTJacMnrtDFcwXtzlWVNUdUqz6TWfI_EYarK2vPRY1mUizIEHp6VMLslzm7pZnePvOm6LBwZy-8e5mH-S78InJVYAlh-3e3Zv3V7Tu5swf6C7KyWa_OS3K6vVrPL5SsPqR9Lx5rS |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hovering+efficiency+optimization+of+the+ducted+propeller+with+weight+penalty+taken+into+account&rft.jtitle=Aerospace+science+and+technology&rft.au=Hu%2C+Yu&rft.au=Qing%2C+Ji+xiang&rft.au=Liu%2C+Zhong+Huan&rft.au=Conrad%2C+Zachary+J.&rft.date=2021-10-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.eissn=1626-3219&rft.volume=117&rft_id=info:doi/10.1016%2Fj.ast.2021.106937&rft.externalDocID=S1270963821004478 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon |