Hovering efficiency optimization of the ducted propeller with weight penalty taken into account

The ducted propeller is superior to the open propeller in hovering efficiency. However, the overall system efficiency of a ducted propeller is reduced due to its heavy structure. If the weight penalty is taken into account, will the ducted propeller still be superior to an open propeller? And in thi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Aerospace science and technology Ročník 117; s. 106937
Hlavní autori: Hu, Yu, Qing, Ji xiang, Liu, Zhong Huan, Conrad, Zachary J., Cao, Jia Ning, Zhang, Xue Peng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Masson SAS 01.10.2021
Predmet:
ISSN:1270-9638, 1626-3219
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The ducted propeller is superior to the open propeller in hovering efficiency. However, the overall system efficiency of a ducted propeller is reduced due to its heavy structure. If the weight penalty is taken into account, will the ducted propeller still be superior to an open propeller? And in this scenario, how will a ducted propeller with better efficiency than an open propeller be designed? This paper investigates these questions by parametric analysis based on experiments and then parametric optimization that involves hovering efficiency and structural weight in objective functions. Both multi-disciplinary design optimization and multi-objective programming are performed by surrogate-based optimization. An in-house automatic structured mesh generation module is developed to deal with significant geometry variation in design space. Finally, the optimization results are validated by post-optimization experiments. The results of experiment and optimization indicate that the effects of weight penalty play a leading role at low disk loading and hence in this case, the one with lighter structure is superior. But at high disk loading, as thrust gets higher, the leading factor turns into aerodynamic hovering efficiency, therefore the one with higher aerodynamic hovering efficiency prevails. The multi-objective optimization produces an L-shaped Pareto front, and the optimum of multi-disciplinary optimization is quite close to the Pareto front knee point. The designs in this region encounter limited aerodynamic hovering efficiency loss but gain significant weight reduction. Therefore, we can obtain a ducted propeller superior to an open propeller in system efficiency with pretty low disk loading, although the weight penalty is considered. These designs feature a relatively large inner lip radius, a small outer lip radius, and a short or even no diffuser. This means that the inner lip radius contributes the most to the aerodynamic hovering efficiency, followed by the diffuser and outer lip. These designs have very low height to diameter ratio therefore they can be easily integrated into aircraft structure.
AbstractList The ducted propeller is superior to the open propeller in hovering efficiency. However, the overall system efficiency of a ducted propeller is reduced due to its heavy structure. If the weight penalty is taken into account, will the ducted propeller still be superior to an open propeller? And in this scenario, how will a ducted propeller with better efficiency than an open propeller be designed? This paper investigates these questions by parametric analysis based on experiments and then parametric optimization that involves hovering efficiency and structural weight in objective functions. Both multi-disciplinary design optimization and multi-objective programming are performed by surrogate-based optimization. An in-house automatic structured mesh generation module is developed to deal with significant geometry variation in design space. Finally, the optimization results are validated by post-optimization experiments. The results of experiment and optimization indicate that the effects of weight penalty play a leading role at low disk loading and hence in this case, the one with lighter structure is superior. But at high disk loading, as thrust gets higher, the leading factor turns into aerodynamic hovering efficiency, therefore the one with higher aerodynamic hovering efficiency prevails. The multi-objective optimization produces an L-shaped Pareto front, and the optimum of multi-disciplinary optimization is quite close to the Pareto front knee point. The designs in this region encounter limited aerodynamic hovering efficiency loss but gain significant weight reduction. Therefore, we can obtain a ducted propeller superior to an open propeller in system efficiency with pretty low disk loading, although the weight penalty is considered. These designs feature a relatively large inner lip radius, a small outer lip radius, and a short or even no diffuser. This means that the inner lip radius contributes the most to the aerodynamic hovering efficiency, followed by the diffuser and outer lip. These designs have very low height to diameter ratio therefore they can be easily integrated into aircraft structure.
ArticleNumber 106937
Author Qing, Ji xiang
Conrad, Zachary J.
Cao, Jia Ning
Zhang, Xue Peng
Hu, Yu
Liu, Zhong Huan
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0003-2739-3492
  surname: Hu
  fullname: Hu, Yu
  email: huyu1974@nwpu.edu.cn
– sequence: 2
  givenname: Ji xiang
  surname: Qing
  fullname: Qing, Ji xiang
– sequence: 3
  givenname: Zhong Huan
  surname: Liu
  fullname: Liu, Zhong Huan
– sequence: 4
  givenname: Zachary J.
  surname: Conrad
  fullname: Conrad, Zachary J.
– sequence: 5
  givenname: Jia Ning
  surname: Cao
  fullname: Cao, Jia Ning
– sequence: 6
  givenname: Xue Peng
  surname: Zhang
  fullname: Zhang, Xue Peng
BookMark eNp9kM1OAjEUhRuDiYg-gLu-wGB_hpk2rgxRMSFxo-umtLdQHNpJp0Dw6R3AlQtW557Fd5Pz3aJBiAEQeqBkTAmtHtdj3eUxI4z2vZK8vkJDWrGq4IzKQX-zmhSy4uIG3XbdmhDCZMmGSM3iDpIPSwzOeeMhmAOObfYb_6OzjwFHh_MKsN2aDBa3KbbQNJDw3ucV3oNfrjJuIegmH3DW3xCwDzlibUzchnyHrp1uOrj_yxH6en35nM6K-cfb-_R5XhjG6lzIBV8wYhdc1poSybh0ZSWcAEG5LSdEMCE5l9QSTpkUVGhbG1k6aqg1E1rzEaLnvybFrkvgVJv8RqeDokQdDam16g2poyF1NtQz9T_G-HwanZP2zUXy6UxCP2nnIanupA6sT2CystFfoH8BsJ2DVA
CitedBy_id crossref_primary_10_1016_j_ast_2023_108142
crossref_primary_10_1016_j_est_2021_103685
crossref_primary_10_1016_j_ast_2021_107299
crossref_primary_10_3390_mi13111924
crossref_primary_10_1117_1_JEI_31_6_061819
crossref_primary_10_1016_j_cja_2025_103487
crossref_primary_10_1080_17455030_2023_2165735
crossref_primary_10_3390_electronics11193164
crossref_primary_10_1016_j_ijhydene_2022_04_228
crossref_primary_10_1016_j_ijhydene_2022_07_161
crossref_primary_10_3390_mi12101192
crossref_primary_10_1080_03067319_2021_1986035
crossref_primary_10_3390_sym15030608
crossref_primary_10_1080_17455030_2023_2220821
crossref_primary_10_3390_pr9111930
crossref_primary_10_3390_app15148013
crossref_primary_10_1177_09544100221130384
crossref_primary_10_1016_j_asoc_2023_110513
crossref_primary_10_1016_j_compstruct_2022_115195
crossref_primary_10_1080_15567036_2022_2123574
crossref_primary_10_1016_j_ast_2024_109226
crossref_primary_10_1080_00986445_2021_1990888
crossref_primary_10_1080_17455030_2021_1998726
crossref_primary_10_1016_j_icheatmasstransfer_2022_106543
crossref_primary_10_3390_ma16062508
crossref_primary_10_1016_j_ijhydene_2022_05_046
crossref_primary_10_1016_j_ast_2022_107689
crossref_primary_10_1016_j_icheatmasstransfer_2022_106509
crossref_primary_10_1080_15376494_2023_2217653
crossref_primary_10_1109_JIOT_2023_3237661
crossref_primary_10_1016_j_enganabound_2023_05_045
crossref_primary_10_1016_j_actaastro_2022_03_002
crossref_primary_10_1016_j_energy_2023_128119
crossref_primary_10_1155_2023_9918890
crossref_primary_10_1007_s42405_022_00497_w
crossref_primary_10_1016_j_istruc_2023_06_105
crossref_primary_10_1016_j_ast_2021_107193
crossref_primary_10_1016_j_ijhydene_2022_08_140
crossref_primary_10_3390_drones7010053
crossref_primary_10_1016_j_ast_2024_108963
crossref_primary_10_1080_17455030_2021_2024918
crossref_primary_10_1016_j_ast_2022_107876
crossref_primary_10_1016_j_ast_2021_107236
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123183
crossref_primary_10_1177_16878132231206330
crossref_primary_10_1016_j_ast_2023_108607
crossref_primary_10_3389_fenrg_2021_769374
crossref_primary_10_1016_j_ijhydene_2021_10_121
crossref_primary_10_1145_3571728
crossref_primary_10_1007_s00339_021_04984_x
crossref_primary_10_1093_jcde_qwac139
crossref_primary_10_1038_s41598_023_28127_9
crossref_primary_10_3390_s22145421
crossref_primary_10_1007_s00707_022_03368_3
crossref_primary_10_1038_s41598_022_20046_5
crossref_primary_10_1007_s11370_022_00452_4
crossref_primary_10_1016_j_oceaneng_2022_110784
crossref_primary_10_1016_j_energy_2023_128142
crossref_primary_10_1016_j_ijhydene_2022_01_070
crossref_primary_10_1007_s11276_022_03208_1
crossref_primary_10_3390_ma15062175
crossref_primary_10_1016_j_matchemphys_2024_130211
crossref_primary_10_1063_5_0275588
crossref_primary_10_1007_s11277_022_09625_x
crossref_primary_10_1016_j_energy_2022_124834
Cites_doi 10.1007/s10898-015-0370-8
10.1016/j.ast.2021.106563
10.1016/j.ast.2015.06.005
10.1016/0378-3758(94)90115-5
10.1016/j.ast.2020.106399
10.1080/02664768700000020
10.1017/aer.2019.164
10.1214/15-STS531
10.1016/j.apm.2012.07.025
10.2514/1.C031562
10.1016/j.ast.2020.105895
10.2514/1.C031934
10.1016/j.ast.2020.106356
10.4050/JAHS.38.14
ContentType Journal Article
Copyright 2021 Elsevier Masson SAS
Copyright_xml – notice: 2021 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ast.2021.106937
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1626-3219
ExternalDocumentID 10_1016_j_ast_2021_106937
S1270963821004478
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c227t-9b3b20db397a109239f468f8e813d45082893391d03129818ad7c94f1c1dc5173
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687130700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1270-9638
IngestDate Tue Nov 18 22:23:44 EST 2025
Sat Nov 29 07:04:01 EST 2025
Fri Feb 23 02:43:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-disciplinary optimization
Multi-objective programming
UAV
Surrogate assisted optimization
Ducted propeller
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-9b3b20db397a109239f468f8e813d45082893391d03129818ad7c94f1c1dc5173
ORCID 0000-0003-2739-3492
ParticipantIDs crossref_primary_10_1016_j_ast_2021_106937
crossref_citationtrail_10_1016_j_ast_2021_106937
elsevier_sciencedirect_doi_10_1016_j_ast_2021_106937
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Aerospace science and technology
PublicationYear 2021
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Akturk, Camci (br0120) 2012; 49
Martinez, Herrero (br0320) 2016; 64
Ruzicka, Strawn (br0130) 2004
Pereira (br0060) 2008
Shen, Zhao (br0070) 2015
Shewry, Wynn (br0250) 1987; 14
Rajagopalan, Zhang (br0160) 1989
Schonlau (br0310) 1997
Rajagopalan, Mathur (br0170) 1993; 38
Chen, Loeppky, Sacks, Welch (br0280) 2016; 31
Yilmaz, Erdema, Kavsaoglu (br0030) 2015; 45
Couckuyt, Dhaene, Demeester (br0300) 2014; 15
Loureiro, Oliveira, Hallak, Bastos, Rocha (br0110) 2021; 108
Sacks, Welch, Mitchell, Wynn (br0240) 1989; 4
Polyzos, Vouros, Goulos, Pachidis (br0260) 2020; 107
Taylor (br0040) 1958
Youngren, Drela, Sanders (br0100) Dec. 2005
Mian, Wang, Zhou, Wu (br0270) 2021; 111
Chang, Rajagopalan (br0190) 2003
Leishman (br0330) 2006
Rostami, Farajollahi (br0010) 2021; 108
Ahn, Lee (br0080) 2004
Fletcher (br0090) 1957
Bontempo, Manna (br0210) 2016; 2016
Park (br0230) 1994; 39
Malki, Williams, Croft, Togneri, Masters (br0200) 2013; 37
Zhang, Barakos (br0150) 2020; 124
Graf (br0050) 2005
Deng, Wang, Zhang (br0020) 2020; 103
Kim, Park (br0180) 2013; 50
McKay, Beckman, Conover (br0220) 1979; 21
Rubio, Diaz, Yoon (br0140) 2019
Stein (br0290) 1999
Ahn (10.1016/j.ast.2021.106937_br0080) 2004
Fletcher (10.1016/j.ast.2021.106937_br0090) 1957
Park (10.1016/j.ast.2021.106937_br0230) 1994; 39
Malki (10.1016/j.ast.2021.106937_br0200) 2013; 37
Stein (10.1016/j.ast.2021.106937_br0290) 1999
Deng (10.1016/j.ast.2021.106937_br0020) 2020; 103
Zhang (10.1016/j.ast.2021.106937_br0150) 2020; 124
Kim (10.1016/j.ast.2021.106937_br0180) 2013; 50
Mian (10.1016/j.ast.2021.106937_br0270) 2021; 111
Shen (10.1016/j.ast.2021.106937_br0070) 2015
Youngren (10.1016/j.ast.2021.106937_br0100)
Bontempo (10.1016/j.ast.2021.106937_br0210) 2016; 2016
McKay (10.1016/j.ast.2021.106937_br0220) 1979; 21
Loureiro (10.1016/j.ast.2021.106937_br0110) 2021; 108
Leishman (10.1016/j.ast.2021.106937_br0330) 2006
Shewry (10.1016/j.ast.2021.106937_br0250) 1987; 14
Polyzos (10.1016/j.ast.2021.106937_br0260) 2020; 107
Schonlau (10.1016/j.ast.2021.106937_br0310) 1997
Chen (10.1016/j.ast.2021.106937_br0280) 2016; 31
Akturk (10.1016/j.ast.2021.106937_br0120) 2012; 49
Rajagopalan (10.1016/j.ast.2021.106937_br0170) 1993; 38
Chang (10.1016/j.ast.2021.106937_br0190) 2003
Graf (10.1016/j.ast.2021.106937_br0050) 2005
Rubio (10.1016/j.ast.2021.106937_br0140) 2019
Couckuyt (10.1016/j.ast.2021.106937_br0300) 2014; 15
Pereira (10.1016/j.ast.2021.106937_br0060) 2008
Sacks (10.1016/j.ast.2021.106937_br0240) 1989; 4
Taylor (10.1016/j.ast.2021.106937_br0040) 1958
Rostami (10.1016/j.ast.2021.106937_br0010) 2021; 108
Ruzicka (10.1016/j.ast.2021.106937_br0130) 2004
Yilmaz (10.1016/j.ast.2021.106937_br0030) 2015; 45
Rajagopalan (10.1016/j.ast.2021.106937_br0160) 1989
Martinez (10.1016/j.ast.2021.106937_br0320) 2016; 64
References_xml – volume: 108
  year: 2021
  ident: br0110
  article-title: Evaluation of low fidelity and cfd methods for the aerodynamic performance of a small propeller
  publication-title: Aerosp. Sci. Technol.
– volume: 15
  start-page: 3183
  year: 2014
  end-page: 3186
  ident: br0300
  article-title: Oodace toolbox: a flexible object-oriented Kriging implementation
  publication-title: J. Mach. Learn. Res.
– year: 1997
  ident: br0310
  article-title: Computer experiments and global optimization
– volume: 111
  year: 2021
  ident: br0270
  article-title: Optimization of thin electric propeller using physics-based surrogate model with space mapping
  publication-title: Aerosp. Sci. Technol.
– volume: 103
  year: 2020
  ident: br0020
  article-title: Aerodynamic performance assessment of a ducted fan uav for vtol applications
  publication-title: Aerosp. Sci. Technol.
– year: 1999
  ident: br0290
  article-title: Interpolation of Spatial Data: Some Theory for Kriging
– year: 1958
  ident: br0040
  article-title: Experimental investigation of the effects of some shroud design variables on the static thrust characteristics of a small-scale shrouded propeller submerged in a wing
– volume: 108
  year: 2021
  ident: br0010
  article-title: Aerodynamic performance of mutual interaction tandem propellers with ducted uav
  publication-title: Aerosp. Sci. Technol.
– year: 1989
  ident: br0160
  article-title: Performance and flow field of a ducted propeller
  publication-title: AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference
– volume: 37
  start-page: 3006
  year: 2013
  end-page: 3020
  ident: br0200
  article-title: A coupled blade element momentum–computational fluid dynamics model for evaluating tidal stream turbine performance
  publication-title: Appl. Math. Model.
– volume: 124
  start-page: 941
  year: 2020
  end-page: 974
  ident: br0150
  article-title: Review on ducted fans for compound rotorcraft
  publication-title: Aeronaut. J.
– volume: 45
  start-page: 376
  year: 2015
  end-page: 386
  ident: br0030
  article-title: Performance of a ducted propeller designed for uav applications at zero angle of attack flight: an experimental study
  publication-title: Aerosp. Sci. Technol.
– year: 2003
  ident: br0190
  article-title: Cfd analysis for ducted fans with validation
  publication-title: 21st AIAA Applied Aerodynamics Conference
– year: 2004
  ident: br0130
  article-title: Discrete blade cfd analysis of ducted tail fan flow
  publication-title: 42nd AIAA Aerospace Sciences Meeting and Exhibit
– year: 1957
  ident: br0090
  article-title: Experimental investigation of lift, drag, and pitching moment of five annular airfoils
– volume: 50
  start-page: 324
  year: 2013
  end-page: 327
  ident: br0180
  article-title: Unsteady momentum source method for efficient simulation of rotor aerodynamics
  publication-title: J. Aircr.
– volume: 31
  start-page: 40
  year: 2016
  end-page: 60
  ident: br0280
  article-title: Analysis methods for computer experiments: how to assess and what counts?
  publication-title: Stat. Sci.
– year: 2004
  ident: br0080
  article-title: Performance prediction and design of a ducted fan system
  publication-title: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
– year: 2008
  ident: br0060
  article-title: Hover and wind-tunnel testing of shrouded rotors for improved micro air vehicle design
– year: 2015
  ident: br0070
  article-title: Numerical investigations of ducted fan hover performance for fan-in-wing applications
  publication-title: 53rd AIAA Aerospace Sciences Meeting
– volume: 38
  start-page: 14
  year: 1993
  end-page: 25
  ident: br0170
  article-title: Three dimensional analysis of a rotor in forward flight
  publication-title: J. Am. Helicopter Soc.
– volume: 4
  start-page: 409
  year: 1989
  end-page: 423
  ident: br0240
  article-title: Design and analysis of computer experiments
  publication-title: Stat. Sci.
– volume: 107
  year: 2020
  ident: br0260
  article-title: Multi-disciplinary optimization of variable rotor speed and active blade twist rotorcraft: trade-off between noise and emissions
  publication-title: Aerosp. Sci. Technol.
– year: 2019
  ident: br0140
  article-title: High-fidelity computational analysis of ducted and coaxial rotors for urban air mobility
  publication-title: Proceedings of the 75th Annual Forum
– volume: 14
  start-page: 165
  year: 1987
  end-page: 170
  ident: br0250
  article-title: Maximum entropy design
  publication-title: J. Appl. Stat.
– volume: 39
  start-page: 95
  year: 1994
  end-page: 111
  ident: br0230
  article-title: Optimal Latin-hypercube designs for computer experiments
  publication-title: J. Stat. Plan. Inference
– volume: 21
  start-page: 239
  year: 1979
  end-page: 245
  ident: br0220
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 2016
  year: 2016
  ident: br0210
  article-title: Effects of duct cross section camber and thickness on the performance of ducted propulsion systems for aeronautical applications
  publication-title: Int. J. Aerosp. Eng.
– volume: 64
  start-page: 97
  year: 2016
  end-page: 115
  ident: br0320
  article-title: Kriging-based infill sampling criterion for constraint handling in multi-objective optimization
  publication-title: J. Glob. Optim.
– year: 2005
  ident: br0050
  article-title: Effects of duct lip shaping and various control devices on the hover and forward flight performance of ducted fan uavs
– year: 2006
  ident: br0330
  article-title: Principles of Helicopter Aerodynamics
– year: Dec. 2005
  ident: br0100
  article-title: Ducted fan design code
– volume: 49
  start-page: 885
  year: 2012
  end-page: 897
  ident: br0120
  article-title: Experimental and computational assessment of a ducted-fan rotor flow model
  publication-title: J. Aircr.
– year: 2015
  ident: 10.1016/j.ast.2021.106937_br0070
  article-title: Numerical investigations of ducted fan hover performance for fan-in-wing applications
– year: 1999
  ident: 10.1016/j.ast.2021.106937_br0290
– year: 2008
  ident: 10.1016/j.ast.2021.106937_br0060
– volume: 64
  start-page: 97
  year: 2016
  ident: 10.1016/j.ast.2021.106937_br0320
  article-title: Kriging-based infill sampling criterion for constraint handling in multi-objective optimization
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-015-0370-8
– volume: 111
  year: 2021
  ident: 10.1016/j.ast.2021.106937_br0270
  article-title: Optimization of thin electric propeller using physics-based surrogate model with space mapping
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106563
– volume: 45
  start-page: 376
  year: 2015
  ident: 10.1016/j.ast.2021.106937_br0030
  article-title: Performance of a ducted propeller designed for uav applications at zero angle of attack flight: an experimental study
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2015.06.005
– volume: 39
  start-page: 95
  issue: 1
  year: 1994
  ident: 10.1016/j.ast.2021.106937_br0230
  article-title: Optimal Latin-hypercube designs for computer experiments
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/0378-3758(94)90115-5
– year: 1997
  ident: 10.1016/j.ast.2021.106937_br0310
– volume: 108
  year: 2021
  ident: 10.1016/j.ast.2021.106937_br0010
  article-title: Aerodynamic performance of mutual interaction tandem propellers with ducted uav
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.106399
– volume: 15
  start-page: 3183
  issue: 1
  year: 2014
  ident: 10.1016/j.ast.2021.106937_br0300
  article-title: Oodace toolbox: a flexible object-oriented Kriging implementation
  publication-title: J. Mach. Learn. Res.
– volume: 14
  start-page: 165
  issue: 2
  year: 1987
  ident: 10.1016/j.ast.2021.106937_br0250
  article-title: Maximum entropy design
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664768700000020
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  ident: 10.1016/j.ast.2021.106937_br0240
  article-title: Design and analysis of computer experiments
  publication-title: Stat. Sci.
– volume: 2016
  year: 2016
  ident: 10.1016/j.ast.2021.106937_br0210
  article-title: Effects of duct cross section camber and thickness on the performance of ducted propulsion systems for aeronautical applications
  publication-title: Int. J. Aerosp. Eng.
– volume: 124
  start-page: 941
  year: 2020
  ident: 10.1016/j.ast.2021.106937_br0150
  article-title: Review on ducted fans for compound rotorcraft
  publication-title: Aeronaut. J.
  doi: 10.1017/aer.2019.164
– year: 1958
  ident: 10.1016/j.ast.2021.106937_br0040
– volume: 31
  start-page: 40
  issue: 1
  year: 2016
  ident: 10.1016/j.ast.2021.106937_br0280
  article-title: Analysis methods for computer experiments: how to assess and what counts?
  publication-title: Stat. Sci.
  doi: 10.1214/15-STS531
– year: 2004
  ident: 10.1016/j.ast.2021.106937_br0080
  article-title: Performance prediction and design of a ducted fan system
– volume: 37
  start-page: 3006
  issue: 5
  year: 2013
  ident: 10.1016/j.ast.2021.106937_br0200
  article-title: A coupled blade element momentum–computational fluid dynamics model for evaluating tidal stream turbine performance
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.07.025
– volume: 49
  start-page: 885
  issue: 3
  year: 2012
  ident: 10.1016/j.ast.2021.106937_br0120
  article-title: Experimental and computational assessment of a ducted-fan rotor flow model
  publication-title: J. Aircr.
  doi: 10.2514/1.C031562
– volume: 103
  year: 2020
  ident: 10.1016/j.ast.2021.106937_br0020
  article-title: Aerodynamic performance assessment of a ducted fan uav for vtol applications
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.105895
– year: 1957
  ident: 10.1016/j.ast.2021.106937_br0090
– volume: 50
  start-page: 324
  issue: 1
  year: 2013
  ident: 10.1016/j.ast.2021.106937_br0180
  article-title: Unsteady momentum source method for efficient simulation of rotor aerodynamics
  publication-title: J. Aircr.
  doi: 10.2514/1.C031934
– volume: 108
  year: 2021
  ident: 10.1016/j.ast.2021.106937_br0110
  article-title: Evaluation of low fidelity and cfd methods for the aerodynamic performance of a small propeller
  publication-title: Aerosp. Sci. Technol.
– year: 2004
  ident: 10.1016/j.ast.2021.106937_br0130
  article-title: Discrete blade cfd analysis of ducted tail fan flow
– year: 2019
  ident: 10.1016/j.ast.2021.106937_br0140
  article-title: High-fidelity computational analysis of ducted and coaxial rotors for urban air mobility
– year: 2005
  ident: 10.1016/j.ast.2021.106937_br0050
– year: 2003
  ident: 10.1016/j.ast.2021.106937_br0190
  article-title: Cfd analysis for ducted fans with validation
– volume: 21
  start-page: 239
  issue: 2
  year: 1979
  ident: 10.1016/j.ast.2021.106937_br0220
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– year: 2006
  ident: 10.1016/j.ast.2021.106937_br0330
– year: 1989
  ident: 10.1016/j.ast.2021.106937_br0160
  article-title: Performance and flow field of a ducted propeller
– volume: 107
  year: 2020
  ident: 10.1016/j.ast.2021.106937_br0260
  article-title: Multi-disciplinary optimization of variable rotor speed and active blade twist rotorcraft: trade-off between noise and emissions
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.106356
– ident: 10.1016/j.ast.2021.106937_br0100
– volume: 38
  start-page: 14
  issue: 3
  year: 1993
  ident: 10.1016/j.ast.2021.106937_br0170
  article-title: Three dimensional analysis of a rotor in forward flight
  publication-title: J. Am. Helicopter Soc.
  doi: 10.4050/JAHS.38.14
SSID ssj0002942
Score 2.542858
Snippet The ducted propeller is superior to the open propeller in hovering efficiency. However, the overall system efficiency of a ducted propeller is reduced due to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106937
SubjectTerms Ducted propeller
Multi-disciplinary optimization
Multi-objective programming
Surrogate assisted optimization
UAV
Title Hovering efficiency optimization of the ducted propeller with weight penalty taken into account
URI https://dx.doi.org/10.1016/j.ast.2021.106937
Volume 117
WOSCitedRecordID wos000687130700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1626-3219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002942
  issn: 1270-9638
  databaseCode: AIEXJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKBE6tUiePE8XFVFS0rUSG1SKteIid2YNuSXW13y3LllzPjRzZqAQESlyiy4jjyfB6PJzPfEPLasFjp2uSR4qyKeJMaWHOCR3kRp2AtwBpT2habEEdHxXQqPwwG30MuzNWFaNtis5GL_ypqaANhY-rsX4i7eyk0wD0IHa4gdrj-keDHGJSJDgBj2SFsauUcFMMXn3EZogKQ6NUgScAcf8CYpXPJfrWu0uHCwDhgn6_UucFYSLBQlasr0bdmRwb2WDh0m2HIDrLxmDe89eO11fTrzsvqC6lMZsMNwPNTFxU0sw-efsYCSOP1FrgHWATBYvFUYZ7Yt-Fkv--vYEkX-eadaCGR5j0cDlAljo576peJOEKV4HYn1wZHrigNijXobJfweUP_O1fE2b66xDhZlkBLLh2rzDVa7WMcC4diljNPFLfILhOZBM24O3p3OJ10-zmTtgRT923h37iNErw20M-tm57FcnKf3PNHDTpyEHlABqZ9SO72CCgfkTKAhW7BQvtgofOGAlioAwvtwEIRLNSBhXqwUAsWimChHiyPyce3hycH48iX3IhqxsQqklVasVhXYKWqJAbjXzY8L5rCFEmqeYZ8hzJNZaJhL2ASjD2lRS15k9SJrrNEpE_ITjtvzVNCjTJacMnrtDFcwXtzlWVNUdUqz6TWfI_EYarK2vPRY1mUizIEHp6VMLslzm7pZnePvOm6LBwZy-8e5mH-S78InJVYAlh-3e3Zv3V7Tu5swf6C7KyWa_OS3K6vVrPL5SsPqR9Lx5rS
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hovering+efficiency+optimization+of+the+ducted+propeller+with+weight+penalty+taken+into+account&rft.jtitle=Aerospace+science+and+technology&rft.au=Hu%2C+Yu&rft.au=Qing%2C+Ji+xiang&rft.au=Liu%2C+Zhong+Huan&rft.au=Conrad%2C+Zachary+J.&rft.date=2021-10-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.eissn=1626-3219&rft.volume=117&rft_id=info:doi/10.1016%2Fj.ast.2021.106937&rft.externalDocID=S1270963821004478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon