Process parameter optimisation method based on data-driven prediction model and multi-objective optimisation for the laser metal deposition manufacturing process monitoring

•A data-driven prediction model based on random forest was developed. The model takes into account internal defects porosity and cracks, and establishes a non-explicit function between process parameters and quality as the objective optimisation function.•A multi-objective optimisation algorithm for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering Jg. 204; S. 111108
Hauptverfasser: Wu, Ziqian, Li, Cheng, Zhang, Chao, Han, Bangguo, Wang, Zeyi, Fan, Wei, Xu, Zhenying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.06.2025
Schlagworte:
ISSN:0360-8352
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A data-driven prediction model based on random forest was developed. The model takes into account internal defects porosity and cracks, and establishes a non-explicit function between process parameters and quality as the objective optimisation function.•A multi-objective optimisation algorithm for process parameters suitable for manufacturing processes is constructed. The algorithm combines random forest and NSGA-II for the first time, eliminates the need for expensive and time-consuming multiple testing experiments, and improves the reliability and applicability of the optimisation model.•The optimal solution search strategy is established. The strategy enables the optimisation algorithm can automatically search the best process parameters from the set of Pareto solutions and obtain the optimal solution, which meets the actual requirements of industrial manufacturing. Process parameter optimisation is essential for laser metal deposition manufacturing process monitoring, which can minimize internal defects and enhance component quality. However, existing process parameter optimisation mainly focuses on experimental design and curve fitting, which are time-consuming, labour-intensive, and expensive to test, thus, they are not able to effectively ensure accuracy. In addition, the dynamic changes in quality under the same process parameters in the manufacturing processes make it more difficult to analyse the optimal process parameter combination through experimentation. In this regard, a process parameter optimisation method based on a data-driven prediction model and the multi-objective optimisation algorithm is proposed in this paper to obtain the optimal process parameter combination. This method carries out multi-process parameter deposition experiments to count the number of each quality level based on the established quality evaluation standard. Then, a data-driven prediction model by random forest was used to automatically develop a non-explicit prediction function, which establishes the relationship between process parameters and different quality levels. Subsequently, the NSGA-II (Non-dominated Sorting Genetic Algorithm II) multi-objective optimisation algorithm was utilised to generate the optimal set of Pareto solutions for the process parameters. Finally, the optimal process parameter combinations are automatically searched based on the proposed search strategy. Experimental results show that the components under the optimal process parameters have the least internal defects and the best quality, which indicates that the proposed method can provide effective guidance for the manufacturing process monitoring.
AbstractList •A data-driven prediction model based on random forest was developed. The model takes into account internal defects porosity and cracks, and establishes a non-explicit function between process parameters and quality as the objective optimisation function.•A multi-objective optimisation algorithm for process parameters suitable for manufacturing processes is constructed. The algorithm combines random forest and NSGA-II for the first time, eliminates the need for expensive and time-consuming multiple testing experiments, and improves the reliability and applicability of the optimisation model.•The optimal solution search strategy is established. The strategy enables the optimisation algorithm can automatically search the best process parameters from the set of Pareto solutions and obtain the optimal solution, which meets the actual requirements of industrial manufacturing. Process parameter optimisation is essential for laser metal deposition manufacturing process monitoring, which can minimize internal defects and enhance component quality. However, existing process parameter optimisation mainly focuses on experimental design and curve fitting, which are time-consuming, labour-intensive, and expensive to test, thus, they are not able to effectively ensure accuracy. In addition, the dynamic changes in quality under the same process parameters in the manufacturing processes make it more difficult to analyse the optimal process parameter combination through experimentation. In this regard, a process parameter optimisation method based on a data-driven prediction model and the multi-objective optimisation algorithm is proposed in this paper to obtain the optimal process parameter combination. This method carries out multi-process parameter deposition experiments to count the number of each quality level based on the established quality evaluation standard. Then, a data-driven prediction model by random forest was used to automatically develop a non-explicit prediction function, which establishes the relationship between process parameters and different quality levels. Subsequently, the NSGA-II (Non-dominated Sorting Genetic Algorithm II) multi-objective optimisation algorithm was utilised to generate the optimal set of Pareto solutions for the process parameters. Finally, the optimal process parameter combinations are automatically searched based on the proposed search strategy. Experimental results show that the components under the optimal process parameters have the least internal defects and the best quality, which indicates that the proposed method can provide effective guidance for the manufacturing process monitoring.
ArticleNumber 111108
Author Li, Cheng
Xu, Zhenying
Zhang, Chao
Han, Bangguo
Wang, Zeyi
Fan, Wei
Wu, Ziqian
Author_xml – sequence: 1
  givenname: Ziqian
  orcidid: 0000-0002-2133-0637
  surname: Wu
  fullname: Wu, Ziqian
  organization: School of Automotive Engineering, Changzhou Institute of Technology, Changzhou 213032, China
– sequence: 2
  givenname: Cheng
  surname: Li
  fullname: Li, Cheng
  email: licheng@czust.edu.cn
  organization: School of Automotive Engineering, Changzhou Institute of Technology, Changzhou 213032, China
– sequence: 3
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
  organization: Personnel Department, Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
– sequence: 4
  givenname: Bangguo
  surname: Han
  fullname: Han, Bangguo
  organization: School of Public Utilities, Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
– sequence: 5
  givenname: Zeyi
  surname: Wang
  fullname: Wang, Zeyi
  organization: School of Automotive Engineering, Changzhou Institute of Technology, Changzhou 213032, China
– sequence: 6
  givenname: Wei
  surname: Fan
  fullname: Fan, Wei
  organization: School of Mechanical Engineering, Jiangsu University, Zhenjiang 212000, China
– sequence: 7
  givenname: Zhenying
  orcidid: 0000-0002-4319-5077
  surname: Xu
  fullname: Xu, Zhenying
  email: xuzhenying@ujs.edu.cn
  organization: School of Mechanical Engineering, Jiangsu University, Zhenjiang 212000, China
BookMark eNp9kM9OxCAQhzmsiburD-CNF2gFtt228WQ2_ks20YOeCYXBpWmhAXYT38mHlFovepALYZjfl5lvhRbWWUDoipKcErq97nJpIGeElTlNh9QLtCSbLcnqTcnO0SqEjhBSlA1dos8X7ySEgEfhxQARPHZjNIMJIhpncSodnMKtCKBweisRRaa8OYHFowdl5NzmFPRYWIWHYx9N5toO0s8JftO08zgeAPcJ5ye26LGC0QUzU4Q9aiHj0Rv7nvDzZIOzJrqpdIHOtOgDXP7ca_R2f_e6e8z2zw9Pu9t9JhmrYlZrSlUhWUO2hG7qlrQFKatWN1QLgEKLsgGlirrZFk3DiK4KBm1Zp1ZWs0YXmzWiM1d6F4IHzUdvBuE_OCV8Usw7nhTzSTGfFadM9ScjTfzeOnph-n-TN3MS0konA56H1GJlkuuTRK6c-Sf9BU3Jn5g
CitedBy_id crossref_primary_10_1016_j_engappai_2025_111872
crossref_primary_10_3390_met15090966
Cites_doi 10.1016/j.addma.2022.102643
10.1016/j.jmsy.2022.05.016
10.1016/j.jmsy.2024.01.011
10.1002/adem.202200279
10.1057/s41278-023-00271-z
10.1109/TEVC.2007.892759
10.1109/TEVC.2016.2519378
10.1109/TNNLS.2022.3155478
10.1016/j.measurement.2024.115883
10.1016/j.jmapro.2023.10.021
10.1109/TNNLS.2012.2199516
10.1016/j.swevo.2019.05.011
10.1007/s11665-020-04847-1
10.1016/j.measurement.2021.110232
10.1007/s00170-018-2373-3
10.1016/j.jmapro.2021.07.064
10.17849/insm-47-01-31-39.1
10.1016/j.addma.2016.05.009
10.1007/s10994-012-5286-7
10.1016/j.trpro.2019.07.024
10.1016/j.cirpj.2020.05.009
10.3390/ma17050971
10.1007/s00170-014-6012-3
10.1007/s00170-020-06047-6
10.1007/s11277-017-5224-x
10.1016/j.ejor.2006.08.008
10.1080/25725084.2020.1784530
10.1016/j.addma.2015.07.002
10.1016/j.jmapro.2022.02.027
10.1016/j.addma.2024.104208
10.1016/j.asoc.2023.110472
10.1108/RPJ-04-2016-0059
10.1002/qre.3513
10.1016/j.jmapro.2022.02.053
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2025.111108
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cie_2025_111108
S0360835225002542
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AAEDT
AAEDW
AAFWJ
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABDPE
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNCT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADMUD
ADNMO
ADRHT
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c227t-8f11d4c29060138b0b4057bf91faee4fa59edd489649920f742eb581382829f43
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001480579000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:09:44 EST 2025
Tue Nov 18 22:06:36 EST 2025
Sat Nov 15 16:53:09 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Manufacturing process monitoring
Data-driven prediction model
Process parameter optimisation
Optimal process parameter combinations
Multi-objective optimisation algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-8f11d4c29060138b0b4057bf91faee4fa59edd489649920f742eb581382829f43
ORCID 0000-0002-4319-5077
0000-0002-2133-0637
ParticipantIDs crossref_primary_10_1016_j_cie_2025_111108
crossref_citationtrail_10_1016_j_cie_2025_111108
elsevier_sciencedirect_doi_10_1016_j_cie_2025_111108
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Yang, Liu (b0180) 2022; 77
Hentschel, Petersmann, Gonzalez-Gutierrez (b0075) 2023; 25
Patil, Nigam, Mohapatra (b0125) 2021; 69
Deshwal, Kumar, Chhabra (b0060) 2020; 31
Reif, Shafait, Dengel (b0140) 2012; 87
Beniak, Holdy, Križan (b0020) 2019; 40
Rigatti (b0145) 2017; 47
Shamsaei, Yadollahi, Bian (b0160) 2015; 8
Kramer, Kramer (b0085) 2013
Zheng, Liu, Doerr (b0210) 2022
Brøtan (b0030) 2014; 74
Cheng, Jin, Olhofer (b0035) 2016; 20
Sato, Sato, Miyakawa (b0150) 2019
Aggarwal, Urbanic, Saqib (b0010) 2018; 24
Mahmood, Popescu, Hapenciuc (b0105) 2020; 111
Cuong, Xu, Lee (b0050) 2020; 4
Soori, Asmael (b0170) 2022; 16
Nick, Campbell (b0115) 2007
Pandit, Sekhar, Shah (b0120) 2019; 8
DaSilva, Frostevarg, Kaplan (b0055) 2023; 107
Tapia, Elwany, Sang (b0175) 2016; 12
Kumar, Maji (b0090) 2020; 29
Li, Cao, Xu (b0095) 2022; 187
Kapil, Suga, Tanaka (b0080) 2022; 76
Song, Yang, Xu (b0165) 2022; 34
Beume, Naujoks, Emmerich (b0025) 2007; 181
Rahimi, Gandomi, Nikoo (b0130) 2023; 144
Zhang, Huang, Zhang (b0200) 2024; 86
Zhang, Li (b0205) 2007; 11
Engelhardt, Wegener, Niendorf (b0070) 2024; 17
Wu, Feng (b0185) 2018; 102
Ramani, He, Tsai (b0135) 2022; 52
Ding, Wang, Ma (b0065) 2024; 40
Wu, He, Li (b0190) 2022; 64
Abbas, Memon, Jamali (b0005) 2019; 19
Awad, Khanna, Awad (b0015) 2015
Wu, Zhang, Xu, Fan (b0195) 2025; 242
Cuong, Kim, Long (b0045) 2024; 26
Cui, Chang, Zhang (b0040) 2019; 49
Li, Zhao, Tang (b0100) 2024; 73
Serra, Chibane, Duchosal (b0155) 2018; 99
Moreno-Torres, Saez, Herrera (b0110) 2012; 23
Zhou, Li, Chen (b0215) 2023; 47
Zheng (10.1016/j.cie.2025.111108_b0210) 2022
Deshwal (10.1016/j.cie.2025.111108_b0060) 2020; 31
Wu (10.1016/j.cie.2025.111108_b0190) 2022; 64
Kramer (10.1016/j.cie.2025.111108_b0085) 2013
Zhang (10.1016/j.cie.2025.111108_b0205) 2007; 11
Beniak (10.1016/j.cie.2025.111108_b0020) 2019; 40
Rahimi (10.1016/j.cie.2025.111108_b0130) 2023; 144
Reif (10.1016/j.cie.2025.111108_b0140) 2012; 87
Rigatti (10.1016/j.cie.2025.111108_b0145) 2017; 47
Brøtan (10.1016/j.cie.2025.111108_b0030) 2014; 74
Kumar (10.1016/j.cie.2025.111108_b0090) 2020; 29
Zhou (10.1016/j.cie.2025.111108_b0215) 2023; 47
Ding (10.1016/j.cie.2025.111108_b0065) 2024; 40
Cheng (10.1016/j.cie.2025.111108_b0035) 2016; 20
Nick (10.1016/j.cie.2025.111108_b0115) 2007
Moreno-Torres (10.1016/j.cie.2025.111108_b0110) 2012; 23
Kapil (10.1016/j.cie.2025.111108_b0080) 2022; 76
Sato (10.1016/j.cie.2025.111108_b0150) 2019
Soori (10.1016/j.cie.2025.111108_b0170) 2022; 16
Mahmood (10.1016/j.cie.2025.111108_b0105) 2020; 111
Wu (10.1016/j.cie.2025.111108_b0185) 2018; 102
Song (10.1016/j.cie.2025.111108_b0165) 2022; 34
Abbas (10.1016/j.cie.2025.111108_b0005) 2019; 19
Cui (10.1016/j.cie.2025.111108_b0040) 2019; 49
Wang (10.1016/j.cie.2025.111108_b0180) 2022; 77
Li (10.1016/j.cie.2025.111108_b0095) 2022; 187
Shamsaei (10.1016/j.cie.2025.111108_b0160) 2015; 8
Wu (10.1016/j.cie.2025.111108_b0195) 2025; 242
Serra (10.1016/j.cie.2025.111108_b0155) 2018; 99
Engelhardt (10.1016/j.cie.2025.111108_b0070) 2024; 17
Hentschel (10.1016/j.cie.2025.111108_b0075) 2023; 25
Zhang (10.1016/j.cie.2025.111108_b0200) 2024; 86
Cuong (10.1016/j.cie.2025.111108_b0050) 2020; 4
Li (10.1016/j.cie.2025.111108_b0100) 2024; 73
Awad (10.1016/j.cie.2025.111108_b0015) 2015
DaSilva (10.1016/j.cie.2025.111108_b0055) 2023; 107
Beume (10.1016/j.cie.2025.111108_b0025) 2007; 181
Cuong (10.1016/j.cie.2025.111108_b0045) 2024; 26
Tapia (10.1016/j.cie.2025.111108_b0175) 2016; 12
Pandit (10.1016/j.cie.2025.111108_b0120) 2019; 8
Patil (10.1016/j.cie.2025.111108_b0125) 2021; 69
Ramani (10.1016/j.cie.2025.111108_b0135) 2022; 52
Aggarwal (10.1016/j.cie.2025.111108_b0010) 2018; 24
References_xml – volume: 111
  start-page: 77
  year: 2020
  end-page: 91
  ident: b0105
  article-title: Estimation of clad geometry and corresponding residual stress distribution in laser melting deposition: Analytical modeling and experimental correlations
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 17
  start-page: 971
  year: 2024
  ident: b0070
  article-title: Pathways toward the use of Non-destructive micromagnetic analysis for porosity assessment and process parameter optimization in additive manufacturing of 42CrMo4 (AISI 4140)
  publication-title: Materials
– volume: 24
  start-page: 214
  year: 2018
  end-page: 228
  ident: b0010
  article-title: Development of predictive models for effective process parameter selection for single and overlapping laser clad bead geometry
  publication-title: Rapid Prototyping Journal
– volume: 181
  start-page: 1653
  year: 2007
  end-page: 1669
  ident: b0025
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b0035
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 13
  year: 2013
  end-page: 23
  ident: b0085
  article-title: Dimensionality reduction with unsupervised nearest neighbors
  publication-title: K-nearest Neighbors
– start-page: 3086
  year: 2019
  end-page: 3093
  ident: b0150
  article-title: Distributed NSGA-II sharing extreme non-dominated solutions for improving accuracy and achieving speed-up
  publication-title: 2019 IEEE Congress on Evolutionary Computation (CEC)
– volume: 29
  start-page: 3334
  year: 2020
  end-page: 3352
  ident: b0090
  article-title: Selection of process parameters for near-net shape deposition in wire arc additive manufacturing by genetic algorithm
  publication-title: Journal of Materials Engineering and Performance
– volume: 76
  start-page: 457
  year: 2022
  end-page: 474
  ident: b0080
  article-title: Towards hybrid laser-arc based directed energy deposition: Understanding bead formation through mathematical modeling for additive manufacturing
  publication-title: Journal of Manufacturing Processes
– volume: 87
  start-page: 357
  year: 2012
  end-page: 380
  ident: b0140
  article-title: Meta-learning for evolutionary parameter optimization of classifiers
  publication-title: Machine Learning
– start-page: 273
  year: 2007
  end-page: 301
  ident: b0115
  article-title: Topics in biostatistics
  publication-title: Logistic Regression
– volume: 23
  start-page: 1304
  year: 2012
  end-page: 1312
  ident: b0110
  article-title: Study on the impact of partition-induced dataset shift on k-fold cross-validation
  publication-title: IEEE Transaction on Neural Networks and Learning Systems
– volume: 47
  start-page: 31
  year: 2017
  end-page: 39
  ident: b0145
  article-title: Random forest
  publication-title: Journal of Insurance Medicine
– volume: 73
  start-page: 170
  year: 2024
  end-page: 191
  ident: b0100
  article-title: Joint scheduling optimisation method for the machining and heat-treatment of hydraulic cylinders based on improved multi-objective migrating birds optimisation
  publication-title: Journal of Manufacturing Systems
– volume: 8
  start-page: 3405
  year: 2019
  end-page: 3410
  ident: b0120
  article-title: Simulation based process optimization for additive manufacturing
  publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE)
– volume: 187
  year: 2022
  ident: b0095
  article-title: In situ porosity intelligent classification of selective laser melting based on coaxial monitoring and image processing
  publication-title: Measurement
– volume: 52
  year: 2022
  ident: b0135
  article-title: SmartScan: An intelligent scanning approach for uniform thermal distribution, reduced residual stresses and deformations in PBF additive manufacturing
  publication-title: Additive Manufacturing
– volume: 47
  start-page: 469
  year: 2023
  end-page: 479
  ident: b0215
  article-title: Research progress in modeling the optimization of process parameters of laser additive manufacturing
  publication-title: Laser Technology
– volume: 26
  start-page: 212
  year: 2024
  end-page: 240
  ident: b0045
  article-title: Seaport profit analysis and efficient management strategies under stochastic disruptions
  publication-title: Maritime Economics & Logistics
– volume: 77
  start-page: 13
  year: 2022
  end-page: 31
  ident: b0180
  article-title: Data-driven modeling of process, structure and property in additive manufacturing: A review and future directions
  publication-title: Journal of Manufacturing Processes
– volume: 86
  year: 2024
  ident: b0200
  article-title: Autonomous optimization of process parameters and in-situ anomaly detection in aerosol jet printing by an integrated machine learning approach
  publication-title: Additive Manufacturing
– volume: 74
  start-page: 1187
  year: 2014
  end-page: 1195
  ident: b0030
  article-title: A new method for determining and improving the accuracy of a powder bed additive manufacturing machine
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 8
  start-page: 12
  year: 2015
  end-page: 35
  ident: b0160
  article-title: An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control
  publication-title: Additive Manufacturing
– volume: 16
  start-page: 205
  year: 2022
  end-page: 223
  ident: b0170
  article-title: A review of the recent development in machining parameter optimization
  publication-title: Jordan Journal of Mechanical and Industrial Engineering
– volume: 49
  start-page: 23
  year: 2019
  end-page: 33
  ident: b0040
  article-title: Improved NSGA-III with selection-and-elimination operator
  publication-title: Swarm and Evolutionary Computation
– volume: 4
  start-page: 48
  year: 2020
  end-page: 55
  ident: b0050
  article-title: Dynamic analysis and management optimization for maritime supply chains using nonlinear control theory
  publication-title: Journal of International Maritime Safety, Environmental Affairs, and Shipping
– volume: 69
  start-page: 630
  year: 2021
  end-page: 647
  ident: b0125
  article-title: Image processing approach to automate feature measuring and process parameter optimizing of laser additive manufacturing process
  publication-title: Journal of Manufacturing Processes
– start-page: 67
  year: 2015
  end-page: 80
  ident: b0015
  article-title: Efficient learning machines: Theories, concepts, and applications for engineers and system designers
  publication-title: Support Vector Regression
– volume: 107
  start-page: 126
  year: 2023
  end-page: 133
  ident: b0055
  article-title: Melt pool monitoring and process optimisation of directed energy deposition via coaxial thermal imaging
  publication-title: Journal of Manufacturing Processes
– volume: 64
  start-page: 40
  year: 2022
  end-page: 52
  ident: b0190
  article-title: Multi-objective optimisation of machining process parameters using deep learning-based data-driven genetic algorithm and TOPSIS
  publication-title: Journal of Manufacturing Systems
– volume: 40
  start-page: 144
  year: 2019
  end-page: 149
  ident: b0020
  article-title: Research on parameters optimization for the additive manufacturing process
  publication-title: Transportation Research Procedia
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0205
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 242
  year: 2025
  ident: b0195
  article-title: Multiconstraint quality–probability graph for quality monitoring of laser directed energy deposition manufacturing process
  publication-title: Measurement
– start-page: 10408
  year: 2022
  end-page: 10416
  ident: b0210
  article-title: A first mathematical runtime analysis of the Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
  publication-title: Proceedings of the AAAI conference on artificial intelligence
– volume: 99
  start-page: 2025
  year: 2018
  end-page: 2034
  ident: b0155
  article-title: Multi-objective optimization of cutting parameters for turning AISI 52100 hardened steel
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 12
  start-page: 282
  year: 2016
  end-page: 290
  ident: b0175
  article-title: Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models
  publication-title: Additive Manufacturing
– volume: 19
  start-page: 62
  year: 2019
  ident: b0005
  article-title: Multinomial Naive Bayes classification model for sentiment analysis
  publication-title: IJCSNS - International Journal of Computer Science and Network
– volume: 31
  start-page: 189
  year: 2020
  end-page: 199
  ident: b0060
  article-title: Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement
  publication-title: CIRP Journal of Manufacturing Science and Technology
– volume: 144
  year: 2023
  ident: b0130
  article-title: A comparative study on evolutionary multi-objective algorithms for next release problem
  publication-title: Applied Soft Computing
– volume: 34
  start-page: 8174
  year: 2022
  end-page: 8194
  ident: b0165
  article-title: Graph-based semi-supervised learning: A comprehensive review
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 25
  year: 2023
  ident: b0075
  article-title: Parameter optimization of the ARBURG plastic freeforming process by means of a design of experiments approach
  publication-title: Advanced Engineering Materials
– volume: 102
  start-page: 1645
  year: 2018
  end-page: 1656
  ident: b0185
  article-title: Development and application of artificial neural network
  publication-title: Wireless Personal Communications
– volume: 40
  start-page: 2096
  year: 2024
  end-page: 2115
  ident: b0065
  article-title: Multi‐objective Bayesian modeling and optimization of 3D printing process via experimental data‐driven method
  publication-title: Quality and Reliability Engineering International
– start-page: 273
  year: 2007
  ident: 10.1016/j.cie.2025.111108_b0115
  article-title: Topics in biostatistics
  publication-title: Logistic Regression
– volume: 8
  start-page: 3405
  issue: 10
  year: 2019
  ident: 10.1016/j.cie.2025.111108_b0120
  article-title: Simulation based process optimization for additive manufacturing
  publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE)
– volume: 52
  year: 2022
  ident: 10.1016/j.cie.2025.111108_b0135
  article-title: SmartScan: An intelligent scanning approach for uniform thermal distribution, reduced residual stresses and deformations in PBF additive manufacturing
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2022.102643
– volume: 64
  start-page: 40
  year: 2022
  ident: 10.1016/j.cie.2025.111108_b0190
  article-title: Multi-objective optimisation of machining process parameters using deep learning-based data-driven genetic algorithm and TOPSIS
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2022.05.016
– start-page: 10408
  year: 2022
  ident: 10.1016/j.cie.2025.111108_b0210
  article-title: A first mathematical runtime analysis of the Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
– volume: 73
  start-page: 170
  year: 2024
  ident: 10.1016/j.cie.2025.111108_b0100
  article-title: Joint scheduling optimisation method for the machining and heat-treatment of hydraulic cylinders based on improved multi-objective migrating birds optimisation
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2024.01.011
– volume: 47
  start-page: 469
  issue: 4
  year: 2023
  ident: 10.1016/j.cie.2025.111108_b0215
  article-title: Research progress in modeling the optimization of process parameters of laser additive manufacturing
  publication-title: Laser Technology
– start-page: 3086
  year: 2019
  ident: 10.1016/j.cie.2025.111108_b0150
  article-title: Distributed NSGA-II sharing extreme non-dominated solutions for improving accuracy and achieving speed-up
– start-page: 67
  year: 2015
  ident: 10.1016/j.cie.2025.111108_b0015
  article-title: Efficient learning machines: Theories, concepts, and applications for engineers and system designers
  publication-title: Support Vector Regression
– volume: 25
  issue: 7
  year: 2023
  ident: 10.1016/j.cie.2025.111108_b0075
  article-title: Parameter optimization of the ARBURG plastic freeforming process by means of a design of experiments approach
  publication-title: Advanced Engineering Materials
  doi: 10.1002/adem.202200279
– volume: 26
  start-page: 212
  issue: 2
  year: 2024
  ident: 10.1016/j.cie.2025.111108_b0045
  article-title: Seaport profit analysis and efficient management strategies under stochastic disruptions
  publication-title: Maritime Economics & Logistics
  doi: 10.1057/s41278-023-00271-z
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.cie.2025.111108_b0205
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.cie.2025.111108_b0035
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2519378
– volume: 34
  start-page: 8174
  issue: 11
  year: 2022
  ident: 10.1016/j.cie.2025.111108_b0165
  article-title: Graph-based semi-supervised learning: A comprehensive review
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2022.3155478
– volume: 242
  year: 2025
  ident: 10.1016/j.cie.2025.111108_b0195
  article-title: Multiconstraint quality–probability graph for quality monitoring of laser directed energy deposition manufacturing process
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.115883
– volume: 107
  start-page: 126
  year: 2023
  ident: 10.1016/j.cie.2025.111108_b0055
  article-title: Melt pool monitoring and process optimisation of directed energy deposition via coaxial thermal imaging
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2023.10.021
– volume: 23
  start-page: 1304
  issue: 8
  year: 2012
  ident: 10.1016/j.cie.2025.111108_b0110
  article-title: Study on the impact of partition-induced dataset shift on k-fold cross-validation
  publication-title: IEEE Transaction on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2012.2199516
– volume: 49
  start-page: 23
  year: 2019
  ident: 10.1016/j.cie.2025.111108_b0040
  article-title: Improved NSGA-III with selection-and-elimination operator
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.05.011
– volume: 29
  start-page: 3334
  year: 2020
  ident: 10.1016/j.cie.2025.111108_b0090
  article-title: Selection of process parameters for near-net shape deposition in wire arc additive manufacturing by genetic algorithm
  publication-title: Journal of Materials Engineering and Performance
  doi: 10.1007/s11665-020-04847-1
– volume: 187
  year: 2022
  ident: 10.1016/j.cie.2025.111108_b0095
  article-title: In situ porosity intelligent classification of selective laser melting based on coaxial monitoring and image processing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110232
– start-page: 13
  year: 2013
  ident: 10.1016/j.cie.2025.111108_b0085
  article-title: Dimensionality reduction with unsupervised nearest neighbors
  publication-title: K-nearest Neighbors
– volume: 99
  start-page: 2025
  year: 2018
  ident: 10.1016/j.cie.2025.111108_b0155
  article-title: Multi-objective optimization of cutting parameters for turning AISI 52100 hardened steel
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-018-2373-3
– volume: 69
  start-page: 630
  year: 2021
  ident: 10.1016/j.cie.2025.111108_b0125
  article-title: Image processing approach to automate feature measuring and process parameter optimizing of laser additive manufacturing process
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2021.07.064
– volume: 47
  start-page: 31
  issue: 1
  year: 2017
  ident: 10.1016/j.cie.2025.111108_b0145
  article-title: Random forest
  publication-title: Journal of Insurance Medicine
  doi: 10.17849/insm-47-01-31-39.1
– volume: 12
  start-page: 282
  year: 2016
  ident: 10.1016/j.cie.2025.111108_b0175
  article-title: Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2016.05.009
– volume: 87
  start-page: 357
  issue: 3
  year: 2012
  ident: 10.1016/j.cie.2025.111108_b0140
  article-title: Meta-learning for evolutionary parameter optimization of classifiers
  publication-title: Machine Learning
  doi: 10.1007/s10994-012-5286-7
– volume: 40
  start-page: 144
  year: 2019
  ident: 10.1016/j.cie.2025.111108_b0020
  article-title: Research on parameters optimization for the additive manufacturing process
  publication-title: Transportation Research Procedia
  doi: 10.1016/j.trpro.2019.07.024
– volume: 31
  start-page: 189
  year: 2020
  ident: 10.1016/j.cie.2025.111108_b0060
  article-title: Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement
  publication-title: CIRP Journal of Manufacturing Science and Technology
  doi: 10.1016/j.cirpj.2020.05.009
– volume: 17
  start-page: 971
  issue: 5
  year: 2024
  ident: 10.1016/j.cie.2025.111108_b0070
  article-title: Pathways toward the use of Non-destructive micromagnetic analysis for porosity assessment and process parameter optimization in additive manufacturing of 42CrMo4 (AISI 4140)
  publication-title: Materials
  doi: 10.3390/ma17050971
– volume: 74
  start-page: 1187
  year: 2014
  ident: 10.1016/j.cie.2025.111108_b0030
  article-title: A new method for determining and improving the accuracy of a powder bed additive manufacturing machine
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-014-6012-3
– volume: 111
  start-page: 77
  issue: 1–2
  year: 2020
  ident: 10.1016/j.cie.2025.111108_b0105
  article-title: Estimation of clad geometry and corresponding residual stress distribution in laser melting deposition: Analytical modeling and experimental correlations
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-020-06047-6
– volume: 102
  start-page: 1645
  year: 2018
  ident: 10.1016/j.cie.2025.111108_b0185
  article-title: Development and application of artificial neural network
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-017-5224-x
– volume: 19
  start-page: 62
  issue: 3
  year: 2019
  ident: 10.1016/j.cie.2025.111108_b0005
  article-title: Multinomial Naive Bayes classification model for sentiment analysis
  publication-title: IJCSNS - International Journal of Computer Science and Network
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 10.1016/j.cie.2025.111108_b0025
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.008
– volume: 4
  start-page: 48
  issue: 2
  year: 2020
  ident: 10.1016/j.cie.2025.111108_b0050
  article-title: Dynamic analysis and management optimization for maritime supply chains using nonlinear control theory
  publication-title: Journal of International Maritime Safety, Environmental Affairs, and Shipping
  doi: 10.1080/25725084.2020.1784530
– volume: 8
  start-page: 12
  year: 2015
  ident: 10.1016/j.cie.2025.111108_b0160
  article-title: An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2015.07.002
– volume: 76
  start-page: 457
  year: 2022
  ident: 10.1016/j.cie.2025.111108_b0080
  article-title: Towards hybrid laser-arc based directed energy deposition: Understanding bead formation through mathematical modeling for additive manufacturing
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2022.02.027
– volume: 16
  start-page: 205
  issue: 2
  year: 2022
  ident: 10.1016/j.cie.2025.111108_b0170
  article-title: A review of the recent development in machining parameter optimization
  publication-title: Jordan Journal of Mechanical and Industrial Engineering
– volume: 86
  year: 2024
  ident: 10.1016/j.cie.2025.111108_b0200
  article-title: Autonomous optimization of process parameters and in-situ anomaly detection in aerosol jet printing by an integrated machine learning approach
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2024.104208
– volume: 144
  year: 2023
  ident: 10.1016/j.cie.2025.111108_b0130
  article-title: A comparative study on evolutionary multi-objective algorithms for next release problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110472
– volume: 24
  start-page: 214
  issue: 1
  year: 2018
  ident: 10.1016/j.cie.2025.111108_b0010
  article-title: Development of predictive models for effective process parameter selection for single and overlapping laser clad bead geometry
  publication-title: Rapid Prototyping Journal
  doi: 10.1108/RPJ-04-2016-0059
– volume: 40
  start-page: 2096
  issue: 4
  year: 2024
  ident: 10.1016/j.cie.2025.111108_b0065
  article-title: Multi‐objective Bayesian modeling and optimization of 3D printing process via experimental data‐driven method
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.3513
– volume: 77
  start-page: 13
  year: 2022
  ident: 10.1016/j.cie.2025.111108_b0180
  article-title: Data-driven modeling of process, structure and property in additive manufacturing: A review and future directions
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2022.02.053
SSID ssj0004591
Score 2.46909
Snippet •A data-driven prediction model based on random forest was developed. The model takes into account internal defects porosity and cracks, and establishes a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111108
SubjectTerms Data-driven prediction model
Manufacturing process monitoring
Multi-objective optimisation algorithm
Optimal process parameter combinations
Process parameter optimisation
Title Process parameter optimisation method based on data-driven prediction model and multi-objective optimisation for the laser metal deposition manufacturing process monitoring
URI https://dx.doi.org/10.1016/j.cie.2025.111108
Volume 204
WOSCitedRecordID wos001480579000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004591
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FKQc4lFJAtFC0B05ErmxnHe8eq6oIEKqQKFJulu1dg6PGDnlU_VHtf2RmH16nPARIXKzEsdeW5svM7M638xHyKmIyLsooCSSqmjDJi6AQ-SQo2ZhBwM95rrgWm0jPz_l0Kj4OBrduL8zVZdo0_PpaLP6rqeEcGBu3zv6FubtB4QR8BqPDEcwOxz8yvKX-j7Cp9xzJLqMW3MLc0nasZPQIo5fESgFSRAO5RKeHDQNkbbTDtUKOrixoymHQFjPjGrdHcyRFyMHhQTA21nyUY4IhN3aDWyfMXsiFfbO59iNLFzRdnwSrL7HSaKy9pIjyLRO7ELLRRZX6Ww_cH2pDH1D-sm41_PRr3npfaxTq4acvm7a_6hEnnp1lluLcdhzPfTJbwMIAU8q-e4-NvPEPocKsWsyOwYUe4xN08Ai5j4sdW_ETjqsz1UQ3D4CIvxOnieBDsnPy7mz6vtee3kg0uvdwZXRNKLzzoJ8nQr3k5mKP7NpZCT0xaHpEBqrZJw_tDIVa_7_aJw967SsfkxsLNdpBjfbBQQ3UqIYahe89qFEPNaqhRgFq9A7UtkcDqFGAGtVQoxpq1EONbkGNWqhRD7Un5PObs4vTt4FV_wjKOE7XAa-iSLIS5Qiwml6EBc4tikpEVa4Uq_JEKCkZFxOYtMdhlbJYFQnHnpo8FhUbPyXDpm3UM0KrSopxlBRyLLGOnwsuUyE5l5MKGx6mByR0pshK2xofFVouM8eBnMF5laH1MmO9A_K6u2Vh-sL87mLm7JvZxNYkrBmA8de3Hf7bbc_Jff-PeUGG6-VGHZF75dW6Xi1fWsh-B41N0aU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+parameter+optimisation+method+based+on+data-driven+prediction+model+and+multi-objective+optimisation+for+the+laser+metal+deposition+manufacturing+process+monitoring&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Wu%2C+Ziqian&rft.au=Li%2C+Cheng&rft.au=Zhang%2C+Chao&rft.au=Han%2C+Bangguo&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.volume=204&rft_id=info:doi/10.1016%2Fj.cie.2025.111108&rft.externalDocID=S0360835225002542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon