Semi-supervised overlapping community detection in attributed graph with graph convolutional autoencoder

[Display omitted] The architecture of our proposed method SSGCAE for semi-supervised overlapping community detection in attributed graph. •An end-to-end method SSGCAE for overlapping community detection is proposed.•SSGCAE is based on graph convolutional autoencoder driven by community detection.•SS...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 608; s. 1464 - 1479
Hlavní autoři: He, Chaobo, Zheng, Yulong, Cheng, Junwei, Tang, Yong, Chen, Guohua, Liu, Hai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.08.2022
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] The architecture of our proposed method SSGCAE for semi-supervised overlapping community detection in attributed graph. •An end-to-end method SSGCAE for overlapping community detection is proposed.•SSGCAE is based on graph convolutional autoencoder driven by community detection.•SSGCAE is comprehensively evaluated on synthetic and real attributed graphs.•SSGCAE outperforms state-of-the-art baselines. Community detection in attributed graph is of great application value and many related methods have been continually presented. However, existing methods for community detection in attributed graph still cannot well solve three key problems simultaneously: link information and attribute information fusion, prior information integration and overlapping community detection. Aiming at these problems, in this paper we devise a semi-supervised overlapping community detection method named SSGCAE which is based on graph neural networks. This method is composed of three modules: graph convolutional autoencoder (GCAE), semi-supervision and modularity maximization, which are respectively utilized to fuse link information and attribute information, integrate prior information and detect overlapping communities. We treat GCAE as the backbone framework and train it by using the unified loss from these three modules. Through this way, these three modules are jointly correlated via the community membership representation, which is very beneficial to improve the overall performance. SSGCAE is comprehensively evaluated on synthetic and real attributed graphs, and experiment results show that it is very effective and outperforms state-of-the-art baseline approaches.
AbstractList [Display omitted] The architecture of our proposed method SSGCAE for semi-supervised overlapping community detection in attributed graph. •An end-to-end method SSGCAE for overlapping community detection is proposed.•SSGCAE is based on graph convolutional autoencoder driven by community detection.•SSGCAE is comprehensively evaluated on synthetic and real attributed graphs.•SSGCAE outperforms state-of-the-art baselines. Community detection in attributed graph is of great application value and many related methods have been continually presented. However, existing methods for community detection in attributed graph still cannot well solve three key problems simultaneously: link information and attribute information fusion, prior information integration and overlapping community detection. Aiming at these problems, in this paper we devise a semi-supervised overlapping community detection method named SSGCAE which is based on graph neural networks. This method is composed of three modules: graph convolutional autoencoder (GCAE), semi-supervision and modularity maximization, which are respectively utilized to fuse link information and attribute information, integrate prior information and detect overlapping communities. We treat GCAE as the backbone framework and train it by using the unified loss from these three modules. Through this way, these three modules are jointly correlated via the community membership representation, which is very beneficial to improve the overall performance. SSGCAE is comprehensively evaluated on synthetic and real attributed graphs, and experiment results show that it is very effective and outperforms state-of-the-art baseline approaches.
Author Cheng, Junwei
Tang, Yong
Chen, Guohua
Liu, Hai
Zheng, Yulong
He, Chaobo
Author_xml – sequence: 1
  givenname: Chaobo
  surname: He
  fullname: He, Chaobo
  email: hechaobo@foxmail.com
  organization: School of Computer Science, South China Normal University, Guangzhou 510631, China
– sequence: 2
  givenname: Yulong
  surname: Zheng
  fullname: Zheng, Yulong
  email: 1457367033@qq.com
  organization: School of Computer Science, South China Normal University, Guangzhou 510631, China
– sequence: 3
  givenname: Junwei
  surname: Cheng
  fullname: Cheng, Junwei
  email: jung@m.scnu.edu.cn
  organization: School of Computer Science, South China Normal University, Guangzhou 510631, China
– sequence: 4
  givenname: Yong
  surname: Tang
  fullname: Tang, Yong
  email: ytang@m.scnu.edu.cn
  organization: School of Computer Science, South China Normal University, Guangzhou 510631, China
– sequence: 5
  givenname: Guohua
  surname: Chen
  fullname: Chen, Guohua
  email: chengh3@qq.com
  organization: School of Computer Science, South China Normal University, Guangzhou 510631, China
– sequence: 6
  givenname: Hai
  surname: Liu
  fullname: Liu, Hai
  email: liuhai@m.scnu.edu.cn
  organization: School of Computer Science, South China Normal University, Guangzhou 510631, China
BookMark eNp9kMtOwzAQRS1UJNrCB7DLDySMncROxApVvKRKLIC15TqT1lVqR7YT1L8nFV2x6Gpmcc9o7lmQmXUWCbmnkFGg_GGfGRsyBoxlIDLI-RWZ00qwlLOazsgcgEEKrCxvyCKEPQAUgvM52X3iwaRh6NGPJmCTuBF9p_re2G2i3eEwWBOPSYMRdTTOJsYmKkZvNkOc0luv-l3yY-LuvGpnR9cNp6jqEjVEh1a7Bv0tuW5VF_DuPJfk--X5a_WWrj9e31dP61QzJmJa1S2HipelapDyEupc8UpttKqKSte8FbmqNFR5QdsWKRMFRa3ohhWNQKoFzZdE_N3V3oXgsZXaRHX6J3plOklBnoTJvZyEyZMwCUJOwiaS_iN7bw7KHy8yj38MTpVGg14GbabG2Bg_CZONMxfoX1kwiSU
CitedBy_id crossref_primary_10_3390_s25082601
crossref_primary_10_1007_s10878_024_01254_3
crossref_primary_10_1016_j_inffus_2024_102254
crossref_primary_10_1016_j_eswa_2024_123973
crossref_primary_10_1016_j_ins_2024_121709
crossref_primary_10_1145_3613449
crossref_primary_10_1016_j_ins_2022_11_125
crossref_primary_10_1007_s13042_023_02074_3
crossref_primary_10_1016_j_eswa_2023_120748
crossref_primary_10_1007_s00521_023_09066_y
crossref_primary_10_1016_j_adhoc_2024_103589
crossref_primary_10_1016_j_neucom_2024_128169
crossref_primary_10_1016_j_neucom_2024_127992
crossref_primary_10_1016_j_neucom_2025_130411
crossref_primary_10_1016_j_ins_2023_119200
crossref_primary_10_1016_j_knosys_2023_110961
crossref_primary_10_1109_ACCESS_2023_3328616
crossref_primary_10_1016_j_neunet_2025_107601
crossref_primary_10_1016_j_ins_2023_02_090
crossref_primary_10_1016_j_ins_2023_119877
crossref_primary_10_1080_10589759_2025_2541053
crossref_primary_10_1145_3716391
crossref_primary_10_1109_TKDE_2024_3389049
crossref_primary_10_1016_j_asoc_2024_112250
crossref_primary_10_1016_j_asoc_2025_113584
crossref_primary_10_1109_ACCESS_2025_3573293
crossref_primary_10_1007_s10489_024_05287_3
crossref_primary_10_1016_j_ins_2022_12_090
crossref_primary_10_1016_j_knosys_2025_114236
crossref_primary_10_1016_j_neucom_2024_128812
crossref_primary_10_1016_j_asoc_2024_111414
crossref_primary_10_1016_j_chaos_2024_115501
crossref_primary_10_1016_j_ins_2023_119055
crossref_primary_10_1016_j_ins_2025_122039
Cites_doi 10.1109/TSP.2020.3033962
10.1109/TCSS.2020.2988983
10.1145/2501654.2501657
10.1016/j.dss.2020.113303
10.1016/j.aiopen.2021.01.001
10.1016/j.cosrev.2020.100286
10.1073/pnas.122653799
10.1016/j.physrep.2016.09.002
10.1109/TKDE.2021.3104155
10.1145/2629616
10.1109/TCYB.2014.2377154
10.1109/TKDE.2019.2958342
10.1016/j.knosys.2020.105760
10.1109/TKDE.2020.2981333
10.1007/s11704-020-9203-0
10.1016/j.neucom.2020.07.125
10.1016/j.ins.2015.03.075
10.1016/j.ins.2016.11.028
10.1016/j.jnca.2018.02.011
10.1145/1921632.1921638
10.1109/TNNLS.2020.2978386
10.1109/TKDE.2018.2846555
10.1109/TCYB.2019.2931983
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.07.036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 1479
ExternalDocumentID 10_1016_j_ins_2022_07_036
S0020025522007253
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c227t-89f608655ade165093a68abca848c96f73a8c08341ffe12741eca1b24d7e1c713
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000834614400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:28:58 EST 2025
Tue Nov 18 22:11:29 EST 2025
Fri Feb 23 02:38:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph neural networks
Graph convolutional autoencoder
Semi-supervised learning
Attributed graph
Overlapping community detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-89f608655ade165093a68abca848c96f73a8c08341ffe12741eca1b24d7e1c713
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2022_07_036
crossref_primary_10_1016_j_ins_2022_07_036
elsevier_sciencedirect_doi_10_1016_j_ins_2022_07_036
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hajiramezanali, Hasanzadeh, Narayanan, Duffield, Zhou, Qian (b0055) 2019
Yang, Cao, Jin, Wang, Meng (b0215) 2015; 45
Kipf, Welling (b0100) 2017
Yang, Liu, Liu, Tao (b0220) 2021; 33
Alsini, Datta, Huynh (b0005) 2020; 7
Javed, Younis, Latif, Qadir, Baig (b0075) 2018; 108
Xie, Kelley, Szymanski (b0200) 2013; 45
Yao, Mao, Luo (b0230) 2019
Falih, Grozavu, Kanawati, Bennani (b0030) 2018
Shi, Fan, Kwok (b0155) 2020
Xu, Hu, Leskovec, Jegelka (b0210) 2019
Liu, Wang, He, Jiao, Jin, Cannistraci (b0120) 2017; 381
Pourhabibi, Ong, Kam, Boo (b0130) 2020; 133
Jin, Liu, Li, Zhang (b0090) 2019
M.J. Wang, L.F. Yu, D. Zheng, et al. Deep graph library: towards efficient and scalable deep learning on graphs, (2019) arXiv:1909.01315.
Guo, Pan, Zhu, Zhang (b0050) 2019; 31
Wu, Pan, Chen, Long, Zhang, Yu (b0195) 2021; 32
Glorot, Bengio (b0045) 2010
Ruiz, Gama, Ribeiro (b0145) 2020; 68
Qiao, Deng, Li, Hu, Song, Gao (b0135) 2021; 420
Chakraborty, Dalmia, Mukherjee, Ganguly (b0015) 2017; 50
Ruan, Fuhry, Parthasarathy (b0140) 2013
Zhang, Cui, Zhu (b0240) 2022; 34
Newman (b0125) 2006; 3
Z.Q. Xu, Y.P Ke, Y. Wang, H. Cheng, J. Cheng, GBAGC: a general bayesian framework for attributed graph clustering, ACM Transactions on Knowledge Discovery from Data 9 (2014) 1-43.
Kipf, Welling (b0105) 2016
He, Wang, Jiang (b0060) 2015
Li, Wu, Ester, Kao, Wang, Zheng (b0115) 2017
Yang, Leskovec (b0225) 2013
Chunaev (b0025) 2020; 37
Jin, He, Chai, He (b0085) 2021; 15
Bo, Wang, Shi, Zhu, Lu, Cui (b0010) 2020
Cheng, Zhou, Yu (b0020) 2011; 5
Velickovic, Cucurull, Casanova, Romero, Lio, Bengio (b0170) 2018
Teng, Liu, Li (b0165) 2021; 51
Girvan, Newman (b0040) 2002; 99
Shchur, Günnemann (b0150) 2019
Wang, Pan, Hu, Long, Jiang, Zhang (b0180) 2019
Jia, Zhang, Zhang, Wang (b0080) 2019
Huang, Zhong, Wang, Gong, Ma (b0070) 2020; 196
Lancichinetti, Fortunato, Radicchi (b0110) 2008; 78
Su, Xue, Liu, Wu, Yang, Zhou, Hu, Paris, Nepal, Ji, Sheng, Yu (b0160) 2022
Wang, Jin, Cao, Yang, Zhang (b0175) 2016
Wang, Liu, Jiao, Chen, Jin (b0190) 2018
Fortunato, Hric (b0035) 2016; 659
Zhou, Cui, Hu, Zhang, Yang, Liu, Wang, Li, Sun (b0245) 2020; 1
Jin, Yu, Jiao, Pan, He, Wu, Yu, Zhang (b0095) 2021
Ye, Ji (b0235) 2021
Huang, Cheng, Yu (b0065) 2015; 314
Kipf (10.1016/j.ins.2022.07.036_b0105) 2016
10.1016/j.ins.2022.07.036_b0205
Velickovic (10.1016/j.ins.2022.07.036_b0170) 2018
Cheng (10.1016/j.ins.2022.07.036_b0020) 2011; 5
Fortunato (10.1016/j.ins.2022.07.036_b0035) 2016; 659
He (10.1016/j.ins.2022.07.036_b0060) 2015
Zhang (10.1016/j.ins.2022.07.036_b0240) 2022; 34
Li (10.1016/j.ins.2022.07.036_b0115) 2017
Pourhabibi (10.1016/j.ins.2022.07.036_b0130) 2020; 133
Yang (10.1016/j.ins.2022.07.036_b0225) 2013
Wang (10.1016/j.ins.2022.07.036_b0175) 2016
Glorot (10.1016/j.ins.2022.07.036_b0045) 2010
Jia (10.1016/j.ins.2022.07.036_b0080) 2019
Hajiramezanali (10.1016/j.ins.2022.07.036_b0055) 2019
Xu (10.1016/j.ins.2022.07.036_b0210) 2019
Su (10.1016/j.ins.2022.07.036_b0160) 2022
Zhou (10.1016/j.ins.2022.07.036_b0245) 2020; 1
Javed (10.1016/j.ins.2022.07.036_b0075) 2018; 108
Jin (10.1016/j.ins.2022.07.036_b0090) 2019
Teng (10.1016/j.ins.2022.07.036_b0165) 2021; 51
Wang (10.1016/j.ins.2022.07.036_b0180) 2019
Ruan (10.1016/j.ins.2022.07.036_b0140) 2013
Alsini (10.1016/j.ins.2022.07.036_b0005) 2020; 7
Huang (10.1016/j.ins.2022.07.036_b0065) 2015; 314
Yang (10.1016/j.ins.2022.07.036_b0220) 2021; 33
Jin (10.1016/j.ins.2022.07.036_b0095) 2021
Chakraborty (10.1016/j.ins.2022.07.036_b0015) 2017; 50
Newman (10.1016/j.ins.2022.07.036_b0125) 2006; 3
Chunaev (10.1016/j.ins.2022.07.036_b0025) 2020; 37
Qiao (10.1016/j.ins.2022.07.036_b0135) 2021; 420
Liu (10.1016/j.ins.2022.07.036_b0120) 2017; 381
Wu (10.1016/j.ins.2022.07.036_b0195) 2021; 32
Guo (10.1016/j.ins.2022.07.036_b0050) 2019; 31
Lancichinetti (10.1016/j.ins.2022.07.036_b0110) 2008; 78
Bo (10.1016/j.ins.2022.07.036_b0010) 2020
Ruiz (10.1016/j.ins.2022.07.036_b0145) 2020; 68
Girvan (10.1016/j.ins.2022.07.036_b0040) 2002; 99
Shchur (10.1016/j.ins.2022.07.036_b0150) 2019
Falih (10.1016/j.ins.2022.07.036_b0030) 2018
Yang (10.1016/j.ins.2022.07.036_b0215) 2015; 45
Shi (10.1016/j.ins.2022.07.036_b0155) 2020
10.1016/j.ins.2022.07.036_b0185
Jin (10.1016/j.ins.2022.07.036_b0085) 2021; 15
Wang (10.1016/j.ins.2022.07.036_b0190) 2018
Yao (10.1016/j.ins.2022.07.036_b0230) 2019
Ye (10.1016/j.ins.2022.07.036_b0235) 2021
Huang (10.1016/j.ins.2022.07.036_b0070) 2020; 196
Kipf (10.1016/j.ins.2022.07.036_b0100) 2017
Xie (10.1016/j.ins.2022.07.036_b0200) 2013; 45
References_xml – volume: 37
  year: 2020
  ident: b0025
  article-title: Community detection in node-attributed social networks: a survey
  publication-title: Computer Science Review
– start-page: 587
  year: 2013
  end-page: 596
  ident: b0225
  article-title: Overlapping community detection at scale: a nonnegative matrix factorization approach
  publication-title: Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM)
– start-page: 152
  year: 2019
  end-page: 159
  ident: b0090
  article-title: Graph convolutional networks meet markov random fields: semi-supervised community detection in attribute networks
  publication-title: in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI)
– volume: 78
  year: 2008
  ident: b0110
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Physical Review E
– volume: 32
  start-page: 4
  year: 2021
  end-page: 24
  ident: b0195
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 99
  start-page: 7821
  year: 2002
  end-page: 7826
  ident: b0040
  article-title: Community structure in social and biological networks
  publication-title: Proceedings of the National Academy of Sciences
– volume: 133
  year: 2020
  ident: b0130
  article-title: Fraud detection: a systematic literature review of graph-based anomaly detection approaches
  publication-title: Decision Support Systems
– volume: 51
  start-page: 138
  year: 2021
  end-page: 150
  ident: b0165
  article-title: Overlapping community detection in directed and undirected attributed networks using a multiobjective evolutionary algorithm
  publication-title: IEEE Transactions on Cybernetics
– start-page: 784
  year: 2019
  end-page: 794
  ident: b0080
  article-title: CommunityGAN: community detection with generative adversarial nets
  publication-title: Proceedings of the 28th International Conference on World Wide Web (WWW)
– volume: 45
  start-page: 1
  year: 2013
  end-page: 35
  ident: b0200
  article-title: Overlapping community detection in networks: the state-of-the-art and comparative study
  publication-title: ACM Computing Surveys
– start-page: 1400
  year: 2020
  end-page: 1410
  ident: b0010
  article-title: Structural deep clustering network
  publication-title: Proceedings of the 29th International Conference on World Wide Web (WWW)
– start-page: 1
  year: 2017
  end-page: 14
  ident: b0100
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proceedings of the 5th International Conference on Learning Representations (ICLR)
– start-page: 1
  year: 2019
  end-page: 7
  ident: b0150
  article-title: Overlapping community detection with graph neural networks
  publication-title: Proceedings of the 1st International Workshop on Deep Learning for Graphs (DLG)
– start-page: 906
  year: 2020
  end-page: 913
  ident: b0155
  article-title: Effective decoding in graph auto-encoder using triadic closure
  publication-title: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI)
– start-page: 265
  year: 2016
  end-page: 271
  ident: b0175
  article-title: Semantic community identification in large attribute networks
  publication-title: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI)
– volume: 45
  start-page: 2585
  year: 2015
  end-page: 2598
  ident: b0215
  article-title: A unified semi-supervised community detection framework using latent space graph regularization
  publication-title: IEEE Transactions on Cybernetics
– reference: M.J. Wang, L.F. Yu, D. Zheng, et al. Deep graph library: towards efficient and scalable deep learning on graphs, (2019) arXiv:1909.01315.
– start-page: 1299
  year: 2018
  end-page: 1306
  ident: b0030
  article-title: Community detection in attributed network
  publication-title: Proceedings of the 27th International Conference on World Wide Web (WWW)
– start-page: 1621
  year: 2017
  end-page: 1629
  ident: b0115
  article-title: Semi-supervised clustering in attributed heterogeneous information networks
  publication-title: Proceedings of the 26th International Conference on World Wide Web (WWW)
– reference: Z.Q. Xu, Y.P Ke, Y. Wang, H. Cheng, J. Cheng, GBAGC: a general bayesian framework for attributed graph clustering, ACM Transactions on Knowledge Discovery from Data 9 (2014) 1-43.
– volume: 1
  start-page: 57
  year: 2020
  end-page: 81
  ident: b0245
  article-title: Graph neural networks: a review of methods and applications
  publication-title: AI Open
– start-page: 1
  year: 2019
  end-page: 11
  ident: b0055
  article-title: Variational graph recurrent neural networks
  publication-title: Proceedings of the 33rd Conference in Neural Information Processing Systems (NeurIPS)
– year: 2021
  ident: b0095
  article-title: A survey of community detection approaches: from statistical modeling to deep learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering (Early Access)
– year: 2021
  ident: b0235
  article-title: Sparse graph attention networks
  publication-title: IEEE Transactions on Knowledge and Data Engineering (Early Access)
– volume: 50
  start-page: 54
  year: 2017
  ident: b0015
  article-title: Metrics for community analysis: a survey
  publication-title: ACM Computing Surveys
– start-page: 1
  year: 2019
  end-page: 17
  ident: b0210
  article-title: How powerful are graph neural networks? in
  publication-title: Proceedings of the 7th International Conference on Learning Representations (ICLR)
– volume: 34
  start-page: 249
  year: 2022
  end-page: 270
  ident: b0240
  article-title: Deep learning on graphs: a survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 68
  start-page: 6303
  year: 2020
  end-page: 6318
  ident: b0145
  article-title: Gated graph recurrent neural networks
  publication-title: IEEE Transactions on Signal Processing
– year: 2022
  ident: b0160
  article-title: A comprehensive survey on community detection with deep learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems (Early Access)
– start-page: 7370
  year: 2019
  end-page: 7377
  ident: b0230
  article-title: Graph convolutional networks for text classification
  publication-title: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI)
– start-page: 1089
  year: 2013
  end-page: 1098
  ident: b0140
  article-title: Efficient community detection in large networks using content and links
  publication-title: Proceedings of the 22nd International Conference on World Wide Web (WWW)
– volume: 420
  start-page: 246
  year: 2021
  end-page: 265
  ident: b0135
  article-title: Research on historical phase division of terrorism: an analysis method by time series complex network
  publication-title: Neurocomputing
– volume: 314
  start-page: 77
  year: 2015
  end-page: 99
  ident: b0065
  article-title: Dense community detection in multi-valued attributed networks
  publication-title: Information Sciences
– start-page: 3670
  year: 2019
  end-page: 3676
  ident: b0180
  article-title: Attributed graph clustering: a deep attentional embedding approach
  publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI)
– volume: 5
  start-page: 12
  year: 2011
  ident: b0020
  article-title: Clustering large attributed graphs: a balance between structural and attribute similarities
  publication-title: ACM Transactions on Knowledge Discovery from Data
– volume: 659
  start-page: 1
  year: 2016
  end-page: 44
  ident: b0035
  article-title: Community detection in networks: a user guide
  publication-title: Physics Reports
– start-page: 249
  year: 2010
  end-page: 256
  ident: b0045
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AIS)
– start-page: 218
  year: 2018
  end-page: 230
  ident: b0190
  article-title: A unified weakly supervised framework for community detection and semantic matching
  publication-title: Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
– start-page: 1
  year: 2018
  end-page: 12
  ident: b0170
  article-title: Graph attention networks
  publication-title: Proceedings of the 6th International Conference on Learning Representations (ICLR)
– volume: 381
  start-page: 304
  year: 2017
  end-page: 321
  ident: b0120
  article-title: Semi-supervised community detection based on non-negative matrix factorization with node popularity
  publication-title: Information Sciences
– volume: 7
  start-page: 971
  year: 2020
  end-page: 982
  ident: b0005
  article-title: On utilizing communities detected from social networks in hashtag recommendation
  publication-title: IEEE Transactions on Computational Social Systems
– volume: 33
  start-page: 2349
  year: 2021
  end-page: 2368
  ident: b0220
  article-title: A survey on canonical correlation analysis
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 31
  start-page: 706
  year: 2019
  end-page: 719
  ident: b0050
  article-title: CFOND: consensus factorization for co-clustering networked data
  publication-title: IEEE Transactions Knowledge Data Engineering
– start-page: 1281
  year: 2015
  end-page: 1290
  ident: b0060
  article-title: Discovering canonical correlations between topical and topological information in document networks
  publication-title: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (CIKM)
– volume: 15
  year: 2021
  ident: b0085
  article-title: Semi-supervised community detection on attributed networks using non-negative matrix tri-factorization with node popularity
  publication-title: Frontiers of Computer Science
– volume: 196
  year: 2020
  ident: b0070
  article-title: Detecting community in attributed networks by dynamically exploring node attributes and topological structure
  publication-title: Knowledge-Based Systems
– start-page: 1
  year: 2016
  end-page: 3
  ident: b0105
  article-title: Variational graph auto-encoders
  publication-title: Proceedings of the 30th Conference in Neural Information Processing Systems (NeurIPS)
– volume: 108
  start-page: 87
  year: 2018
  end-page: 111
  ident: b0075
  article-title: Community detection in networks: a multidisciplinary review
  publication-title: Journal of Network and Computer Applications
– volume: 3
  start-page: 8577
  year: 2006
  end-page: 8582
  ident: b0125
  publication-title: Modularity and community structure in networks, in: Proceedings of the national academy of sciences
– volume: 68
  start-page: 6303
  year: 2020
  ident: 10.1016/j.ins.2022.07.036_b0145
  article-title: Gated graph recurrent neural networks
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2020.3033962
– start-page: 1
  year: 2019
  ident: 10.1016/j.ins.2022.07.036_b0210
  article-title: How powerful are graph neural networks? in
– volume: 7
  start-page: 971
  issue: 4
  year: 2020
  ident: 10.1016/j.ins.2022.07.036_b0005
  article-title: On utilizing communities detected from social networks in hashtag recommendation
  publication-title: IEEE Transactions on Computational Social Systems
  doi: 10.1109/TCSS.2020.2988983
– volume: 45
  start-page: 1
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2022.07.036_b0200
  article-title: Overlapping community detection in networks: the state-of-the-art and comparative study
  publication-title: ACM Computing Surveys
  doi: 10.1145/2501654.2501657
– volume: 133
  year: 2020
  ident: 10.1016/j.ins.2022.07.036_b0130
  article-title: Fraud detection: a systematic literature review of graph-based anomaly detection approaches
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2020.113303
– year: 2022
  ident: 10.1016/j.ins.2022.07.036_b0160
  article-title: A comprehensive survey on community detection with deep learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems (Early Access)
– start-page: 587
  year: 2013
  ident: 10.1016/j.ins.2022.07.036_b0225
  article-title: Overlapping community detection at scale: a nonnegative matrix factorization approach
– start-page: 265
  year: 2016
  ident: 10.1016/j.ins.2022.07.036_b0175
  article-title: Semantic community identification in large attribute networks
– start-page: 1
  year: 2019
  ident: 10.1016/j.ins.2022.07.036_b0150
  article-title: Overlapping community detection with graph neural networks
– volume: 1
  start-page: 57
  year: 2020
  ident: 10.1016/j.ins.2022.07.036_b0245
  article-title: Graph neural networks: a review of methods and applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– volume: 37
  year: 2020
  ident: 10.1016/j.ins.2022.07.036_b0025
  article-title: Community detection in node-attributed social networks: a survey
  publication-title: Computer Science Review
  doi: 10.1016/j.cosrev.2020.100286
– volume: 99
  start-page: 7821
  issue: 12
  year: 2002
  ident: 10.1016/j.ins.2022.07.036_b0040
  article-title: Community structure in social and biological networks
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.122653799
– start-page: 1
  year: 2017
  ident: 10.1016/j.ins.2022.07.036_b0100
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 659
  start-page: 1
  year: 2016
  ident: 10.1016/j.ins.2022.07.036_b0035
  article-title: Community detection in networks: a user guide
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2016.09.002
– volume: 3
  start-page: 8577
  issue: 23
  year: 2006
  ident: 10.1016/j.ins.2022.07.036_b0125
  publication-title: Modularity and community structure in networks, in: Proceedings of the national academy of sciences
– start-page: 1281
  year: 2015
  ident: 10.1016/j.ins.2022.07.036_b0060
  article-title: Discovering canonical correlations between topical and topological information in document networks
– year: 2021
  ident: 10.1016/j.ins.2022.07.036_b0095
  article-title: A survey of community detection approaches: from statistical modeling to deep learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering (Early Access)
  doi: 10.1109/TKDE.2021.3104155
– ident: 10.1016/j.ins.2022.07.036_b0205
  doi: 10.1145/2629616
– volume: 50
  start-page: 54
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2022.07.036_b0015
  article-title: Metrics for community analysis: a survey
  publication-title: ACM Computing Surveys
– volume: 45
  start-page: 2585
  issue: 11
  year: 2015
  ident: 10.1016/j.ins.2022.07.036_b0215
  article-title: A unified semi-supervised community detection framework using latent space graph regularization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2377154
– start-page: 1089
  year: 2013
  ident: 10.1016/j.ins.2022.07.036_b0140
  article-title: Efficient community detection in large networks using content and links
– start-page: 906
  year: 2020
  ident: 10.1016/j.ins.2022.07.036_b0155
  article-title: Effective decoding in graph auto-encoder using triadic closure
– volume: 33
  start-page: 2349
  issue: 6
  year: 2021
  ident: 10.1016/j.ins.2022.07.036_b0220
  article-title: A survey on canonical correlation analysis
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2019.2958342
– volume: 196
  year: 2020
  ident: 10.1016/j.ins.2022.07.036_b0070
  article-title: Detecting community in attributed networks by dynamically exploring node attributes and topological structure
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105760
– start-page: 784
  year: 2019
  ident: 10.1016/j.ins.2022.07.036_b0080
  article-title: CommunityGAN: community detection with generative adversarial nets
– year: 2021
  ident: 10.1016/j.ins.2022.07.036_b0235
  article-title: Sparse graph attention networks
  publication-title: IEEE Transactions on Knowledge and Data Engineering (Early Access)
– start-page: 1
  year: 2018
  ident: 10.1016/j.ins.2022.07.036_b0170
  article-title: Graph attention networks
– volume: 78
  issue: 2
  year: 2008
  ident: 10.1016/j.ins.2022.07.036_b0110
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Physical Review E
– volume: 34
  start-page: 249
  issue: 1
  year: 2022
  ident: 10.1016/j.ins.2022.07.036_b0240
  article-title: Deep learning on graphs: a survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2020.2981333
– ident: 10.1016/j.ins.2022.07.036_b0185
– volume: 15
  year: 2021
  ident: 10.1016/j.ins.2022.07.036_b0085
  article-title: Semi-supervised community detection on attributed networks using non-negative matrix tri-factorization with node popularity
  publication-title: Frontiers of Computer Science
  doi: 10.1007/s11704-020-9203-0
– start-page: 218
  year: 2018
  ident: 10.1016/j.ins.2022.07.036_b0190
  article-title: A unified weakly supervised framework for community detection and semantic matching
– volume: 420
  start-page: 246
  year: 2021
  ident: 10.1016/j.ins.2022.07.036_b0135
  article-title: Research on historical phase division of terrorism: an analysis method by time series complex network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.125
– start-page: 1400
  year: 2020
  ident: 10.1016/j.ins.2022.07.036_b0010
  article-title: Structural deep clustering network
– volume: 314
  start-page: 77
  year: 2015
  ident: 10.1016/j.ins.2022.07.036_b0065
  article-title: Dense community detection in multi-valued attributed networks
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.03.075
– volume: 381
  start-page: 304
  year: 2017
  ident: 10.1016/j.ins.2022.07.036_b0120
  article-title: Semi-supervised community detection based on non-negative matrix factorization with node popularity
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.11.028
– volume: 108
  start-page: 87
  year: 2018
  ident: 10.1016/j.ins.2022.07.036_b0075
  article-title: Community detection in networks: a multidisciplinary review
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2018.02.011
– volume: 5
  start-page: 12
  issue: 2
  year: 2011
  ident: 10.1016/j.ins.2022.07.036_b0020
  article-title: Clustering large attributed graphs: a balance between structural and attribute similarities
  publication-title: ACM Transactions on Knowledge Discovery from Data
  doi: 10.1145/1921632.1921638
– start-page: 152
  year: 2019
  ident: 10.1016/j.ins.2022.07.036_b0090
  article-title: Graph convolutional networks meet markov random fields: semi-supervised community detection in attribute networks
– start-page: 1299
  year: 2018
  ident: 10.1016/j.ins.2022.07.036_b0030
  article-title: Community detection in attributed network
– start-page: 249
  year: 2010
  ident: 10.1016/j.ins.2022.07.036_b0045
  article-title: Understanding the difficulty of training deep feedforward neural networks
– start-page: 7370
  year: 2019
  ident: 10.1016/j.ins.2022.07.036_b0230
  article-title: Graph convolutional networks for text classification
– start-page: 1
  year: 2016
  ident: 10.1016/j.ins.2022.07.036_b0105
  article-title: Variational graph auto-encoders
– start-page: 1621
  year: 2017
  ident: 10.1016/j.ins.2022.07.036_b0115
  article-title: Semi-supervised clustering in attributed heterogeneous information networks
– volume: 32
  start-page: 4
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2022.07.036_b0195
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.2978386
– volume: 31
  start-page: 706
  issue: 4
  year: 2019
  ident: 10.1016/j.ins.2022.07.036_b0050
  article-title: CFOND: consensus factorization for co-clustering networked data
  publication-title: IEEE Transactions Knowledge Data Engineering
  doi: 10.1109/TKDE.2018.2846555
– volume: 51
  start-page: 138
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2022.07.036_b0165
  article-title: Overlapping community detection in directed and undirected attributed networks using a multiobjective evolutionary algorithm
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2931983
– start-page: 3670
  year: 2019
  ident: 10.1016/j.ins.2022.07.036_b0180
  article-title: Attributed graph clustering: a deep attentional embedding approach
– start-page: 1
  year: 2019
  ident: 10.1016/j.ins.2022.07.036_b0055
  article-title: Variational graph recurrent neural networks
SSID ssj0004766
Score 2.533123
Snippet [Display omitted] The architecture of our proposed method SSGCAE for semi-supervised overlapping community detection in attributed graph. •An end-to-end method...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1464
SubjectTerms Attributed graph
Graph convolutional autoencoder
Graph neural networks
Overlapping community detection
Semi-supervised learning
Title Semi-supervised overlapping community detection in attributed graph with graph convolutional autoencoder
URI https://dx.doi.org/10.1016/j.ins.2022.07.036
Volume 608
WOSCitedRecordID wos000834614400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgM9ICggSinyAXEARcqHYzvHChWVClVIFLScIsd2xK6WJOombf8A_7vj2E7C0iJ64BJZluNNdl7GM-OZZ4ReRwlVQhVxQIgowUHRJCg4KwJZJiWnmnLVs_N_-8ROT_l8nn2ezX75WpiLFasqfnWVNf9V1NAHwjals3cQ9zApdEAbhA5XEDtc_0nwX_TPRbDuGqME1mBOmhzNlWgaV11rykHA8Fa61dInOorWnnsFo3sCaxudtU2Tlu6e19AKdG1tqC-VS-pd-kT4oQjynVtTB1v9WLtt_bqoxzC1tjrme7eq3drZ5xi47pOuutSLMargBvuhLkoBDq7PkRurBsLA-C9TzUtDPtGdoLPJZB2OiD1l5g8db8MNS3BMDN16HPfkq8kNfNob69yQfegT25Y5TJGbKfKQ5TDFPbQdszQD5bh9-PFofjIW2DK76e1fwm-P94mCG89xs4EzMVrOHqGHztvAhxYlj9FMV7toZ8JBuYsOXOUKfoMnUsRO5z9BPzbwhCd4wgOe8IAnvKjwiCfcgwgbPLnmb3jCEzw9RV8_HJ29Pw7c8RyBjGPWBjwrQYA0TYXSkSFiTATlopCCEy4zWrJEcAkWPonKUkeGJklLERUxUUxHkkXJM7RV1ZV-jjAYvQI0Q0FVqEiackGp0ARmk2BBMxXuodD_p7l03PXmCJVVfqss99Db4ZbGErf8bTDxgsrdV2ItyhxAd_ttL-7yG_vowfhhvERb7XmnD9B9edEu1uevHOKuAerRqbM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+overlapping+community+detection+in+attributed+graph+with+graph+convolutional+autoencoder&rft.jtitle=Information+sciences&rft.au=He%2C+Chaobo&rft.au=Zheng%2C+Yulong&rft.au=Cheng%2C+Junwei&rft.au=Tang%2C+Yong&rft.date=2022-08-01&rft.issn=0020-0255&rft.volume=608&rft.spage=1464&rft.epage=1479&rft_id=info:doi/10.1016%2Fj.ins.2022.07.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_07_036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon