A Python program for the implementation of the Γ-method for Monte Carlo simulations

We present a modular analysis program written in Python devoted to the estimation of autocorrelation times for Monte Carlo simulations by means of the Γ-method algorithm. We give a brief review of this method and describe the main features of the program. The latter is characterized by a user-friend...

Full description

Saved in:
Bibliographic Details
Published in:Computer physics communications Vol. 234; pp. 294 - 301
Main Authors: De Palma, Barbara, Erba, Marco, Mantovani, Luca, Mosco, Nicola
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2019
Subjects:
ISSN:0010-4655, 1879-2944
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a modular analysis program written in Python devoted to the estimation of autocorrelation times for Monte Carlo simulations by means of the Γ-method algorithm. We give a brief review of this method and describe the main features of the program. The latter is characterized by a user-friendly interface and an open source environment which, along with its modularity, make it a versatile tool. Finally we present a simple application as an operational test for the program. Program Title: UNEW Program Files doi:http://dx.doi.org/10.17632/hvtvnjsg3h.1 Licensing provisions: MIT Programming language: Python Nature of problem: Computation of autocorrelation time for Monte Carlo generated data in an open source environment. Solution method: Modular package implementing the Γ-method with advanced data handling.
AbstractList We present a modular analysis program written in Python devoted to the estimation of autocorrelation times for Monte Carlo simulations by means of the Γ-method algorithm. We give a brief review of this method and describe the main features of the program. The latter is characterized by a user-friendly interface and an open source environment which, along with its modularity, make it a versatile tool. Finally we present a simple application as an operational test for the program. Program Title: UNEW Program Files doi:http://dx.doi.org/10.17632/hvtvnjsg3h.1 Licensing provisions: MIT Programming language: Python Nature of problem: Computation of autocorrelation time for Monte Carlo generated data in an open source environment. Solution method: Modular package implementing the Γ-method with advanced data handling.
Author De Palma, Barbara
Mantovani, Luca
Mosco, Nicola
Erba, Marco
Author_xml – sequence: 1
  givenname: Barbara
  surname: De Palma
  fullname: De Palma, Barbara
– sequence: 2
  givenname: Marco
  orcidid: 0000-0002-2172-592X
  surname: Erba
  fullname: Erba, Marco
  email: marco.erba@unipv.it
– sequence: 3
  givenname: Luca
  surname: Mantovani
  fullname: Mantovani, Luca
– sequence: 4
  givenname: Nicola
  surname: Mosco
  fullname: Mosco, Nicola
BookMark eNp9kE1OwzAQRi1UJErhAOx8gYRxYsexWFUVf1IRLMrach2bukriyDZIPQf34kykLSsWXY00872RvneJJr3vDUI3BHICpLrd5nrQeQGkzoHnAPQMTUnNRVYISidoCkAgoxVjF-gyxi0AcC7KKVrN8dsubXyPh-A_guqw9QGnjcGuG1rTmT6p5Mazt4ftz3fWmTHfHHIvvk8GL1RoPY6u-2wP2XiFzq1qo7n-mzP0_nC_Wjxly9fH58V8memi4CmraUGIataW1koQxSlToIilQlsmGAjBeFNWJWW1sGureFEAt0rVzDIrKKnKGSLHvzr4GIOxcgiuU2EnCci9FrmVoxa51yKBy1HLyPB_jHbHiiko154k746kGSt9ORNk1M702jQuGJ1k490J-hf0J3-c
CitedBy_id crossref_primary_10_1007_JHEP01_2023_155
crossref_primary_10_1007_JHEP08_2022_220
crossref_primary_10_1016_j_cpc_2023_108750
crossref_primary_10_1155_2022_1383520
Cites_doi 10.1016/0370-2693(89)91563-3
10.1016/S0010-4655(03)00467-3
10.1063/1.1699114
10.1016/j.cpc.2004.10.004
10.1103/PhysRevLett.62.361
10.1016/j.cpc.2006.12.001
10.1007/BF01022990
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cpc.2018.07.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
EndPage 301
ExternalDocumentID 10_1016_j_cpc_2018_07_004
S0010465518302534
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c227t-84211adbf48a91a745a0a1f49cf59509957d3634589fbfa72207faa85f5f94163
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449126400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
IngestDate Tue Nov 18 21:56:34 EST 2025
Sat Nov 29 03:58:14 EST 2025
Fri Feb 23 02:28:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Monte Carlo simulations
Statistical mechanics
Python
Autocorrelation time
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-84211adbf48a91a745a0a1f49cf59509957d3634589fbfa72207faa85f5f94163
ORCID 0000-0002-2172-592X
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_cpc_2018_07_004
crossref_citationtrail_10_1016_j_cpc_2018_07_004
elsevier_sciencedirect_doi_10_1016_j_cpc_2018_07_004
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Computer physics communications
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b2) 1953; 21
Priestley (b6) 1981
Wolff (b4) 1989; 228
Wolff (b3) 1989; 62
Wolff (b8) 2007; 176
Madras, Sokal (b5) 1988; 50
Wolff (b1) 2004; 156
Luscher (b7) 2005; 165
Wolff (10.1016/j.cpc.2018.07.004_b1) 2004; 156
Wolff (10.1016/j.cpc.2018.07.004_b4) 1989; 228
Metropolis (10.1016/j.cpc.2018.07.004_b2) 1953; 21
Wolff (10.1016/j.cpc.2018.07.004_b3) 1989; 62
Madras (10.1016/j.cpc.2018.07.004_b5) 1988; 50
Wolff (10.1016/j.cpc.2018.07.004_b8) 2007; 176
Luscher (10.1016/j.cpc.2018.07.004_b7) 2005; 165
Priestley (10.1016/j.cpc.2018.07.004_b6) 1981
References_xml – volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: b2
  publication-title: J. Chem. Phys.
– volume: 62
  start-page: 361
  year: 1989
  end-page: 364
  ident: b3
  publication-title: Phys. Rev. Lett.
– volume: 50
  start-page: 109
  year: 1988
  end-page: 186
  ident: b5
  publication-title: J. Stat. Phys.
– volume: 156
  start-page: 143
  year: 2004
  end-page: 153
  ident: b1
  publication-title: Comput. Phys. Comm.
– volume: 165
  start-page: 199
  year: 2005
  end-page: 220
  ident: b7
  publication-title: Comput. Phys. Comm.
– volume: 228
  start-page: 379
  year: 1989
  end-page: 382
  ident: b4
  publication-title: Phys. Lett. B
– year: 1981
  ident: b6
  article-title: Spectral Analysis and Time Series/ M.B. Priestley
– volume: 176
  start-page: 383
  year: 2007
  ident: b8
  publication-title: Comput. Phys. Comm.
– volume: 228
  start-page: 379
  issue: 3
  year: 1989
  ident: 10.1016/j.cpc.2018.07.004_b4
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(89)91563-3
– year: 1981
  ident: 10.1016/j.cpc.2018.07.004_b6
– volume: 156
  start-page: 143
  year: 2004
  ident: 10.1016/j.cpc.2018.07.004_b1
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/S0010-4655(03)00467-3
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 10.1016/j.cpc.2018.07.004_b2
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 165
  start-page: 199
  year: 2005
  ident: 10.1016/j.cpc.2018.07.004_b7
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2004.10.004
– volume: 62
  start-page: 361
  year: 1989
  ident: 10.1016/j.cpc.2018.07.004_b3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.361
– volume: 176
  start-page: 383
  issue: 5
  year: 2007
  ident: 10.1016/j.cpc.2018.07.004_b8
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2006.12.001
– volume: 50
  start-page: 109
  issue: 1
  year: 1988
  ident: 10.1016/j.cpc.2018.07.004_b5
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01022990
SSID ssj0007793
Score 2.2973263
Snippet We present a modular analysis program written in Python devoted to the estimation of autocorrelation times for Monte Carlo simulations by means of the Γ-method...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 294
SubjectTerms Autocorrelation time
Monte Carlo simulations
Python
Statistical mechanics
Title A Python program for the implementation of the Γ-method for Monte Carlo simulations
URI https://dx.doi.org/10.1016/j.cpc.2018.07.004
Volume 234
WOSCitedRecordID wos000449126400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKBhIviE8xGMgP7IUqKHHs2H6spk6A2FSJIvUtcj4sdeqSaumq8Tfgf-037Tq2k4wBAiReotZymsr3xPfk5t5zEXoDpEKHOSuCkGsS0FInQaZKHVAlIyGLuGREt80m-MmJWCzkbDT65mthtiteVeLyUq7_q6lhDIxtSmf_wtzdj8IAfAajwxHMDsc_MvxkPPtqBAF86lWXSLg887niniWa0YPD6YGMA9tJup17bASrTCbIqh43yzPX36sZ0ljfC8IFRhqTmd7XmfS96sux6c-iBi82OgYP31ytUF73YfFqU29tl6nxp4s-i-i4bvK6A64ahipMddSNUMXtGhq7J4MnMCpu1iPZbVhwGRBplSH9Pk1c1NPttLY3snPasb3MLX9gQxOn7_K1kauMRCvUGtLe-XUpiZ9bpaLECNTFwANjegftEs4k7JS7kw_TxcfOv3PupJzd__bvytuswR8u9HO2M2Aw84fogXv0wBMLmUdoVFaP0b2ZteATNJ9gCxzsgIMBDBgggm8CB9e6Hb367kDTzmtBg1vQ4AFonqIvR9P54fvA9dwIckL4JhCURJEqMk0F3K2KU6ZCFWkqc80kkEvJeBEnMWVC6kwrTgjc5EoJppmWhtw_QztVXZXPEWbApkkmGC2SjHKmRZHTWIWZ4lmUSBbvodCvTZo7QXrTF2WV-szD0xSWMzXLmYYmTYLuobfdKWurxvK7ydQveOropKWJKaDj16e9-LfTXqL7PeT30c7m_KJ8he7m282yOX_tMHQNBf2YJQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Python+program+for+the+implementation+of+the+%CE%93-method+for+Monte+Carlo+simulations&rft.jtitle=Computer+physics+communications&rft.au=De+Palma%2C+Barbara&rft.au=Erba%2C+Marco&rft.au=Mantovani%2C+Luca&rft.au=Mosco%2C+Nicola&rft.date=2019-01-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=234&rft.spage=294&rft.epage=301&rft_id=info:doi/10.1016%2Fj.cpc.2018.07.004&rft.externalDocID=S0010465518302534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon