Enhanced corrosion resistance and cell activity of magnesium alloy by DCPD/MgHPO4·3H2O coating via one-step chemical conversion
In order to solve the issue of rapid corrosion in magnesium alloy, composite coating of CaHPO4·2H2O (DCPD) and MgHPO4·3H2O were prepared in one step using chemical conversion method. By changing the pH of phosphating conversion solution, the composite coatings with varying contents of DCPD and MgHPO...
Saved in:
| Published in: | Surface & coatings technology Vol. 476; p. 130228 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
30.01.2024
|
| Subjects: | |
| ISSN: | 0257-8972, 1879-3347 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In order to solve the issue of rapid corrosion in magnesium alloy, composite coating of CaHPO4·2H2O (DCPD) and MgHPO4·3H2O were prepared in one step using chemical conversion method. By changing the pH of phosphating conversion solution, the composite coatings with varying contents of DCPD and MgHPO4·3H2O were prepared, and their components were characterized. An electrochemical test was employed to compare the short-term corrosion properties of different composite coating. The findings revealed that the composite coating possessed the optimal short-term corrosion performance when pH of phosphating solution was 1.8. The long-term corrosion results demonstrated that the composite coatings fabricated at a pH of 1.8 in the phosphating solution, following a 7-days immersion, not only exhibited the optimal long-term corrosion resistance but also possessed the highest biomineralization capacity. This could be attributed to the fact that the composite coating prepared at this pH of phosphating solution possessed a structurally rational design, and MgHPO4·3H2O could play a supportive role in maintaining structural integrity during the degradation process. Indirect cell culture results indicated that at a dilution concentration of 25 %, the cell activity of the coatings, except for Ca-Mg-P3.0, was >75 %, suggesting good biocompatibility.
[Display omitted]
•The composite coatings are prepared by one step chemical conversion method.•Different composite coatings are prepared by changing the pH of phosphating solution.•Ca-Mg-P1.8 coating possesses the best corrosion performance and non-toxic.•MgHPO4·3H2O coating supports the structural integrity during the corrosion process. |
|---|---|
| AbstractList | In order to solve the issue of rapid corrosion in magnesium alloy, composite coating of CaHPO4·2H2O (DCPD) and MgHPO4·3H2O were prepared in one step using chemical conversion method. By changing the pH of phosphating conversion solution, the composite coatings with varying contents of DCPD and MgHPO4·3H2O were prepared, and their components were characterized. An electrochemical test was employed to compare the short-term corrosion properties of different composite coating. The findings revealed that the composite coating possessed the optimal short-term corrosion performance when pH of phosphating solution was 1.8. The long-term corrosion results demonstrated that the composite coatings fabricated at a pH of 1.8 in the phosphating solution, following a 7-days immersion, not only exhibited the optimal long-term corrosion resistance but also possessed the highest biomineralization capacity. This could be attributed to the fact that the composite coating prepared at this pH of phosphating solution possessed a structurally rational design, and MgHPO4·3H2O could play a supportive role in maintaining structural integrity during the degradation process. Indirect cell culture results indicated that at a dilution concentration of 25 %, the cell activity of the coatings, except for Ca-Mg-P3.0, was >75 %, suggesting good biocompatibility.
[Display omitted]
•The composite coatings are prepared by one step chemical conversion method.•Different composite coatings are prepared by changing the pH of phosphating solution.•Ca-Mg-P1.8 coating possesses the best corrosion performance and non-toxic.•MgHPO4·3H2O coating supports the structural integrity during the corrosion process. |
| ArticleNumber | 130228 |
| Author | She, Jia Qi, Fugang Guo, Liping Dai, Yilong Zhang, Dechuang Liu, Xuhui Wang, Xinxuan Wei, Wenwen Ouyang, Xiaoping |
| Author_xml | – sequence: 1 givenname: Xinxuan surname: Wang fullname: Wang, Xinxuan organization: School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China – sequence: 2 givenname: Liping surname: Guo fullname: Guo, Liping organization: School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China – sequence: 3 givenname: Xuhui surname: Liu fullname: Liu, Xuhui organization: School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China – sequence: 4 givenname: Yilong surname: Dai fullname: Dai, Yilong email: daiyilong@xtu.edu.cn organization: School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China – sequence: 5 givenname: Jia surname: She fullname: She, Jia organization: College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China – sequence: 6 givenname: Dechuang surname: Zhang fullname: Zhang, Dechuang organization: School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China – sequence: 7 givenname: Fugang surname: Qi fullname: Qi, Fugang email: qifugang@xtu.edu.cn organization: School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China – sequence: 8 givenname: Wenwen surname: Wei fullname: Wei, Wenwen organization: Institute of Materials Science and Technology, TU Wien, Vienna 1060, Austria – sequence: 9 givenname: Xiaoping surname: Ouyang fullname: Ouyang, Xiaoping organization: School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China |
| BookMark | eNqFkM9OAjEQxhuDiYC-gukLLPTPbssmHjSAYoKBg56bbrcLJbstaQsJN9_Ku0_mbtCLF06TzMw3832_AehZZzUA9xiNMMJsvBuFg6-Uk3FEEKEjTBEhkyvQxxOeJ5SmvAf6iGQ8meSc3IBBCDuEEOZ52gefc7uVVukSKue9C8ZZ6HUwIXZdKG070HUNpYrmaOIJugo2cmPblUMDZV27EyxOcDZdz8Zvm8V6lX5_0QVZwc6PsRt4NBK2fpMQ9R6qrW6MknU7tUftu2-34LqSddB3v3UIPp7n79NFsly9vE6flokihMeElxXKmcJlTkkhGeWoLAqOU85JRTLNUZZylZWIc8QylmuGihQzVnBKWZkTQoeAne-qNmXwuhJ7bxrpTwIj0XEUO_HHUXQcxZljK3z4J1QmttmcjV6a-rL88SzXbbij0V4EZXRH3HitoiiduXTiB9Ulls4 |
| CitedBy_id | crossref_primary_10_1016_j_corsci_2025_112692 crossref_primary_10_1021_acs_langmuir_5c01478 crossref_primary_10_1002_jbm_b_35602 crossref_primary_10_1016_j_compstruct_2025_119657 crossref_primary_10_1088_2053_1591_ad7811 crossref_primary_10_1016_j_apsusc_2024_161842 crossref_primary_10_1016_j_conbuildmat_2024_138618 crossref_primary_10_1016_j_cej_2024_157516 crossref_primary_10_1007_s11665_025_11118_4 crossref_primary_10_1007_s11665_025_11292_5 crossref_primary_10_1016_j_colsurfa_2024_135834 crossref_primary_10_1016_j_surfin_2025_107341 crossref_primary_10_1007_s11771_024_5668_6 crossref_primary_10_3390_coatings15020191 crossref_primary_10_1016_j_jallcom_2025_183073 crossref_primary_10_1007_s11665_025_11006_x crossref_primary_10_1016_j_mtcomm_2024_108808 crossref_primary_10_1016_j_jre_2024_03_012 crossref_primary_10_1016_j_corsci_2025_113051 crossref_primary_10_1007_s12598_025_03354_3 crossref_primary_10_1016_j_ceramint_2024_05_327 crossref_primary_10_1007_s12598_024_03160_3 crossref_primary_10_1016_j_jallcom_2024_178106 crossref_primary_10_1016_j_matlet_2024_137088 crossref_primary_10_1016_j_mtcomm_2025_112977 crossref_primary_10_1016_j_mtcomm_2024_109592 |
| Cites_doi | 10.1016/j.apsusc.2019.05.309 10.1016/j.solidstatesciences.2010.10.026 10.1088/2631-7990/acfad5 10.1016/j.jma.2022.01.001 10.1016/j.aanat.2018.06.009 10.1016/j.surfcoat.2014.08.020 10.1016/j.actbio.2013.10.036 10.1016/j.jallcom.2009.07.113 10.1016/j.mtcomm.2022.103686 10.1016/S1672-6529(14)60072-X 10.1016/j.surfin.2018.12.006 10.1016/j.jmst.2022.09.059 10.1016/j.actbio.2015.04.011 10.1016/j.corsci.2013.05.005 10.1016/S1003-6326(16)64102-X 10.1016/j.surfcoat.2020.126248 10.1016/j.jma.2022.06.005 10.1016/j.corsci.2019.01.046 10.1016/j.actbio.2011.10.016 10.1016/j.surfcoat.2009.02.026 10.1016/j.surfcoat.2015.09.033 10.1016/j.actbio.2018.08.030 10.1016/j.msec.2016.09.021 10.1152/ajpcell.00614.2008 10.1016/j.surfcoat.2010.11.027 10.1038/aps.2013.41 10.1016/j.surfcoat.2023.129920 10.1177/0885328216657271 10.1016/j.mser.2014.01.001 10.1016/j.surfcoat.2020.126318 10.1016/j.actbio.2009.12.020 10.1016/j.apsusc.2010.09.050 10.1016/j.bone.2009.11.029 10.1016/j.corsci.2014.08.007 10.1016/j.corsci.2014.03.021 10.1016/j.corsci.2016.10.010 10.1016/j.corsci.2022.110527 10.1016/j.surfcoat.2017.07.066 10.1016/j.matdes.2019.108259 10.1016/j.surfcoat.2020.125919 10.1016/j.bioactmat.2020.03.005 10.1016/j.jallcom.2021.160793 10.1016/j.jma.2021.06.005 10.1016/j.corsci.2022.110230 10.1016/j.jma.2021.06.024 10.1016/j.arabjc.2022.104214 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.surfcoat.2023.130228 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1879-3347 |
| ExternalDocumentID | 10_1016_j_surfcoat_2023_130228 S0257897223010034 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- SMS SPG WUQ ~HD |
| ID | FETCH-LOGICAL-c227t-7df096c1d932ba6370dbb714772f25e70547c5d07706569e60b4166b7336d9223 |
| ISSN | 0257-8972 |
| IngestDate | Tue Nov 18 21:56:43 EST 2025 Sat Nov 29 04:52:17 EST 2025 Sat Jul 20 16:35:58 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biomineralization Biocompatibility Degradable WE43 alloy Corrosion Composite coating |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c227t-7df096c1d932ba6370dbb714772f25e70547c5d07706569e60b4166b7336d9223 |
| ParticipantIDs | crossref_primary_10_1016_j_surfcoat_2023_130228 crossref_citationtrail_10_1016_j_surfcoat_2023_130228 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2023_130228 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-30 |
| PublicationDateYYYYMMDD | 2024-01-30 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Surface & coatings technology |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yang, Ling, Li, Peng, Xie, Shen, Tian, Shuai (bb0015) 2023; 144 Wang, Liu, Dai, She, Zhang, Qi, Wei, Ouyang (bb0165) 2023; 471 Asaduzzaman Chowdhury, Helal Hossain, Hossain, Hossen, Arefin Kowser, Masud Rana (bb0020) 2022; 15 Nguyen, Tseng, Cheng, Nguyen, Chang (bb0190) 2022; 31 Cheng, Lian, Hui, Li (bb0045) 2014; 11 Kuśnierczyk, Basista (bb0150) 2017; 31 Shadanbaz, Dias (bb0075) 2012; 8 Ling, Li, Zhang, Yang, Zhou, Chen, Dong, Pan, Shuai (bb0005) 2023; 6 Chunyan, Shangju, Baoxing, Xiaopeng, Xiao-Bo, Tao, Fuhui (bb0180) 2019; 150 Yang, Wang, Dong, Gong, Zhang (bb0135) 2009; 487 Huang, Yi, Gao, Wang, Chen, Liu (bb0085) 2014; 258 Tian, Zhang, Tan (bb0060) 2013; 34 Ma, Niu (bb0155) 2019; 14 Zhou, Li, Li, Ruan, Jin, Yu, Li, Chu (bb0160) 2020; 401 Li, Cui, Zeng, Li, Chen, Zheng, Kannan (bb0025) 2018; 79 Abed, Moreau (bb0070) 2009; 297 Zai, Su, Man, Lian, Li (bb0170) 2019; 492 Zhang, Lenin, Zeng, Kannan (bb0030) 2022; 10 Surmenev, Surmeneva, Ivanova (bb0145) 2014; 10 Ishizaki, Shigematsu, Saito (bb0035) 2009; 203 Jayaraj, Amruth Raj, Srinivasan, Ananthakumar, Pillai, Dhaipule, Mudali (bb0105) 2016; 113 Zeng, Hu, Zhang, Huang, Wang, Li, Han (bb0130) 2016; 26 Song, Zhang, Li, Zhao, Zhang (bb0215) 2010; 6 Tsakiris, Tardei, Clicinschi (bb0055) 2021 Mohd Daud, Hussein Al-Ashwal, Abdul Kadir, Saidin (bb0205) 2018; 220 Fahami, Ebrahimi-Kahrizsangi, Nasiri-Tabrizi (bb0210) 2011; 13 Zheng, Gu, Witte (bb0050) 2014; 77 Zai, Zhang, Su, Man, Li, Lian (bb0100) 2020; 397 Phuong, Lee, Chang, Moon (bb0225) 2013; 74 Lin, Zhong, Zheng, Cao, Wang, Wang, Liang, Cao (bb0195) 2015; 281 Zeng, Lan, Kong, Huang, Cui (bb0095) 2011; 205 Pommiers, Frayret, Castetbon, Potin-Gautier (bb0140) 2014; 84 Guo, Su, Gu, Zhang, Li, Lian, Ren (bb0175) 2020; 401 P, K, Tsn (bb0115) 2022; 10 Yang, He, Dianyu, Yang, Qi, Xie, Shen, Peng, Shuai (bb0010) 2020; 185 Wang, Shi, Zhao, Halloran, Clark, Jacobs, Kingery (bb0065) 2010; 46 Han, Luthringer, Tang, Hu, Blawert, Zheludkevich (bb0220) 2021; 883 Hikku, Arthi, Jeen Robert, Jeyasubramanian, Murugesan (bb0080) 2022; 10 Huang, Xu, Yang, Zhang, Chen, Yin, Liu, Ni, Pei (bb0120) 2017; 326 Navarro da Rocha, Cruz, de Campos, Marcal, Mijares, Coelho, Prado da Silva (bb0185) 2017; 70 Liu, Hu, Ding, Wang (bb0040) 2011; 257 Pereira, Prada Ramirez, Avila, Avila, Pinto, Miyazaki, de Melo, Bose Filho (bb0090) 2022; 206 Zhang, Wang, Zeng, Zeng, Kannan, Lin, Zheng (bb0110) 2020; 5 Wang, Witte, Xi, Zheng, Yang, Yang, Zhao, Meng, Li, Li, Chan, Qin (bb0230) 2015; 21 Zeng, Zhang, Lan, Cui, Han (bb0125) 2014; 88 Dong, Dai, Qian, Liu, Zhou, Yao, Lu, Chu, Xue, Bai (bb0200) 2022; 200 Zeng (10.1016/j.surfcoat.2023.130228_bb0095) 2011; 205 Jayaraj (10.1016/j.surfcoat.2023.130228_bb0105) 2016; 113 Huang (10.1016/j.surfcoat.2023.130228_bb0120) 2017; 326 Asaduzzaman Chowdhury (10.1016/j.surfcoat.2023.130228_bb0020) 2022; 15 Yang (10.1016/j.surfcoat.2023.130228_bb0010) 2020; 185 Tsakiris (10.1016/j.surfcoat.2023.130228_bb0055) 2021 Pereira (10.1016/j.surfcoat.2023.130228_bb0090) 2022; 206 Nguyen (10.1016/j.surfcoat.2023.130228_bb0190) 2022; 31 Huang (10.1016/j.surfcoat.2023.130228_bb0085) 2014; 258 Fahami (10.1016/j.surfcoat.2023.130228_bb0210) 2011; 13 Shadanbaz (10.1016/j.surfcoat.2023.130228_bb0075) 2012; 8 Zheng (10.1016/j.surfcoat.2023.130228_bb0050) 2014; 77 Wang (10.1016/j.surfcoat.2023.130228_bb0230) 2015; 21 Ling (10.1016/j.surfcoat.2023.130228_bb0005) 2023; 6 Navarro da Rocha (10.1016/j.surfcoat.2023.130228_bb0185) 2017; 70 Mohd Daud (10.1016/j.surfcoat.2023.130228_bb0205) 2018; 220 Ishizaki (10.1016/j.surfcoat.2023.130228_bb0035) 2009; 203 Yang (10.1016/j.surfcoat.2023.130228_bb0015) 2023; 144 Zhang (10.1016/j.surfcoat.2023.130228_bb0030) 2022; 10 Zhang (10.1016/j.surfcoat.2023.130228_bb0110) 2020; 5 P (10.1016/j.surfcoat.2023.130228_bb0115) 2022; 10 Chunyan (10.1016/j.surfcoat.2023.130228_bb0180) 2019; 150 Zhou (10.1016/j.surfcoat.2023.130228_bb0160) 2020; 401 Ma (10.1016/j.surfcoat.2023.130228_bb0155) 2019; 14 Yang (10.1016/j.surfcoat.2023.130228_bb0135) 2009; 487 Dong (10.1016/j.surfcoat.2023.130228_bb0200) 2022; 200 Cheng (10.1016/j.surfcoat.2023.130228_bb0045) 2014; 11 Zeng (10.1016/j.surfcoat.2023.130228_bb0125) 2014; 88 Wang (10.1016/j.surfcoat.2023.130228_bb0065) 2010; 46 Surmenev (10.1016/j.surfcoat.2023.130228_bb0145) 2014; 10 Lin (10.1016/j.surfcoat.2023.130228_bb0195) 2015; 281 Song (10.1016/j.surfcoat.2023.130228_bb0215) 2010; 6 Li (10.1016/j.surfcoat.2023.130228_bb0025) 2018; 79 Zai (10.1016/j.surfcoat.2023.130228_bb0170) 2019; 492 Kuśnierczyk (10.1016/j.surfcoat.2023.130228_bb0150) 2017; 31 Hikku (10.1016/j.surfcoat.2023.130228_bb0080) 2022; 10 Wang (10.1016/j.surfcoat.2023.130228_bb0165) 2023; 471 Pommiers (10.1016/j.surfcoat.2023.130228_bb0140) 2014; 84 Tian (10.1016/j.surfcoat.2023.130228_bb0060) 2013; 34 Abed (10.1016/j.surfcoat.2023.130228_bb0070) 2009; 297 Zeng (10.1016/j.surfcoat.2023.130228_bb0130) 2016; 26 Zai (10.1016/j.surfcoat.2023.130228_bb0100) 2020; 397 Han (10.1016/j.surfcoat.2023.130228_bb0220) 2021; 883 Guo (10.1016/j.surfcoat.2023.130228_bb0175) 2020; 401 Phuong (10.1016/j.surfcoat.2023.130228_bb0225) 2013; 74 Liu (10.1016/j.surfcoat.2023.130228_bb0040) 2011; 257 |
| References_xml | – volume: 6 start-page: 1736 year: 2010 end-page: 1742 ident: bb0215 article-title: Electrodeposition of ca-P coatings on biodegradable mg alloy: in vitro biomineralization behavior publication-title: Acta Biomater. – volume: 88 start-page: 452 year: 2014 end-page: 459 ident: bb0125 article-title: Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys publication-title: Corros. Sci. – volume: 281 start-page: 82 year: 2015 end-page: 88 ident: bb0195 article-title: Preparation and characterization of dopamine-induced biomimetic hydroxyapatite coatings on the AZ31 magnesium alloy publication-title: Surf. Coat. Technol. – volume: 8 start-page: 20 year: 2012 end-page: 30 ident: bb0075 article-title: Calcium phosphate coatings on magnesium alloys for biomedical applications: a review publication-title: Acta Biomater. – volume: 15 year: 2022 ident: bb0020 article-title: Advances in coatings on mg alloys and their anti-microbial activity for implant applications publication-title: Arab. J. Chem. – start-page: 1884 year: 2021 end-page: 1905 ident: bb0055 article-title: Biodegradable mg alloys for orthopedic implants – a review publication-title: Journal of Magnesium and Alloys – volume: 26 start-page: 472 year: 2016 end-page: 483 ident: bb0130 article-title: Corrosion resistance of cerium-doped zinc calcium phosphate chemical conversion coatings on AZ31 magnesium alloy publication-title: Trans. Nonferrous Met. Soc. Chin. – volume: 10 start-page: 557 year: 2014 end-page: 579 ident: bb0145 article-title: Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review publication-title: Acta Biomater. – volume: 144 start-page: 1 year: 2023 end-page: 14 ident: bb0015 article-title: Microstructure development and biodegradation behavior of additively manufactured mg-Zn-Gd alloy with LPSO structure publication-title: Journal of Materials Science & Technology – volume: 79 start-page: 23 year: 2018 end-page: 36 ident: bb0025 article-title: Advances in functionalized polymer coatings on biodegradable magnesium alloys - a review publication-title: Acta Biomater. – volume: 6 year: 2023 ident: bb0005 article-title: Influence of heat treatment on microstructure, mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion publication-title: International Journal of Extreme Manufacturing – volume: 10 start-page: 1154 year: 2022 end-page: 1170 ident: bb0030 article-title: Advances in hydroxyapatite coatings on biodegradable magnesium and its alloys publication-title: Journal of Magnesium and Alloys – volume: 206 start-page: 1821 year: 2022 end-page: 1845 ident: bb0090 article-title: Cerium conversion coating and sol-gel coating for corrosion protection of the WE43 Mg alloy publication-title: Corros. Sci. – volume: 220 start-page: 29 year: 2018 end-page: 37 ident: bb0205 article-title: Polydopamine-assisted chlorhexidine immobilization on medical grade stainless steel 316L: apatite formation and in vitro osteoblastic evaluation publication-title: Ann. Anat. – volume: 84 start-page: 135 year: 2014 end-page: 146 ident: bb0140 article-title: Alternative conversion coatings to chromate for the protection of magnesium alloys publication-title: Corros. Sci. – volume: 257 start-page: 2051 year: 2011 end-page: 2057 ident: bb0040 article-title: Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition publication-title: Appl. Surf. Sci. – volume: 471 year: 2023 ident: bb0165 article-title: A novel ca-mg-P/PDA composite coating of mg alloys to improve corrosion resistance for orthopedic implant materials publication-title: Surf. Coat. Technol. – volume: 487 start-page: 64 year: 2009 end-page: 68 ident: bb0135 article-title: Rare earth conversion coating on mg–8.5Li alloys publication-title: J. Alloys Compd. – volume: 203 start-page: 2288 year: 2009 end-page: 2291 ident: bb0035 article-title: Anticorrosive magnesium phosphate coating on AZ31 magnesium alloy publication-title: Surf. Coat. Technol. – volume: 34 start-page: 1467 year: 2013 end-page: 1474 ident: bb0060 article-title: Calcitonin gene-related peptide stimulates BMP-2 expression and the differentiation of human osteoblast-like cells in vitro publication-title: Acta Pharmacol. Sin. – volume: 401 year: 2020 ident: bb0160 article-title: Calcium phosphate coating on biomedical WE43 magnesium alloy pretreated with a magnesium phosphate layer for corrosion protection publication-title: Surf. Coat. Technol. – volume: 401 year: 2020 ident: bb0175 article-title: Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating publication-title: Surf. Coat. Technol. – volume: 31 year: 2022 ident: bb0190 article-title: Formation and characterization of calcium phosphate ceramic coatings on Ti-6Al-4V alloy publication-title: Materials Today Communications – volume: 11 start-page: 610 year: 2014 end-page: 619 ident: bb0045 article-title: Biocompatible DCPD coating formed on AZ91D magnesium alloy by chemical deposition and its corrosion behaviors in SBF publication-title: J. Bionic Eng. – volume: 46 start-page: 1369 year: 2010 end-page: 1379 ident: bb0065 article-title: Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption publication-title: Bone – volume: 258 start-page: 664 year: 2014 end-page: 671 ident: bb0085 article-title: Carboxymethyl chitosan functionalization of CPED-treated magnesium alloy via polydopamine as intermediate layer publication-title: Surf. Coat. Technol. – volume: 883 year: 2021 ident: bb0220 article-title: Evolution and performance of a MgO/HA/DCPD gradient coating on pure magnesium publication-title: J. Alloys Compd. – volume: 297 start-page: C360 year: 2009 end-page: C368 ident: bb0070 article-title: Importance of melastatin-like transient receptor potential 7 and magnesium in the stimulation of osteoblast proliferation and migration by platelet-derived growth factor publication-title: Am. J. Physiol. Cell Physiol. – volume: 13 start-page: 135 year: 2011 end-page: 141 ident: bb0210 article-title: Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite publication-title: Solid State Sci. – volume: 74 start-page: 314 year: 2013 end-page: 322 ident: bb0225 article-title: Effects of Zn publication-title: Corros. Sci. – volume: 5 start-page: 398 year: 2020 end-page: 409 ident: bb0110 article-title: Biodegradation behavior of micro-arc oxidation coating on magnesium alloy-from a protein perspective publication-title: Bioactive Materials – volume: 397 year: 2020 ident: bb0100 article-title: Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on mg alloy publication-title: Surf. Coat. Technol. – volume: 113 start-page: 104 year: 2016 end-page: 115 ident: bb0105 article-title: Composite magnesium phosphate coatings for improved corrosion resistance of magnesium AZ31 alloy publication-title: Corros. Sci. – volume: 150 start-page: 279 year: 2019 end-page: 295 ident: bb0180 article-title: Ratio of total acidity to pH value of coating bath: a new strategy towards phosphate conversion coatings with optimized corrosion resistance for magnesium alloys publication-title: Corros. Sci. – volume: 70 start-page: 408 year: 2017 end-page: 417 ident: bb0185 article-title: Mg substituted apatite coating from alkali conversion of acidic calcium phosphate publication-title: Materials Science & Engineering C-Materials for Biological Applications – volume: 185 year: 2020 ident: bb0010 article-title: Mg bone implant: features, developments and perspectives publication-title: Mater. Des. – volume: 77 start-page: 1 year: 2014 end-page: 34 ident: bb0050 article-title: Biodegradable metals publication-title: Materials Science and Engineering: R: Reports – volume: 21 start-page: 237 year: 2015 end-page: 249 ident: bb0230 article-title: Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials publication-title: Acta Biomater. – volume: 492 start-page: 314 year: 2019 end-page: 327 ident: bb0170 article-title: Effect of pH value and preparation temperature on the formation of magnesium phosphate conversion coatings on AZ31 magnesium alloy publication-title: Appl. Surf. Sci. – volume: 10 start-page: 295 year: 2022 end-page: 312 ident: bb0115 article-title: Controlling the rate of degradation of Mg using magnesium fluoride and magnesium fluoride-magnesium phosphate duplex coatings publication-title: Journal of Magnesium and Alloys – volume: 205 start-page: 3347 year: 2011 end-page: 3355 ident: bb0095 article-title: Characterization of calcium-modified zinc phosphate conversion coatings and their influences on corrosion resistance of AZ31 alloy publication-title: Surf. Coat. Technol. – volume: 14 start-page: 208 year: 2019 end-page: 214 ident: bb0155 article-title: In vitro biocorrosion and biocompatibility of AZ31 modified with magnesium phosphate coating by chemical deposition publication-title: Surfaces and Interfaces – volume: 10 start-page: 1821 year: 2022 end-page: 1845 ident: bb0080 article-title: Calcium phosphate conversion technique: a versatile route to develop corrosion resistant hydroxyapatite coating over mg/mg alloys based implants publication-title: Journal of Magnesium and Alloys – volume: 200 year: 2022 ident: bb0200 article-title: Dual self-healing inorganic-organic hybrid coating on biomedical mg publication-title: Corros. Sci. – volume: 31 start-page: 878 year: 2017 end-page: 900 ident: bb0150 article-title: Recent advances in research on magnesium alloys and magnesium–calcium phosphate composites as biodegradable implant materials publication-title: J. Biomater. Appl. – volume: 326 start-page: 270 year: 2017 end-page: 280 ident: bb0120 article-title: Corrosion behavior and biocompatibility of hydroxyapatite/magnesium phosphate/zinc phosphate composite coating deposited on AZ31 alloy publication-title: Surf. Coat. Technol. – volume: 492 start-page: 314 year: 2019 ident: 10.1016/j.surfcoat.2023.130228_bb0170 article-title: Effect of pH value and preparation temperature on the formation of magnesium phosphate conversion coatings on AZ31 magnesium alloy publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.309 – volume: 13 start-page: 135 issue: 1 year: 2011 ident: 10.1016/j.surfcoat.2023.130228_bb0210 article-title: Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2010.10.026 – volume: 6 issue: 1 year: 2023 ident: 10.1016/j.surfcoat.2023.130228_bb0005 article-title: Influence of heat treatment on microstructure, mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion publication-title: International Journal of Extreme Manufacturing doi: 10.1088/2631-7990/acfad5 – volume: 10 start-page: 1154 issue: 5 year: 2022 ident: 10.1016/j.surfcoat.2023.130228_bb0030 article-title: Advances in hydroxyapatite coatings on biodegradable magnesium and its alloys publication-title: Journal of Magnesium and Alloys doi: 10.1016/j.jma.2022.01.001 – volume: 220 start-page: 29 year: 2018 ident: 10.1016/j.surfcoat.2023.130228_bb0205 article-title: Polydopamine-assisted chlorhexidine immobilization on medical grade stainless steel 316L: apatite formation and in vitro osteoblastic evaluation publication-title: Ann. Anat. doi: 10.1016/j.aanat.2018.06.009 – volume: 258 start-page: 664 year: 2014 ident: 10.1016/j.surfcoat.2023.130228_bb0085 article-title: Carboxymethyl chitosan functionalization of CPED-treated magnesium alloy via polydopamine as intermediate layer publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.08.020 – volume: 10 start-page: 557 issue: 2 year: 2014 ident: 10.1016/j.surfcoat.2023.130228_bb0145 article-title: Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.10.036 – volume: 487 start-page: 64 issue: 1–2 year: 2009 ident: 10.1016/j.surfcoat.2023.130228_bb0135 article-title: Rare earth conversion coating on mg–8.5Li alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.07.113 – volume: 31 year: 2022 ident: 10.1016/j.surfcoat.2023.130228_bb0190 article-title: Formation and characterization of calcium phosphate ceramic coatings on Ti-6Al-4V alloy publication-title: Materials Today Communications doi: 10.1016/j.mtcomm.2022.103686 – volume: 11 start-page: 610 issue: 4 year: 2014 ident: 10.1016/j.surfcoat.2023.130228_bb0045 article-title: Biocompatible DCPD coating formed on AZ91D magnesium alloy by chemical deposition and its corrosion behaviors in SBF publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(14)60072-X – volume: 14 start-page: 208 year: 2019 ident: 10.1016/j.surfcoat.2023.130228_bb0155 article-title: In vitro biocorrosion and biocompatibility of AZ31 modified with magnesium phosphate coating by chemical deposition publication-title: Surfaces and Interfaces doi: 10.1016/j.surfin.2018.12.006 – volume: 144 start-page: 1 year: 2023 ident: 10.1016/j.surfcoat.2023.130228_bb0015 article-title: Microstructure development and biodegradation behavior of additively manufactured mg-Zn-Gd alloy with LPSO structure publication-title: Journal of Materials Science & Technology doi: 10.1016/j.jmst.2022.09.059 – volume: 21 start-page: 237 year: 2015 ident: 10.1016/j.surfcoat.2023.130228_bb0230 article-title: Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.04.011 – volume: 74 start-page: 314 year: 2013 ident: 10.1016/j.surfcoat.2023.130228_bb0225 article-title: Effects of Zn2+ concentration and pH on the zinc phosphate conversion coatings on AZ31 magnesium alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.05.005 – volume: 26 start-page: 472 issue: 2 year: 2016 ident: 10.1016/j.surfcoat.2023.130228_bb0130 article-title: Corrosion resistance of cerium-doped zinc calcium phosphate chemical conversion coatings on AZ31 magnesium alloy publication-title: Trans. Nonferrous Met. Soc. Chin. doi: 10.1016/S1003-6326(16)64102-X – volume: 401 year: 2020 ident: 10.1016/j.surfcoat.2023.130228_bb0160 article-title: Calcium phosphate coating on biomedical WE43 magnesium alloy pretreated with a magnesium phosphate layer for corrosion protection publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126248 – volume: 10 start-page: 1821 issue: 7 year: 2022 ident: 10.1016/j.surfcoat.2023.130228_bb0080 article-title: Calcium phosphate conversion technique: a versatile route to develop corrosion resistant hydroxyapatite coating over mg/mg alloys based implants publication-title: Journal of Magnesium and Alloys doi: 10.1016/j.jma.2022.06.005 – volume: 150 start-page: 279 year: 2019 ident: 10.1016/j.surfcoat.2023.130228_bb0180 article-title: Ratio of total acidity to pH value of coating bath: a new strategy towards phosphate conversion coatings with optimized corrosion resistance for magnesium alloys publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.01.046 – volume: 8 start-page: 20 issue: 1 year: 2012 ident: 10.1016/j.surfcoat.2023.130228_bb0075 article-title: Calcium phosphate coatings on magnesium alloys for biomedical applications: a review publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.10.016 – volume: 203 start-page: 2288 issue: 16 year: 2009 ident: 10.1016/j.surfcoat.2023.130228_bb0035 article-title: Anticorrosive magnesium phosphate coating on AZ31 magnesium alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.02.026 – volume: 281 start-page: 82 year: 2015 ident: 10.1016/j.surfcoat.2023.130228_bb0195 article-title: Preparation and characterization of dopamine-induced biomimetic hydroxyapatite coatings on the AZ31 magnesium alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.09.033 – volume: 79 start-page: 23 year: 2018 ident: 10.1016/j.surfcoat.2023.130228_bb0025 article-title: Advances in functionalized polymer coatings on biodegradable magnesium alloys - a review publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.08.030 – volume: 70 start-page: 408 issue: Pt 1 year: 2017 ident: 10.1016/j.surfcoat.2023.130228_bb0185 article-title: Mg substituted apatite coating from alkali conversion of acidic calcium phosphate publication-title: Materials Science & Engineering C-Materials for Biological Applications doi: 10.1016/j.msec.2016.09.021 – volume: 297 start-page: C360 issue: 2 year: 2009 ident: 10.1016/j.surfcoat.2023.130228_bb0070 article-title: Importance of melastatin-like transient receptor potential 7 and magnesium in the stimulation of osteoblast proliferation and migration by platelet-derived growth factor publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00614.2008 – volume: 205 start-page: 3347 issue: 11 year: 2011 ident: 10.1016/j.surfcoat.2023.130228_bb0095 article-title: Characterization of calcium-modified zinc phosphate conversion coatings and their influences on corrosion resistance of AZ31 alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.11.027 – volume: 34 start-page: 1467 issue: 11 year: 2013 ident: 10.1016/j.surfcoat.2023.130228_bb0060 article-title: Calcitonin gene-related peptide stimulates BMP-2 expression and the differentiation of human osteoblast-like cells in vitro publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2013.41 – volume: 471 year: 2023 ident: 10.1016/j.surfcoat.2023.130228_bb0165 article-title: A novel ca-mg-P/PDA composite coating of mg alloys to improve corrosion resistance for orthopedic implant materials publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2023.129920 – volume: 31 start-page: 878 issue: 6 year: 2017 ident: 10.1016/j.surfcoat.2023.130228_bb0150 article-title: Recent advances in research on magnesium alloys and magnesium–calcium phosphate composites as biodegradable implant materials publication-title: J. Biomater. Appl. doi: 10.1177/0885328216657271 – volume: 77 start-page: 1 year: 2014 ident: 10.1016/j.surfcoat.2023.130228_bb0050 article-title: Biodegradable metals publication-title: Materials Science and Engineering: R: Reports doi: 10.1016/j.mser.2014.01.001 – volume: 401 year: 2020 ident: 10.1016/j.surfcoat.2023.130228_bb0175 article-title: Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126318 – volume: 6 start-page: 1736 issue: 5 year: 2010 ident: 10.1016/j.surfcoat.2023.130228_bb0215 article-title: Electrodeposition of ca-P coatings on biodegradable mg alloy: in vitro biomineralization behavior publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.12.020 – volume: 257 start-page: 2051 issue: 6 year: 2011 ident: 10.1016/j.surfcoat.2023.130228_bb0040 article-title: Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.09.050 – volume: 46 start-page: 1369 issue: 5 year: 2010 ident: 10.1016/j.surfcoat.2023.130228_bb0065 article-title: Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption publication-title: Bone doi: 10.1016/j.bone.2009.11.029 – volume: 88 start-page: 452 year: 2014 ident: 10.1016/j.surfcoat.2023.130228_bb0125 article-title: Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.08.007 – volume: 84 start-page: 135 year: 2014 ident: 10.1016/j.surfcoat.2023.130228_bb0140 article-title: Alternative conversion coatings to chromate for the protection of magnesium alloys publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.03.021 – volume: 113 start-page: 104 year: 2016 ident: 10.1016/j.surfcoat.2023.130228_bb0105 article-title: Composite magnesium phosphate coatings for improved corrosion resistance of magnesium AZ31 alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2016.10.010 – volume: 206 start-page: 1821 year: 2022 ident: 10.1016/j.surfcoat.2023.130228_bb0090 article-title: Cerium conversion coating and sol-gel coating for corrosion protection of the WE43 Mg alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110527 – volume: 326 start-page: 270 year: 2017 ident: 10.1016/j.surfcoat.2023.130228_bb0120 article-title: Corrosion behavior and biocompatibility of hydroxyapatite/magnesium phosphate/zinc phosphate composite coating deposited on AZ31 alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.07.066 – volume: 185 year: 2020 ident: 10.1016/j.surfcoat.2023.130228_bb0010 article-title: Mg bone implant: features, developments and perspectives publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108259 – volume: 397 year: 2020 ident: 10.1016/j.surfcoat.2023.130228_bb0100 article-title: Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on mg alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125919 – volume: 5 start-page: 398 issue: 2 year: 2020 ident: 10.1016/j.surfcoat.2023.130228_bb0110 article-title: Biodegradation behavior of micro-arc oxidation coating on magnesium alloy-from a protein perspective publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2020.03.005 – volume: 883 year: 2021 ident: 10.1016/j.surfcoat.2023.130228_bb0220 article-title: Evolution and performance of a MgO/HA/DCPD gradient coating on pure magnesium publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.160793 – volume: 10 start-page: 295 issue: 1 year: 2022 ident: 10.1016/j.surfcoat.2023.130228_bb0115 article-title: Controlling the rate of degradation of Mg using magnesium fluoride and magnesium fluoride-magnesium phosphate duplex coatings publication-title: Journal of Magnesium and Alloys doi: 10.1016/j.jma.2021.06.005 – volume: 200 year: 2022 ident: 10.1016/j.surfcoat.2023.130228_bb0200 article-title: Dual self-healing inorganic-organic hybrid coating on biomedical mg publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110230 – start-page: 1884 year: 2021 ident: 10.1016/j.surfcoat.2023.130228_bb0055 article-title: Biodegradable mg alloys for orthopedic implants – a review publication-title: Journal of Magnesium and Alloys doi: 10.1016/j.jma.2021.06.024 – volume: 15 issue: 11 year: 2022 ident: 10.1016/j.surfcoat.2023.130228_bb0020 article-title: Advances in coatings on mg alloys and their anti-microbial activity for implant applications publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2022.104214 |
| SSID | ssj0001794 |
| Score | 2.5632756 |
| Snippet | In order to solve the issue of rapid corrosion in magnesium alloy, composite coating of CaHPO4·2H2O (DCPD) and MgHPO4·3H2O were prepared in one step using... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 130228 |
| SubjectTerms | Biocompatibility Biomineralization Composite coating Corrosion Degradable WE43 alloy |
| Title | Enhanced corrosion resistance and cell activity of magnesium alloy by DCPD/MgHPO4·3H2O coating via one-step chemical conversion |
| URI | https://dx.doi.org/10.1016/j.surfcoat.2023.130228 |
| Volume | 476 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3347 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001794 issn: 0257-8972 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFAk4ICggykt7oKfIbWI7u95jSQMBQRupRQony961W1fBidI4Sm_8Ev4Gd34ZM_uIgxqpIMTFiiyv1_H3eXZmdh6EvOapDMKAJZ5SifDCLGx7aSdgnoxkwlSaJnmmu5Z85EdH0Wgkho3Gd5cLsxjzsoyWSzH9r1DDOQAbU2f_Au7VTeEE_AbQ4Qiww_GPgO-X52ZXH-xKWAIRXjCpUU10yQHorNdFNBY2HuNrcgYSr8A45fF4coUq6WFveAjP8OlsMDwOd3v-7hseDPxjuGmiA6UXRdKalJkHJJm2pKs6oGPYtQNuXek9qWZ5IjPNMjv-sjXf4NM3cmdUlMuqJu27amKcB1O3ymL8UFHpS6vzqqid7Toy4UsxntgLrTfDxwgYtzGjXWzX0my0JAS54kXC9PjZy4ykjrjwgsCU63SiPDS9ZK4tC8ZDcQHr0SzH_7mHTeOxEbZvM9N_L7l9ghPifGCfdbCCzy2y5fOuiJpk6-B9f_RhtdajONNePPuAaznom2fbrP6sqTSnD8h9a4vQA8Ohh6SRldvkTs-1ANwm99aqVT4i3xyz6IpZtGYWBWZRZBZ1zKKTnK6YRTWzaHpFkVn7hlc_fyCnqOUEBU5RxynqOEVrTj0mn9_2T3sDzzbw8KTv87nHVQ4WsuwoMBLShAW8DV8_74Rg0eV-N-NgLnDZVW2Oe-1MZKydgn3AUizRqQS8_SekWcK8TwllQqRKMaaCjIVRN4qkH4RKRX6YJnAntkO67r3G0la3xyYr49iFMV7EDo8Y8YgNHjtkfzVuauq73DhCONhiq6Ua7TMGtt0w9tk_jH1O7tYfzAvSnM-q7CW5LRfz4nL2yhLzF6idvAU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+corrosion+resistance+and+cell+activity+of+magnesium+alloy+by+DCPD%2FMgHPO4%C2%B73H2O+coating+via+one-step+chemical+conversion&rft.jtitle=Surface+%26+coatings+technology&rft.au=Wang%2C+Xinxuan&rft.au=Guo%2C+Liping&rft.au=Liu%2C+Xuhui&rft.au=Dai%2C+Yilong&rft.date=2024-01-30&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=476&rft_id=info:doi/10.1016%2Fj.surfcoat.2023.130228&rft.externalDocID=S0257897223010034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |