An optimized twin support vector regression algorithm enhanced by ensemble empirical mode decomposition and gated recurrent unit
Despite the rapid development of support vector regression (SVR), it costs unacceptable training time in large-scale datasets and is hard to fit complex, high frequency oscillating, and non-stationary time series data. SVRs are still perplexed by the selection of critical parameters and hidden noise...
Uloženo v:
| Vydáno v: | Information sciences Ročník 598; s. 101 - 125 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.06.2022
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Despite the rapid development of support vector regression (SVR), it costs unacceptable training time in large-scale datasets and is hard to fit complex, high frequency oscillating, and non-stationary time series data. SVRs are still perplexed by the selection of critical parameters and hidden noise in input data. This work proposes a hybrid model to overcome these issues that need to be resolved, namely EEMD-GRU-TWSVRCSSA. The proposed model utilizes twin support vector regression (TWSVR) to overcome the shortcomings of the SVR in terms of training time and fitting accuracy. A novel meta-heuristic algorithm, cloud salp swarm algorithm (CSSA), is employed to automatically select the optimal hyper parameters for the TWSVR. The ensemble empirical mode decomposition (EEMD) reduces the influences of hidden noise in the input data, meanwhile splitting the high-frequency and low-frequency sub-datasets and feeding them to the gated recurrent unit (GRU) and TWSVR-based model, respectively. The forecasting of the proposed algorithm and other alternative algorithms are conducted on three real-world electric load datasets from the National Electricity Market (NEM), Queensland and New South Wales regions, Australia, and the well-known National Grid UK. Experimental results demonstrate the superiority and competitiveness of the proposed algorithm. |
|---|---|
| AbstractList | Despite the rapid development of support vector regression (SVR), it costs unacceptable training time in large-scale datasets and is hard to fit complex, high frequency oscillating, and non-stationary time series data. SVRs are still perplexed by the selection of critical parameters and hidden noise in input data. This work proposes a hybrid model to overcome these issues that need to be resolved, namely EEMD-GRU-TWSVRCSSA. The proposed model utilizes twin support vector regression (TWSVR) to overcome the shortcomings of the SVR in terms of training time and fitting accuracy. A novel meta-heuristic algorithm, cloud salp swarm algorithm (CSSA), is employed to automatically select the optimal hyper parameters for the TWSVR. The ensemble empirical mode decomposition (EEMD) reduces the influences of hidden noise in the input data, meanwhile splitting the high-frequency and low-frequency sub-datasets and feeding them to the gated recurrent unit (GRU) and TWSVR-based model, respectively. The forecasting of the proposed algorithm and other alternative algorithms are conducted on three real-world electric load datasets from the National Electricity Market (NEM), Queensland and New South Wales regions, Australia, and the well-known National Grid UK. Experimental results demonstrate the superiority and competitiveness of the proposed algorithm. |
| Author | Zhang, Zichen Guo, Lili Ding, Shifei Sun, Yuting |
| Author_xml | – sequence: 1 givenname: Shifei surname: Ding fullname: Ding, Shifei email: dingsf@cumt.edu.cn organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China – sequence: 2 givenname: Zichen surname: Zhang fullname: Zhang, Zichen organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China – sequence: 3 givenname: Lili surname: Guo fullname: Guo, Lili email: liliguo@cumt.edu.cn organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China – sequence: 4 givenname: Yuting surname: Sun fullname: Sun, Yuting organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China |
| BookMark | eNp90E9L5DAYx_GwKDj-eQHe8gbafZK0aYc9iei6IHjRc8ikT8dnaJOSZBQ9-dLNrHvag6cEwifw-56yIx88MnYpoBYg9M9dTT7VEqSsQdWg4Qdbib6TlZZrccRWABIqkG17wk5T2gFA02m9Yh9Xnocl00zvOPD8Sp6n_bKEmPkLuhwij7iNmBIFz-20DZHy88zRP1vviti8lXvCeTMhx3mhSM5OfA4D8gFdmJeQKP-1fuBbmwuJ6PYxos987ymfs-PRTgkv_p1n7On25vH6rrp_-P3n-uq-clJ2udLDIMAqpbUaYWzG1nZ60zS96py0rbayEa0uj83Y904pXK9HPfSNcw3ItVVCnTHx9a-LIaWIo1kizTa-GQHmkNDsTEloDgkNKFMSFtP9Zxxle5iTo6XpW_nrS2KZ9EIYTXKEh2JU5mczBPpGfwIpdpDA |
| CitedBy_id | crossref_primary_10_1002_qre_3643 crossref_primary_10_1063_5_0178490 crossref_primary_10_1016_j_knosys_2023_110627 crossref_primary_10_1016_j_biombioe_2025_108312 crossref_primary_10_1177_01423312241239413 crossref_primary_10_1007_s13042_024_02302_4 crossref_primary_10_1016_j_asoc_2024_112291 crossref_primary_10_1016_j_ins_2023_03_131 crossref_primary_10_1016_j_knosys_2024_112943 crossref_primary_10_3390_atmos14081308 crossref_primary_10_1109_TDEI_2024_3373713 crossref_primary_10_3390_e26090806 crossref_primary_10_1016_j_jairtraman_2024_102611 crossref_primary_10_14710_ijred_2023_55078 crossref_primary_10_1007_s10462_024_10856_6 crossref_primary_10_1016_j_ijepes_2025_111102 crossref_primary_10_1016_j_ins_2022_09_002 crossref_primary_10_1016_j_asoc_2023_110894 crossref_primary_10_1016_j_asoc_2024_111425 crossref_primary_10_1016_j_asoc_2025_112779 crossref_primary_10_1016_j_chaos_2024_114852 crossref_primary_10_2478_amns_2023_2_00081 crossref_primary_10_1016_j_engappai_2023_106572 crossref_primary_10_1016_j_eswa_2025_127971 |
| Cites_doi | 10.1016/j.ins.2019.02.062 10.1016/j.jclepro.2020.122248 10.1016/j.patcog.2015.10.008 10.1016/j.catena.2018.03.003 10.1016/j.asoc.2019.105589 10.1109/TIE.2014.2361493 10.1016/j.advengsoft.2017.07.002 10.3390/en4060960 10.1016/j.rser.2019.01.014 10.1016/j.ins.2022.01.038 10.1007/s11071-020-06111-6 10.1007/s00521-020-05225-7 10.1016/j.apenergy.2018.02.140 10.1109/TPAMI.2007.1068 10.1023/A:1022627411411 10.1038/s41467-018-04482-4 10.1016/j.apenergy.2017.03.034 10.1016/j.neunet.2015.10.007 10.3390/en9030221 10.1016/j.renene.2016.03.103 10.1007/s13042-018-0799-4 10.3390/en6041887 10.1016/j.apenergy.2019.01.127 10.1016/j.ins.2021.04.031 10.3390/en11041009 10.1016/j.eswa.2017.08.038 10.1109/TSG.2018.2844307 10.1016/j.ins.2016.09.033 10.1109/TITS.2019.2963722 10.3115/v1/D14-1179 10.1007/s13042-019-00990-x 10.1007/s13042-019-01041-1 10.1109/TSG.2016.2628061 10.1007/s11432-019-2850-3 10.1109/TNNLS.2019.2946414 10.1016/j.ins.2021.01.059 10.1142/S1793536909000047 10.1007/s11356-020-11065-8 10.1016/j.ins.2018.12.026 10.1016/j.ins.2021.09.033 10.1016/j.ins.2013.11.003 10.1016/j.asoc.2016.05.025 10.1016/j.ins.2021.02.040 10.1016/j.segan.2019.100242 10.1016/j.apenergy.2018.12.004 10.3390/en9020070 10.1016/j.neunet.2009.07.002 10.1007/s13042-015-0424-8 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2022.03.060 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 125 |
| ExternalDocumentID | 10_1016_j_ins_2022_03_060 S0020025522002808 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c227t-6dd10a33663f0f4f5a76b44837c2a56a241566634f88c33e99f6d84cc4029a313 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000783324300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 07:28:29 EST 2025 Tue Nov 18 21:58:01 EST 2025 Fri Feb 23 02:40:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cloud theory Gated recurrent unit (GRU) Ensemble empirical mode decomposition (EEMD) Twin support vector regression (TWSVR) Salp swarm algorithm (SSA) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c227t-6dd10a33663f0f4f5a76b44837c2a56a241566634f88c33e99f6d84cc4029a313 |
| PageCount | 25 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2022_03_060 crossref_citationtrail_10_1016_j_ins_2022_03_060 elsevier_sciencedirect_doi_10_1016_j_ins_2022_03_060 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Peng (b0115) 2010; 23 Hong, Dong, Lai, Chen, Wei (b0130) 2011; 4 Tang, Tian, Pardalos (b0020) 2019; 480 Ding, Zhang, Yu (b0105) 2016; 7 Li, Wang, Geng, Hong (b0195) 2021; 103 Niu, Ha, Chi (b0040) 2020; 63 Fan, Wang, Gang, Li (b0140) 2019; 236 Khemchandani, Sharma (b0110) 2016; 47 Wang, Li, Fu, Tang (b0150) 2020; 31 Niu, Feng, Zeng, Feng, Min, Cheng, Zhou (b0210) 2019; 82 Li, Liu, Liu (b0220) 2004; 6 Zhang, Feng, Marti-Puig, Caiafa, Sun, Duan, Solé-Casals (b0175) 2021; 581 Guo, Hu, Qian, Liu, Zhang, Sun, Gao, Yin (b0155) 2021; 22 Al-Smadi, Talafha, Al-Ayyoub, Jararweh (b0240) 2019; 10 Sun, Fujita, Zheng, Ai (b0030) 2021; 559 Peng, Fan, Huang, Hong (b0160) 2016; 9 Chen, Xu, Chu, Li, Wu, Ni, Bao, Wang (b0055) 2017; 195 Santhosh, Venkaiah, Kumar (b0205) 2019; 19 Chen, Hong, Shen, Huang (b0035) 2016; 9 Dong, Zhang, Hong (b0125) 2018; 11 Tao, Li, Guo, Ren, Li, Liu, Zou (b0010) 2019; 487 Fan, Qing, Wang, Hong, Li (b0165) 2013; 6 Chu, Dong, Han, Xie, Xu, Xie (b0080) 2021; 28 Chen, Shao, Li, Deng (b0100) 2016; 52 Shao, Chen, Deng (b0050) 2014; 263 Bayat, Prezioso, Chakrabarti, Nili, Kataeva, Strukov (b0235) 2018; 9 Ali, Prasad (b0180) 2019; 104 AL-Musaylh, Deo, Li, Adamowski (b0075) 2018; 217 Chen, Chen, Wang, He, Hu, He (b0230) 2019; 10 Khemchandani, Goyal, Chandra (b0120) 2016; 74 Du, Song, Chen, Shu, Guo (b0190) 2020; 270 Ding, Qin (b0245) 2020; 11 Wang, Xu, Zhou (b0095) 2021; 33 Li, Fang, Liu (b0070) 2018; 91 K. Cho, B. Van Merriënboer, C. Gulcehre, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014. Yang, Che, Deng, Li (b0060) 2019; 238 Nguyen, Kim (b0185) 2016; 373 Zhang, Qiao, Ji, Li (b0250) 2020; 11 Hu, Zhang, Dong, Xu, Liu (b0170) 2021; 563 Gupta, Kambli, Wagh, Kazi (b0025) 2015; 62 Cortes, Vapnik (b0005) 1995; 20 Jiang, Zhang, Muljadi, Zhang, Gao (b0065) 2018; 9 Sun, Ding, Guo, Zhang (b0045) 2022; 591 Wu, Huang (b0200) 2009; 1 Huang, Zhao (b0015) 2018; 165 Jayadeva, R. Khemchandani, S. Chandra. Twin support vector machines for pattern classification. IEEE Transactions on pattern analysis and machine intelligence. 29(5) 2007 905-910. Liu (b0145) 2020; 2 Wang, Zhang, Wu, Wang (b0225) 2016; 94 Prasad, Balasundaram (b0090) 2021; 571 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0135) 2017; 114 Zhang (10.1016/j.ins.2022.03.060_b0175) 2021; 581 Al-Smadi (10.1016/j.ins.2022.03.060_b0240) 2019; 10 Du (10.1016/j.ins.2022.03.060_b0190) 2020; 270 Chen (10.1016/j.ins.2022.03.060_b0035) 2016; 9 10.1016/j.ins.2022.03.060_b0215 Shao (10.1016/j.ins.2022.03.060_b0050) 2014; 263 Peng (10.1016/j.ins.2022.03.060_b0115) 2010; 23 Dong (10.1016/j.ins.2022.03.060_b0125) 2018; 11 Chu (10.1016/j.ins.2022.03.060_b0080) 2021; 28 Niu (10.1016/j.ins.2022.03.060_b0040) 2020; 63 Sun (10.1016/j.ins.2022.03.060_b0030) 2021; 559 Sun (10.1016/j.ins.2022.03.060_b0045) 2022; 591 Chen (10.1016/j.ins.2022.03.060_b0230) 2019; 10 Fan (10.1016/j.ins.2022.03.060_b0140) 2019; 236 Bayat (10.1016/j.ins.2022.03.060_b0235) 2018; 9 Mirjalili (10.1016/j.ins.2022.03.060_b0135) 2017; 114 Guo (10.1016/j.ins.2022.03.060_b0155) 2021; 22 Gupta (10.1016/j.ins.2022.03.060_b0025) 2015; 62 Cortes (10.1016/j.ins.2022.03.060_b0005) 1995; 20 Tao (10.1016/j.ins.2022.03.060_b0010) 2019; 487 Santhosh (10.1016/j.ins.2022.03.060_b0205) 2019; 19 Jiang (10.1016/j.ins.2022.03.060_b0065) 2018; 9 Peng (10.1016/j.ins.2022.03.060_b0160) 2016; 9 Fan (10.1016/j.ins.2022.03.060_b0165) 2013; 6 Chen (10.1016/j.ins.2022.03.060_b0100) 2016; 52 AL-Musaylh (10.1016/j.ins.2022.03.060_b0075) 2018; 217 Khemchandani (10.1016/j.ins.2022.03.060_b0110) 2016; 47 Wang (10.1016/j.ins.2022.03.060_b0095) 2021; 33 Ding (10.1016/j.ins.2022.03.060_b0105) 2016; 7 Hu (10.1016/j.ins.2022.03.060_b0170) 2021; 563 Yang (10.1016/j.ins.2022.03.060_b0060) 2019; 238 Liu (10.1016/j.ins.2022.03.060_b0145) 2020; 2 Khemchandani (10.1016/j.ins.2022.03.060_b0120) 2016; 74 Niu (10.1016/j.ins.2022.03.060_b0210) 2019; 82 Chen (10.1016/j.ins.2022.03.060_b0055) 2017; 195 Ding (10.1016/j.ins.2022.03.060_b0245) 2020; 11 Huang (10.1016/j.ins.2022.03.060_b0015) 2018; 165 Wang (10.1016/j.ins.2022.03.060_b0150) 2020; 31 Prasad (10.1016/j.ins.2022.03.060_b0090) 2021; 571 Hong (10.1016/j.ins.2022.03.060_b0130) 2011; 4 Wang (10.1016/j.ins.2022.03.060_b0225) 2016; 94 Li (10.1016/j.ins.2022.03.060_b0070) 2018; 91 Ali (10.1016/j.ins.2022.03.060_b0180) 2019; 104 Wu (10.1016/j.ins.2022.03.060_b0200) 2009; 1 Nguyen (10.1016/j.ins.2022.03.060_b0185) 2016; 373 Li (10.1016/j.ins.2022.03.060_b0195) 2021; 103 Li (10.1016/j.ins.2022.03.060_b0220) 2004; 6 Tang (10.1016/j.ins.2022.03.060_b0020) 2019; 480 Zhang (10.1016/j.ins.2022.03.060_b0250) 2020; 11 10.1016/j.ins.2022.03.060_b0085 |
| References_xml | – volume: 22 start-page: 1138 year: 2021 end-page: 1149 ident: b0155 article-title: Optimized graph convolution recurrent neural network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 270 start-page: 122248 year: 2020 ident: b0190 article-title: Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method publication-title: J. Cleaner Prod. – volume: 9 year: 2018 ident: b0235 article-title: Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits publication-title: Nat. Commun. – volume: 104 start-page: 281 year: 2019 end-page: 295 ident: b0180 article-title: Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition publication-title: Renew. Sustain. Energy Rev. – volume: 28 start-page: 56 year: 2021 end-page: 72 ident: b0080 article-title: Short-term prediction of urban PM 2.5 based on a hybrid modified variational mode decomposition and support vector regression model publication-title: Environ. Sci. Pollut. Res. – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: b0200 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adaptive Data Analysis – volume: 6 start-page: 28 year: 2004 end-page: 34 ident: b0220 article-title: Study on the universality of the normal cloud model publication-title: Eng. Sci. – volume: 487 start-page: 31 year: 2019 end-page: 56 ident: b0010 article-title: Self-adaptive cost weights-based support vector machine cost-sensitive ensemble for imbalanced data classification publication-title: Inf. Sci. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0005 article-title: Support-vector networks publication-title: Machine Learning – volume: 238 start-page: 1010 year: 2019 end-page: 1021 ident: b0060 article-title: Sequential grid approach based support vector regression for short-term electric load forecasting publication-title: Appl. Energy – volume: 82 start-page: 105589 year: 2019 ident: b0210 article-title: Forecasting reservoir monthly runoff via ensemble empirical mode decomposition and extreme learning machine optimized by an improved gravitational search algorithm publication-title: Appl. Soft Comput. – volume: 91 start-page: 63 year: 2018 end-page: 77 ident: b0070 article-title: Parameter optimization of support vector regression based on sine cosine algorithm publication-title: Expert Syst. Appl. – volume: 74 start-page: 14 year: 2016 end-page: 21 ident: b0120 article-title: TWSVR: regression via twin support vector machine publication-title: Neural Networks – volume: 62 start-page: 2478 year: 2015 end-page: 2486 ident: b0025 article-title: Support-vector-machine-based proactive cascade prediction in smart grid using probabilistic framework publication-title: IEEE Trans. Ind. Electron. – volume: 591 start-page: 400 year: 2022 end-page: 421 ident: b0045 article-title: Hypergraph regularized semi-supervised support vector machine[J] publication-title: Inf. Sci. – volume: 6 start-page: 1887 year: 2013 end-page: 1901 ident: b0165 article-title: Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting publication-title: Energies – volume: 217 start-page: 422 year: 2018 end-page: 439 ident: b0075 article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting publication-title: Appl. Energy – volume: 2 start-page: 108 year: 2020 end-page: 124 ident: b0145 article-title: A recurrent neural network based on attention mechanism to predict the trend of univariate time series publication-title: Int. J. Collaborative Intell. – volume: 11 start-page: 1307 year: 2020 end-page: 1317 ident: b0245 article-title: Study on the prediction of stock price based on the associated network model of LSTM publication-title: Int. J. Mach. Learn. Cybern. – volume: 33 start-page: 3781 year: 2021 end-page: 3798 ident: b0095 article-title: Twin-parametric margin support vector machine with truncated pinball loss publication-title: Neural Comput. Appl. – volume: 7 start-page: 193 year: 2016 end-page: 203 ident: b0105 article-title: Twin support vector machines based on fruit fly optimization algorithm publication-title: Int. J. Mach. Learn. Cybern. – volume: 195 start-page: 659 year: 2017 end-page: 670 ident: b0055 article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings publication-title: Appl. Energy – volume: 571 start-page: 279 year: 2021 end-page: 302 ident: b0090 article-title: On Lagrangian L2-norm pinball twin bounded support vector machine via unconstrained convex minimization publication-title: Inf. Sci. – volume: 31 start-page: 3814 year: 2020 end-page: 3827 ident: b0150 article-title: Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 9 start-page: 70 year: 2016 ident: b0035 article-title: Electric load forecasting based on a least squares support vector machine with fuzzy time series and global harmony search algorithm publication-title: Energies – reference: Jayadeva, R. Khemchandani, S. Chandra. Twin support vector machines for pattern classification. IEEE Transactions on pattern analysis and machine intelligence. 29(5) 2007 905-910. – volume: 94 start-page: 629 year: 2016 end-page: 636 ident: b0225 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renewable Energy – volume: 10 start-page: 3943 year: 2019 end-page: 3952 ident: b0230 article-title: Short-term load forecasting with deep residual networks publication-title: IEEE Trans. Smart Grid – volume: 63 start-page: 1 year: 2020 end-page: 12 ident: b0040 article-title: Support vector machine based machine learning method for GS 8QAM constellation classification in seamless integrated fiber and visible light communication system publication-title: Sci. China Inf. Sci. – volume: 581 start-page: 215 year: 2021 end-page: 232 ident: b0175 article-title: Serial-EMD: Fast empirical mode decomposition method for multi-dimensional signals based on serialization publication-title: Inf. Sci. – volume: 19 start-page: 100242 year: 2019 ident: b0205 article-title: Short-term wind speed forecasting approach using Ensemble Empirical Mode Decomposition and Deep Boltzmann Machine publication-title: Sustainable Energy Grids Networks – volume: 47 start-page: 33 year: 2016 end-page: 46 ident: b0110 article-title: Robust least squares twin support vector machine for human activity recognition publication-title: Appl. Soft Comput. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b0135 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 11 start-page: 841 year: 2020 end-page: 851 ident: b0250 article-title: DeepSite: bidirectional LSTM and CNN models for predicting DNA–protein binding publication-title: Int. J. Mach. Learn. Cybern. – volume: 559 start-page: 153 year: 2021 end-page: 170 ident: b0030 article-title: Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods publication-title: Inf. Sci. – volume: 373 start-page: 499 year: 2016 end-page: 511 ident: b0185 article-title: Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition publication-title: Inf. Sci. – volume: 4 start-page: 960 year: 2011 end-page: 977 ident: b0130 article-title: SVR with hybrid chaotic immune algorithm for seasonal load demand forecasting publication-title: Energies – volume: 103 start-page: 1167 year: 2021 end-page: 1193 ident: b0195 article-title: Chaos cloud quantum bat hybrid optimization algorithm publication-title: Nonlinear Dyn. – volume: 165 start-page: 520 year: 2018 end-page: 529 ident: b0015 article-title: Review on landslide susceptibility mapping using support vector machines publication-title: Catena – volume: 480 start-page: 324 year: 2019 end-page: 338 ident: b0020 article-title: A novel perspective on multiclass classification: Regular simplex support vector machine publication-title: Inf. Sci. – volume: 52 start-page: 61 year: 2016 end-page: 74 ident: b0100 article-title: MLTSVM: a novel twin support vector machine to multi-label learning publication-title: Pattern Recogn. – volume: 11 start-page: 1009 year: 2018 ident: b0125 article-title: A hybrid seasonal mechanism with a chaotic cuckoo search algorithm with a support vector regression model for electric load forecasting publication-title: Energies – volume: 236 start-page: 700 year: 2019 end-page: 710 ident: b0140 article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions publication-title: Appl. Energy – volume: 10 start-page: 2163 year: 2019 end-page: 2175 ident: b0240 article-title: Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews publication-title: Int. J. Mach. Learn. Cybern. – volume: 9 start-page: 3341 year: 2018 end-page: 3350 ident: b0065 article-title: A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization publication-title: IEEE Trans. Smart Grid – volume: 263 start-page: 22 year: 2014 end-page: 35 ident: b0050 article-title: Nonparallel hyperplane support vector machine for binary classification problems publication-title: Inf. Sci. – volume: 563 start-page: 269 year: 2021 end-page: 289 ident: b0170 article-title: Adaptive denoising algorithm using peak statistics-based thresholding and novel adaptive complementary ensemble empirical mode decomposition publication-title: Inf. Sci. – reference: K. Cho, B. Van Merriënboer, C. Gulcehre, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014. – volume: 9 start-page: 221 year: 2016 ident: b0160 article-title: Hybridizing DEMD and quantum PSO with SVR in electric load forecasting publication-title: Energies – volume: 23 start-page: 365 year: 2010 end-page: 372 ident: b0115 article-title: TSVR: an efficient twin support vector machine for regression publication-title: Neural Networks – volume: 487 start-page: 31 year: 2019 ident: 10.1016/j.ins.2022.03.060_b0010 article-title: Self-adaptive cost weights-based support vector machine cost-sensitive ensemble for imbalanced data classification publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.02.062 – volume: 270 start-page: 122248 year: 2020 ident: 10.1016/j.ins.2022.03.060_b0190 article-title: Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.122248 – volume: 52 start-page: 61 year: 2016 ident: 10.1016/j.ins.2022.03.060_b0100 article-title: MLTSVM: a novel twin support vector machine to multi-label learning publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2015.10.008 – volume: 165 start-page: 520 year: 2018 ident: 10.1016/j.ins.2022.03.060_b0015 article-title: Review on landslide susceptibility mapping using support vector machines publication-title: Catena doi: 10.1016/j.catena.2018.03.003 – volume: 82 start-page: 105589 year: 2019 ident: 10.1016/j.ins.2022.03.060_b0210 article-title: Forecasting reservoir monthly runoff via ensemble empirical mode decomposition and extreme learning machine optimized by an improved gravitational search algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105589 – volume: 62 start-page: 2478 issue: 4 year: 2015 ident: 10.1016/j.ins.2022.03.060_b0025 article-title: Support-vector-machine-based proactive cascade prediction in smart grid using probabilistic framework publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2361493 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.ins.2022.03.060_b0135 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 4 start-page: 960 issue: 6 year: 2011 ident: 10.1016/j.ins.2022.03.060_b0130 article-title: SVR with hybrid chaotic immune algorithm for seasonal load demand forecasting publication-title: Energies doi: 10.3390/en4060960 – volume: 104 start-page: 281 year: 2019 ident: 10.1016/j.ins.2022.03.060_b0180 article-title: Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.01.014 – volume: 591 start-page: 400 year: 2022 ident: 10.1016/j.ins.2022.03.060_b0045 article-title: Hypergraph regularized semi-supervised support vector machine[J] publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.01.038 – volume: 103 start-page: 1167 issue: 1 year: 2021 ident: 10.1016/j.ins.2022.03.060_b0195 article-title: Chaos cloud quantum bat hybrid optimization algorithm publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-06111-6 – volume: 33 start-page: 3781 issue: 8 year: 2021 ident: 10.1016/j.ins.2022.03.060_b0095 article-title: Twin-parametric margin support vector machine with truncated pinball loss publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05225-7 – volume: 217 start-page: 422 year: 2018 ident: 10.1016/j.ins.2022.03.060_b0075 article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.140 – ident: 10.1016/j.ins.2022.03.060_b0085 doi: 10.1109/TPAMI.2007.1068 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.ins.2022.03.060_b0005 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1023/A:1022627411411 – volume: 9 issue: 1 year: 2018 ident: 10.1016/j.ins.2022.03.060_b0235 article-title: Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits publication-title: Nat. Commun. doi: 10.1038/s41467-018-04482-4 – volume: 6 start-page: 28 issue: 8 year: 2004 ident: 10.1016/j.ins.2022.03.060_b0220 article-title: Study on the universality of the normal cloud model publication-title: Eng. Sci. – volume: 195 start-page: 659 year: 2017 ident: 10.1016/j.ins.2022.03.060_b0055 article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.034 – volume: 74 start-page: 14 year: 2016 ident: 10.1016/j.ins.2022.03.060_b0120 article-title: TWSVR: regression via twin support vector machine publication-title: Neural Networks doi: 10.1016/j.neunet.2015.10.007 – volume: 9 start-page: 221 issue: 3 year: 2016 ident: 10.1016/j.ins.2022.03.060_b0160 article-title: Hybridizing DEMD and quantum PSO with SVR in electric load forecasting publication-title: Energies doi: 10.3390/en9030221 – volume: 94 start-page: 629 year: 2016 ident: 10.1016/j.ins.2022.03.060_b0225 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renewable Energy doi: 10.1016/j.renene.2016.03.103 – volume: 10 start-page: 2163 issue: 8 year: 2019 ident: 10.1016/j.ins.2022.03.060_b0240 article-title: Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-018-0799-4 – volume: 6 start-page: 1887 issue: 4 year: 2013 ident: 10.1016/j.ins.2022.03.060_b0165 article-title: Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting publication-title: Energies doi: 10.3390/en6041887 – volume: 238 start-page: 1010 year: 2019 ident: 10.1016/j.ins.2022.03.060_b0060 article-title: Sequential grid approach based support vector regression for short-term electric load forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.127 – volume: 571 start-page: 279 year: 2021 ident: 10.1016/j.ins.2022.03.060_b0090 article-title: On Lagrangian L2-norm pinball twin bounded support vector machine via unconstrained convex minimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.04.031 – volume: 11 start-page: 1009 issue: 4 year: 2018 ident: 10.1016/j.ins.2022.03.060_b0125 article-title: A hybrid seasonal mechanism with a chaotic cuckoo search algorithm with a support vector regression model for electric load forecasting publication-title: Energies doi: 10.3390/en11041009 – volume: 91 start-page: 63 year: 2018 ident: 10.1016/j.ins.2022.03.060_b0070 article-title: Parameter optimization of support vector regression based on sine cosine algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.08.038 – volume: 10 start-page: 3943 issue: 4 year: 2019 ident: 10.1016/j.ins.2022.03.060_b0230 article-title: Short-term load forecasting with deep residual networks publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2844307 – volume: 373 start-page: 499 year: 2016 ident: 10.1016/j.ins.2022.03.060_b0185 article-title: Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.09.033 – volume: 2 start-page: 108 issue: 2 year: 2020 ident: 10.1016/j.ins.2022.03.060_b0145 article-title: A recurrent neural network based on attention mechanism to predict the trend of univariate time series publication-title: Int. J. Collaborative Intell. – volume: 22 start-page: 1138 issue: 2 year: 2021 ident: 10.1016/j.ins.2022.03.060_b0155 article-title: Optimized graph convolution recurrent neural network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2963722 – ident: 10.1016/j.ins.2022.03.060_b0215 doi: 10.3115/v1/D14-1179 – volume: 11 start-page: 841 issue: 4 year: 2020 ident: 10.1016/j.ins.2022.03.060_b0250 article-title: DeepSite: bidirectional LSTM and CNN models for predicting DNA–protein binding publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-00990-x – volume: 11 start-page: 1307 issue: 6 year: 2020 ident: 10.1016/j.ins.2022.03.060_b0245 article-title: Study on the prediction of stock price based on the associated network model of LSTM publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-01041-1 – volume: 9 start-page: 3341 issue: 4 year: 2018 ident: 10.1016/j.ins.2022.03.060_b0065 article-title: A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2628061 – volume: 63 start-page: 1 issue: 10 year: 2020 ident: 10.1016/j.ins.2022.03.060_b0040 article-title: Support vector machine based machine learning method for GS 8QAM constellation classification in seamless integrated fiber and visible light communication system publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-019-2850-3 – volume: 31 start-page: 3814 issue: 10 year: 2020 ident: 10.1016/j.ins.2022.03.060_b0150 article-title: Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2019.2946414 – volume: 559 start-page: 153 year: 2021 ident: 10.1016/j.ins.2022.03.060_b0030 article-title: Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.01.059 – volume: 1 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.ins.2022.03.060_b0200 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adaptive Data Analysis doi: 10.1142/S1793536909000047 – volume: 28 start-page: 56 issue: 1 year: 2021 ident: 10.1016/j.ins.2022.03.060_b0080 article-title: Short-term prediction of urban PM 2.5 based on a hybrid modified variational mode decomposition and support vector regression model publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-11065-8 – volume: 480 start-page: 324 year: 2019 ident: 10.1016/j.ins.2022.03.060_b0020 article-title: A novel perspective on multiclass classification: Regular simplex support vector machine publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.12.026 – volume: 581 start-page: 215 year: 2021 ident: 10.1016/j.ins.2022.03.060_b0175 article-title: Serial-EMD: Fast empirical mode decomposition method for multi-dimensional signals based on serialization publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.09.033 – volume: 263 start-page: 22 year: 2014 ident: 10.1016/j.ins.2022.03.060_b0050 article-title: Nonparallel hyperplane support vector machine for binary classification problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.11.003 – volume: 47 start-page: 33 year: 2016 ident: 10.1016/j.ins.2022.03.060_b0110 article-title: Robust least squares twin support vector machine for human activity recognition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.05.025 – volume: 563 start-page: 269 year: 2021 ident: 10.1016/j.ins.2022.03.060_b0170 article-title: Adaptive denoising algorithm using peak statistics-based thresholding and novel adaptive complementary ensemble empirical mode decomposition publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.02.040 – volume: 19 start-page: 100242 year: 2019 ident: 10.1016/j.ins.2022.03.060_b0205 article-title: Short-term wind speed forecasting approach using Ensemble Empirical Mode Decomposition and Deep Boltzmann Machine publication-title: Sustainable Energy Grids Networks doi: 10.1016/j.segan.2019.100242 – volume: 236 start-page: 700 year: 2019 ident: 10.1016/j.ins.2022.03.060_b0140 article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.004 – volume: 9 start-page: 70 issue: 2 year: 2016 ident: 10.1016/j.ins.2022.03.060_b0035 article-title: Electric load forecasting based on a least squares support vector machine with fuzzy time series and global harmony search algorithm publication-title: Energies doi: 10.3390/en9020070 – volume: 23 start-page: 365 issue: 3 year: 2010 ident: 10.1016/j.ins.2022.03.060_b0115 article-title: TSVR: an efficient twin support vector machine for regression publication-title: Neural Networks doi: 10.1016/j.neunet.2009.07.002 – volume: 7 start-page: 193 issue: 2 year: 2016 ident: 10.1016/j.ins.2022.03.060_b0105 article-title: Twin support vector machines based on fruit fly optimization algorithm publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-015-0424-8 |
| SSID | ssj0004766 |
| Score | 2.492127 |
| Snippet | Despite the rapid development of support vector regression (SVR), it costs unacceptable training time in large-scale datasets and is hard to fit complex, high... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101 |
| SubjectTerms | Cloud theory Ensemble empirical mode decomposition (EEMD) Gated recurrent unit (GRU) Salp swarm algorithm (SSA) Twin support vector regression (TWSVR) |
| Title | An optimized twin support vector regression algorithm enhanced by ensemble empirical mode decomposition and gated recurrent unit |
| URI | https://dx.doi.org/10.1016/j.ins.2022.03.060 |
| Volume | 598 |
| WOSCitedRecordID | wos000783324300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcEBQQBYreAXEgiuSsTo4jVDahCqkFDVyixHY6qWYyo2kyFE78Dn4tz7HjSVuK6IFLFFmOs7wvb_NbCHmeCoGCJAhdHpaRGwovcYsy8dy8kHHMBE2Tzqf7-QM7OEgmk_TjaPSrz4VZz1hdJ2dn6fK_khrHkNgqdfYa5LaL4gCeI9HxiGTH4z8RfowKIPKBefUDdcnmW1U7p-1SadnOuvPQOyt5rINfayefHS9WVTOdO7Ke6lgAVEfRspVzlVEl58tKlxBRDXMcIVUAuony6nYdlA9Opb9wU-WpRQYxVHdNslM338jaTSN7003lcFqVsrrkwP6qYlQtct-0C-1BmNmZh23HML-0TS99jfMC7V4bZGWTCairzJohQ450X2rDUj0zX0tnT6dJX2L82gdxgtaKqsHu-13lWt2p4HyR7QvCz4Yk9tFuJxkukaklMhpkuMQNsu2zKEWmvz1-tz95v8m6ZXonvH-Ffs-8ix688Bx_1noGmszRXXLHmCAw1tC5R0ay3iG3B4Upd8ieSWeBFzAgIRhBcJ_8HNdgQQYKZGBABhpksAEZWJBBDzIovkMPMrAgAwUyOAcyQJBBBzKwIAMFsgfk0-v9o1dvXdPLw-W-zxo3FsKjeRCgglvSEvlCzuIiVO0MuJ9Hca4dCXEQlknCg0CmaRmLJOQ8pH6aB17wkGzVi1o-IpCGnBYJYxGPZFgymbA88oQakIVIKd0ltP_WGTeF7lW_lVl2JY13yUt7yVJXefnb5LAnYGZ-Ha1-ZgjGqy97fJ17PCG3Nr_LU7LVrFq5R27ydVOdrp4ZJP4G30S4rA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+twin+support+vector+regression+algorithm+enhanced+by+ensemble+empirical+mode+decomposition+and+gated+recurrent+unit&rft.jtitle=Information+sciences&rft.au=Ding%2C+Shifei&rft.au=Zhang%2C+Zichen&rft.au=Guo%2C+Lili&rft.au=Sun%2C+Yuting&rft.date=2022-06-01&rft.issn=0020-0255&rft.volume=598&rft.spage=101&rft.epage=125&rft_id=info:doi/10.1016%2Fj.ins.2022.03.060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_03_060 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |