An optimized twin support vector regression algorithm enhanced by ensemble empirical mode decomposition and gated recurrent unit

Despite the rapid development of support vector regression (SVR), it costs unacceptable training time in large-scale datasets and is hard to fit complex, high frequency oscillating, and non-stationary time series data. SVRs are still perplexed by the selection of critical parameters and hidden noise...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 598; s. 101 - 125
Hlavní autoři: Ding, Shifei, Zhang, Zichen, Guo, Lili, Sun, Yuting
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.06.2022
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Despite the rapid development of support vector regression (SVR), it costs unacceptable training time in large-scale datasets and is hard to fit complex, high frequency oscillating, and non-stationary time series data. SVRs are still perplexed by the selection of critical parameters and hidden noise in input data. This work proposes a hybrid model to overcome these issues that need to be resolved, namely EEMD-GRU-TWSVRCSSA. The proposed model utilizes twin support vector regression (TWSVR) to overcome the shortcomings of the SVR in terms of training time and fitting accuracy. A novel meta-heuristic algorithm, cloud salp swarm algorithm (CSSA), is employed to automatically select the optimal hyper parameters for the TWSVR. The ensemble empirical mode decomposition (EEMD) reduces the influences of hidden noise in the input data, meanwhile splitting the high-frequency and low-frequency sub-datasets and feeding them to the gated recurrent unit (GRU) and TWSVR-based model, respectively. The forecasting of the proposed algorithm and other alternative algorithms are conducted on three real-world electric load datasets from the National Electricity Market (NEM), Queensland and New South Wales regions, Australia, and the well-known National Grid UK. Experimental results demonstrate the superiority and competitiveness of the proposed algorithm.
AbstractList Despite the rapid development of support vector regression (SVR), it costs unacceptable training time in large-scale datasets and is hard to fit complex, high frequency oscillating, and non-stationary time series data. SVRs are still perplexed by the selection of critical parameters and hidden noise in input data. This work proposes a hybrid model to overcome these issues that need to be resolved, namely EEMD-GRU-TWSVRCSSA. The proposed model utilizes twin support vector regression (TWSVR) to overcome the shortcomings of the SVR in terms of training time and fitting accuracy. A novel meta-heuristic algorithm, cloud salp swarm algorithm (CSSA), is employed to automatically select the optimal hyper parameters for the TWSVR. The ensemble empirical mode decomposition (EEMD) reduces the influences of hidden noise in the input data, meanwhile splitting the high-frequency and low-frequency sub-datasets and feeding them to the gated recurrent unit (GRU) and TWSVR-based model, respectively. The forecasting of the proposed algorithm and other alternative algorithms are conducted on three real-world electric load datasets from the National Electricity Market (NEM), Queensland and New South Wales regions, Australia, and the well-known National Grid UK. Experimental results demonstrate the superiority and competitiveness of the proposed algorithm.
Author Zhang, Zichen
Guo, Lili
Ding, Shifei
Sun, Yuting
Author_xml – sequence: 1
  givenname: Shifei
  surname: Ding
  fullname: Ding, Shifei
  email: dingsf@cumt.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 2
  givenname: Zichen
  surname: Zhang
  fullname: Zhang, Zichen
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 3
  givenname: Lili
  surname: Guo
  fullname: Guo, Lili
  email: liliguo@cumt.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 4
  givenname: Yuting
  surname: Sun
  fullname: Sun, Yuting
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
BookMark eNp90E9L5DAYx_GwKDj-eQHe8gbafZK0aYc9iei6IHjRc8ikT8dnaJOSZBQ9-dLNrHvag6cEwifw-56yIx88MnYpoBYg9M9dTT7VEqSsQdWg4Qdbib6TlZZrccRWABIqkG17wk5T2gFA02m9Yh9Xnocl00zvOPD8Sp6n_bKEmPkLuhwij7iNmBIFz-20DZHy88zRP1vviti8lXvCeTMhx3mhSM5OfA4D8gFdmJeQKP-1fuBbmwuJ6PYxos987ymfs-PRTgkv_p1n7On25vH6rrp_-P3n-uq-clJ2udLDIMAqpbUaYWzG1nZ60zS96py0rbayEa0uj83Y904pXK9HPfSNcw3ItVVCnTHx9a-LIaWIo1kizTa-GQHmkNDsTEloDgkNKFMSFtP9Zxxle5iTo6XpW_nrS2KZ9EIYTXKEh2JU5mczBPpGfwIpdpDA
CitedBy_id crossref_primary_10_1002_qre_3643
crossref_primary_10_1063_5_0178490
crossref_primary_10_1016_j_knosys_2023_110627
crossref_primary_10_1016_j_biombioe_2025_108312
crossref_primary_10_1177_01423312241239413
crossref_primary_10_1007_s13042_024_02302_4
crossref_primary_10_1016_j_asoc_2024_112291
crossref_primary_10_1016_j_ins_2023_03_131
crossref_primary_10_1016_j_knosys_2024_112943
crossref_primary_10_3390_atmos14081308
crossref_primary_10_1109_TDEI_2024_3373713
crossref_primary_10_3390_e26090806
crossref_primary_10_1016_j_jairtraman_2024_102611
crossref_primary_10_14710_ijred_2023_55078
crossref_primary_10_1007_s10462_024_10856_6
crossref_primary_10_1016_j_ijepes_2025_111102
crossref_primary_10_1016_j_ins_2022_09_002
crossref_primary_10_1016_j_asoc_2023_110894
crossref_primary_10_1016_j_asoc_2024_111425
crossref_primary_10_1016_j_asoc_2025_112779
crossref_primary_10_1016_j_chaos_2024_114852
crossref_primary_10_2478_amns_2023_2_00081
crossref_primary_10_1016_j_engappai_2023_106572
crossref_primary_10_1016_j_eswa_2025_127971
Cites_doi 10.1016/j.ins.2019.02.062
10.1016/j.jclepro.2020.122248
10.1016/j.patcog.2015.10.008
10.1016/j.catena.2018.03.003
10.1016/j.asoc.2019.105589
10.1109/TIE.2014.2361493
10.1016/j.advengsoft.2017.07.002
10.3390/en4060960
10.1016/j.rser.2019.01.014
10.1016/j.ins.2022.01.038
10.1007/s11071-020-06111-6
10.1007/s00521-020-05225-7
10.1016/j.apenergy.2018.02.140
10.1109/TPAMI.2007.1068
10.1023/A:1022627411411
10.1038/s41467-018-04482-4
10.1016/j.apenergy.2017.03.034
10.1016/j.neunet.2015.10.007
10.3390/en9030221
10.1016/j.renene.2016.03.103
10.1007/s13042-018-0799-4
10.3390/en6041887
10.1016/j.apenergy.2019.01.127
10.1016/j.ins.2021.04.031
10.3390/en11041009
10.1016/j.eswa.2017.08.038
10.1109/TSG.2018.2844307
10.1016/j.ins.2016.09.033
10.1109/TITS.2019.2963722
10.3115/v1/D14-1179
10.1007/s13042-019-00990-x
10.1007/s13042-019-01041-1
10.1109/TSG.2016.2628061
10.1007/s11432-019-2850-3
10.1109/TNNLS.2019.2946414
10.1016/j.ins.2021.01.059
10.1142/S1793536909000047
10.1007/s11356-020-11065-8
10.1016/j.ins.2018.12.026
10.1016/j.ins.2021.09.033
10.1016/j.ins.2013.11.003
10.1016/j.asoc.2016.05.025
10.1016/j.ins.2021.02.040
10.1016/j.segan.2019.100242
10.1016/j.apenergy.2018.12.004
10.3390/en9020070
10.1016/j.neunet.2009.07.002
10.1007/s13042-015-0424-8
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.03.060
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 125
ExternalDocumentID 10_1016_j_ins_2022_03_060
S0020025522002808
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c227t-6dd10a33663f0f4f5a76b44837c2a56a241566634f88c33e99f6d84cc4029a313
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000783324300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:28:29 EST 2025
Tue Nov 18 21:58:01 EST 2025
Fri Feb 23 02:40:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cloud theory
Gated recurrent unit (GRU)
Ensemble empirical mode decomposition (EEMD)
Twin support vector regression (TWSVR)
Salp swarm algorithm (SSA)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-6dd10a33663f0f4f5a76b44837c2a56a241566634f88c33e99f6d84cc4029a313
PageCount 25
ParticipantIDs crossref_primary_10_1016_j_ins_2022_03_060
crossref_citationtrail_10_1016_j_ins_2022_03_060
elsevier_sciencedirect_doi_10_1016_j_ins_2022_03_060
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Peng (b0115) 2010; 23
Hong, Dong, Lai, Chen, Wei (b0130) 2011; 4
Tang, Tian, Pardalos (b0020) 2019; 480
Ding, Zhang, Yu (b0105) 2016; 7
Li, Wang, Geng, Hong (b0195) 2021; 103
Niu, Ha, Chi (b0040) 2020; 63
Fan, Wang, Gang, Li (b0140) 2019; 236
Khemchandani, Sharma (b0110) 2016; 47
Wang, Li, Fu, Tang (b0150) 2020; 31
Niu, Feng, Zeng, Feng, Min, Cheng, Zhou (b0210) 2019; 82
Li, Liu, Liu (b0220) 2004; 6
Zhang, Feng, Marti-Puig, Caiafa, Sun, Duan, Solé-Casals (b0175) 2021; 581
Guo, Hu, Qian, Liu, Zhang, Sun, Gao, Yin (b0155) 2021; 22
Al-Smadi, Talafha, Al-Ayyoub, Jararweh (b0240) 2019; 10
Sun, Fujita, Zheng, Ai (b0030) 2021; 559
Peng, Fan, Huang, Hong (b0160) 2016; 9
Chen, Xu, Chu, Li, Wu, Ni, Bao, Wang (b0055) 2017; 195
Santhosh, Venkaiah, Kumar (b0205) 2019; 19
Chen, Hong, Shen, Huang (b0035) 2016; 9
Dong, Zhang, Hong (b0125) 2018; 11
Tao, Li, Guo, Ren, Li, Liu, Zou (b0010) 2019; 487
Fan, Qing, Wang, Hong, Li (b0165) 2013; 6
Chu, Dong, Han, Xie, Xu, Xie (b0080) 2021; 28
Chen, Shao, Li, Deng (b0100) 2016; 52
Shao, Chen, Deng (b0050) 2014; 263
Bayat, Prezioso, Chakrabarti, Nili, Kataeva, Strukov (b0235) 2018; 9
Ali, Prasad (b0180) 2019; 104
AL-Musaylh, Deo, Li, Adamowski (b0075) 2018; 217
Chen, Chen, Wang, He, Hu, He (b0230) 2019; 10
Khemchandani, Goyal, Chandra (b0120) 2016; 74
Du, Song, Chen, Shu, Guo (b0190) 2020; 270
Ding, Qin (b0245) 2020; 11
Wang, Xu, Zhou (b0095) 2021; 33
Li, Fang, Liu (b0070) 2018; 91
K. Cho, B. Van Merriënboer, C. Gulcehre, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.
Yang, Che, Deng, Li (b0060) 2019; 238
Nguyen, Kim (b0185) 2016; 373
Zhang, Qiao, Ji, Li (b0250) 2020; 11
Hu, Zhang, Dong, Xu, Liu (b0170) 2021; 563
Gupta, Kambli, Wagh, Kazi (b0025) 2015; 62
Cortes, Vapnik (b0005) 1995; 20
Jiang, Zhang, Muljadi, Zhang, Gao (b0065) 2018; 9
Sun, Ding, Guo, Zhang (b0045) 2022; 591
Wu, Huang (b0200) 2009; 1
Huang, Zhao (b0015) 2018; 165
Jayadeva, R. Khemchandani, S. Chandra. Twin support vector machines for pattern classification. IEEE Transactions on pattern analysis and machine intelligence. 29(5) 2007 905-910.
Liu (b0145) 2020; 2
Wang, Zhang, Wu, Wang (b0225) 2016; 94
Prasad, Balasundaram (b0090) 2021; 571
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0135) 2017; 114
Zhang (10.1016/j.ins.2022.03.060_b0175) 2021; 581
Al-Smadi (10.1016/j.ins.2022.03.060_b0240) 2019; 10
Du (10.1016/j.ins.2022.03.060_b0190) 2020; 270
Chen (10.1016/j.ins.2022.03.060_b0035) 2016; 9
10.1016/j.ins.2022.03.060_b0215
Shao (10.1016/j.ins.2022.03.060_b0050) 2014; 263
Peng (10.1016/j.ins.2022.03.060_b0115) 2010; 23
Dong (10.1016/j.ins.2022.03.060_b0125) 2018; 11
Chu (10.1016/j.ins.2022.03.060_b0080) 2021; 28
Niu (10.1016/j.ins.2022.03.060_b0040) 2020; 63
Sun (10.1016/j.ins.2022.03.060_b0030) 2021; 559
Sun (10.1016/j.ins.2022.03.060_b0045) 2022; 591
Chen (10.1016/j.ins.2022.03.060_b0230) 2019; 10
Fan (10.1016/j.ins.2022.03.060_b0140) 2019; 236
Bayat (10.1016/j.ins.2022.03.060_b0235) 2018; 9
Mirjalili (10.1016/j.ins.2022.03.060_b0135) 2017; 114
Guo (10.1016/j.ins.2022.03.060_b0155) 2021; 22
Gupta (10.1016/j.ins.2022.03.060_b0025) 2015; 62
Cortes (10.1016/j.ins.2022.03.060_b0005) 1995; 20
Tao (10.1016/j.ins.2022.03.060_b0010) 2019; 487
Santhosh (10.1016/j.ins.2022.03.060_b0205) 2019; 19
Jiang (10.1016/j.ins.2022.03.060_b0065) 2018; 9
Peng (10.1016/j.ins.2022.03.060_b0160) 2016; 9
Fan (10.1016/j.ins.2022.03.060_b0165) 2013; 6
Chen (10.1016/j.ins.2022.03.060_b0100) 2016; 52
AL-Musaylh (10.1016/j.ins.2022.03.060_b0075) 2018; 217
Khemchandani (10.1016/j.ins.2022.03.060_b0110) 2016; 47
Wang (10.1016/j.ins.2022.03.060_b0095) 2021; 33
Ding (10.1016/j.ins.2022.03.060_b0105) 2016; 7
Hu (10.1016/j.ins.2022.03.060_b0170) 2021; 563
Yang (10.1016/j.ins.2022.03.060_b0060) 2019; 238
Liu (10.1016/j.ins.2022.03.060_b0145) 2020; 2
Khemchandani (10.1016/j.ins.2022.03.060_b0120) 2016; 74
Niu (10.1016/j.ins.2022.03.060_b0210) 2019; 82
Chen (10.1016/j.ins.2022.03.060_b0055) 2017; 195
Ding (10.1016/j.ins.2022.03.060_b0245) 2020; 11
Huang (10.1016/j.ins.2022.03.060_b0015) 2018; 165
Wang (10.1016/j.ins.2022.03.060_b0150) 2020; 31
Prasad (10.1016/j.ins.2022.03.060_b0090) 2021; 571
Hong (10.1016/j.ins.2022.03.060_b0130) 2011; 4
Wang (10.1016/j.ins.2022.03.060_b0225) 2016; 94
Li (10.1016/j.ins.2022.03.060_b0070) 2018; 91
Ali (10.1016/j.ins.2022.03.060_b0180) 2019; 104
Wu (10.1016/j.ins.2022.03.060_b0200) 2009; 1
Nguyen (10.1016/j.ins.2022.03.060_b0185) 2016; 373
Li (10.1016/j.ins.2022.03.060_b0195) 2021; 103
Li (10.1016/j.ins.2022.03.060_b0220) 2004; 6
Tang (10.1016/j.ins.2022.03.060_b0020) 2019; 480
Zhang (10.1016/j.ins.2022.03.060_b0250) 2020; 11
10.1016/j.ins.2022.03.060_b0085
References_xml – volume: 22
  start-page: 1138
  year: 2021
  end-page: 1149
  ident: b0155
  article-title: Optimized graph convolution recurrent neural network for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 270
  start-page: 122248
  year: 2020
  ident: b0190
  article-title: Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method
  publication-title: J. Cleaner Prod.
– volume: 9
  year: 2018
  ident: b0235
  article-title: Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits
  publication-title: Nat. Commun.
– volume: 104
  start-page: 281
  year: 2019
  end-page: 295
  ident: b0180
  article-title: Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition
  publication-title: Renew. Sustain. Energy Rev.
– volume: 28
  start-page: 56
  year: 2021
  end-page: 72
  ident: b0080
  article-title: Short-term prediction of urban PM 2.5 based on a hybrid modified variational mode decomposition and support vector regression model
  publication-title: Environ. Sci. Pollut. Res.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b0200
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adaptive Data Analysis
– volume: 6
  start-page: 28
  year: 2004
  end-page: 34
  ident: b0220
  article-title: Study on the universality of the normal cloud model
  publication-title: Eng. Sci.
– volume: 487
  start-page: 31
  year: 2019
  end-page: 56
  ident: b0010
  article-title: Self-adaptive cost weights-based support vector machine cost-sensitive ensemble for imbalanced data classification
  publication-title: Inf. Sci.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0005
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 238
  start-page: 1010
  year: 2019
  end-page: 1021
  ident: b0060
  article-title: Sequential grid approach based support vector regression for short-term electric load forecasting
  publication-title: Appl. Energy
– volume: 82
  start-page: 105589
  year: 2019
  ident: b0210
  article-title: Forecasting reservoir monthly runoff via ensemble empirical mode decomposition and extreme learning machine optimized by an improved gravitational search algorithm
  publication-title: Appl. Soft Comput.
– volume: 91
  start-page: 63
  year: 2018
  end-page: 77
  ident: b0070
  article-title: Parameter optimization of support vector regression based on sine cosine algorithm
  publication-title: Expert Syst. Appl.
– volume: 74
  start-page: 14
  year: 2016
  end-page: 21
  ident: b0120
  article-title: TWSVR: regression via twin support vector machine
  publication-title: Neural Networks
– volume: 62
  start-page: 2478
  year: 2015
  end-page: 2486
  ident: b0025
  article-title: Support-vector-machine-based proactive cascade prediction in smart grid using probabilistic framework
  publication-title: IEEE Trans. Ind. Electron.
– volume: 591
  start-page: 400
  year: 2022
  end-page: 421
  ident: b0045
  article-title: Hypergraph regularized semi-supervised support vector machine[J]
  publication-title: Inf. Sci.
– volume: 6
  start-page: 1887
  year: 2013
  end-page: 1901
  ident: b0165
  article-title: Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting
  publication-title: Energies
– volume: 217
  start-page: 422
  year: 2018
  end-page: 439
  ident: b0075
  article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting
  publication-title: Appl. Energy
– volume: 2
  start-page: 108
  year: 2020
  end-page: 124
  ident: b0145
  article-title: A recurrent neural network based on attention mechanism to predict the trend of univariate time series
  publication-title: Int. J. Collaborative Intell.
– volume: 11
  start-page: 1307
  year: 2020
  end-page: 1317
  ident: b0245
  article-title: Study on the prediction of stock price based on the associated network model of LSTM
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 33
  start-page: 3781
  year: 2021
  end-page: 3798
  ident: b0095
  article-title: Twin-parametric margin support vector machine with truncated pinball loss
  publication-title: Neural Comput. Appl.
– volume: 7
  start-page: 193
  year: 2016
  end-page: 203
  ident: b0105
  article-title: Twin support vector machines based on fruit fly optimization algorithm
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 195
  start-page: 659
  year: 2017
  end-page: 670
  ident: b0055
  article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings
  publication-title: Appl. Energy
– volume: 571
  start-page: 279
  year: 2021
  end-page: 302
  ident: b0090
  article-title: On Lagrangian L2-norm pinball twin bounded support vector machine via unconstrained convex minimization
  publication-title: Inf. Sci.
– volume: 31
  start-page: 3814
  year: 2020
  end-page: 3827
  ident: b0150
  article-title: Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 9
  start-page: 70
  year: 2016
  ident: b0035
  article-title: Electric load forecasting based on a least squares support vector machine with fuzzy time series and global harmony search algorithm
  publication-title: Energies
– reference: Jayadeva, R. Khemchandani, S. Chandra. Twin support vector machines for pattern classification. IEEE Transactions on pattern analysis and machine intelligence. 29(5) 2007 905-910.
– volume: 94
  start-page: 629
  year: 2016
  end-page: 636
  ident: b0225
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renewable Energy
– volume: 10
  start-page: 3943
  year: 2019
  end-page: 3952
  ident: b0230
  article-title: Short-term load forecasting with deep residual networks
  publication-title: IEEE Trans. Smart Grid
– volume: 63
  start-page: 1
  year: 2020
  end-page: 12
  ident: b0040
  article-title: Support vector machine based machine learning method for GS 8QAM constellation classification in seamless integrated fiber and visible light communication system
  publication-title: Sci. China Inf. Sci.
– volume: 581
  start-page: 215
  year: 2021
  end-page: 232
  ident: b0175
  article-title: Serial-EMD: Fast empirical mode decomposition method for multi-dimensional signals based on serialization
  publication-title: Inf. Sci.
– volume: 19
  start-page: 100242
  year: 2019
  ident: b0205
  article-title: Short-term wind speed forecasting approach using Ensemble Empirical Mode Decomposition and Deep Boltzmann Machine
  publication-title: Sustainable Energy Grids Networks
– volume: 47
  start-page: 33
  year: 2016
  end-page: 46
  ident: b0110
  article-title: Robust least squares twin support vector machine for human activity recognition
  publication-title: Appl. Soft Comput.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b0135
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 11
  start-page: 841
  year: 2020
  end-page: 851
  ident: b0250
  article-title: DeepSite: bidirectional LSTM and CNN models for predicting DNA–protein binding
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 559
  start-page: 153
  year: 2021
  end-page: 170
  ident: b0030
  article-title: Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods
  publication-title: Inf. Sci.
– volume: 373
  start-page: 499
  year: 2016
  end-page: 511
  ident: b0185
  article-title: Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition
  publication-title: Inf. Sci.
– volume: 4
  start-page: 960
  year: 2011
  end-page: 977
  ident: b0130
  article-title: SVR with hybrid chaotic immune algorithm for seasonal load demand forecasting
  publication-title: Energies
– volume: 103
  start-page: 1167
  year: 2021
  end-page: 1193
  ident: b0195
  article-title: Chaos cloud quantum bat hybrid optimization algorithm
  publication-title: Nonlinear Dyn.
– volume: 165
  start-page: 520
  year: 2018
  end-page: 529
  ident: b0015
  article-title: Review on landslide susceptibility mapping using support vector machines
  publication-title: Catena
– volume: 480
  start-page: 324
  year: 2019
  end-page: 338
  ident: b0020
  article-title: A novel perspective on multiclass classification: Regular simplex support vector machine
  publication-title: Inf. Sci.
– volume: 52
  start-page: 61
  year: 2016
  end-page: 74
  ident: b0100
  article-title: MLTSVM: a novel twin support vector machine to multi-label learning
  publication-title: Pattern Recogn.
– volume: 11
  start-page: 1009
  year: 2018
  ident: b0125
  article-title: A hybrid seasonal mechanism with a chaotic cuckoo search algorithm with a support vector regression model for electric load forecasting
  publication-title: Energies
– volume: 236
  start-page: 700
  year: 2019
  end-page: 710
  ident: b0140
  article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions
  publication-title: Appl. Energy
– volume: 10
  start-page: 2163
  year: 2019
  end-page: 2175
  ident: b0240
  article-title: Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 9
  start-page: 3341
  year: 2018
  end-page: 3350
  ident: b0065
  article-title: A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization
  publication-title: IEEE Trans. Smart Grid
– volume: 263
  start-page: 22
  year: 2014
  end-page: 35
  ident: b0050
  article-title: Nonparallel hyperplane support vector machine for binary classification problems
  publication-title: Inf. Sci.
– volume: 563
  start-page: 269
  year: 2021
  end-page: 289
  ident: b0170
  article-title: Adaptive denoising algorithm using peak statistics-based thresholding and novel adaptive complementary ensemble empirical mode decomposition
  publication-title: Inf. Sci.
– reference: K. Cho, B. Van Merriënboer, C. Gulcehre, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.
– volume: 9
  start-page: 221
  year: 2016
  ident: b0160
  article-title: Hybridizing DEMD and quantum PSO with SVR in electric load forecasting
  publication-title: Energies
– volume: 23
  start-page: 365
  year: 2010
  end-page: 372
  ident: b0115
  article-title: TSVR: an efficient twin support vector machine for regression
  publication-title: Neural Networks
– volume: 487
  start-page: 31
  year: 2019
  ident: 10.1016/j.ins.2022.03.060_b0010
  article-title: Self-adaptive cost weights-based support vector machine cost-sensitive ensemble for imbalanced data classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.02.062
– volume: 270
  start-page: 122248
  year: 2020
  ident: 10.1016/j.ins.2022.03.060_b0190
  article-title: Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.122248
– volume: 52
  start-page: 61
  year: 2016
  ident: 10.1016/j.ins.2022.03.060_b0100
  article-title: MLTSVM: a novel twin support vector machine to multi-label learning
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2015.10.008
– volume: 165
  start-page: 520
  year: 2018
  ident: 10.1016/j.ins.2022.03.060_b0015
  article-title: Review on landslide susceptibility mapping using support vector machines
  publication-title: Catena
  doi: 10.1016/j.catena.2018.03.003
– volume: 82
  start-page: 105589
  year: 2019
  ident: 10.1016/j.ins.2022.03.060_b0210
  article-title: Forecasting reservoir monthly runoff via ensemble empirical mode decomposition and extreme learning machine optimized by an improved gravitational search algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105589
– volume: 62
  start-page: 2478
  issue: 4
  year: 2015
  ident: 10.1016/j.ins.2022.03.060_b0025
  article-title: Support-vector-machine-based proactive cascade prediction in smart grid using probabilistic framework
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2361493
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.ins.2022.03.060_b0135
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 4
  start-page: 960
  issue: 6
  year: 2011
  ident: 10.1016/j.ins.2022.03.060_b0130
  article-title: SVR with hybrid chaotic immune algorithm for seasonal load demand forecasting
  publication-title: Energies
  doi: 10.3390/en4060960
– volume: 104
  start-page: 281
  year: 2019
  ident: 10.1016/j.ins.2022.03.060_b0180
  article-title: Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.01.014
– volume: 591
  start-page: 400
  year: 2022
  ident: 10.1016/j.ins.2022.03.060_b0045
  article-title: Hypergraph regularized semi-supervised support vector machine[J]
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.01.038
– volume: 103
  start-page: 1167
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2022.03.060_b0195
  article-title: Chaos cloud quantum bat hybrid optimization algorithm
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06111-6
– volume: 33
  start-page: 3781
  issue: 8
  year: 2021
  ident: 10.1016/j.ins.2022.03.060_b0095
  article-title: Twin-parametric margin support vector machine with truncated pinball loss
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05225-7
– volume: 217
  start-page: 422
  year: 2018
  ident: 10.1016/j.ins.2022.03.060_b0075
  article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.140
– ident: 10.1016/j.ins.2022.03.060_b0085
  doi: 10.1109/TPAMI.2007.1068
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.ins.2022.03.060_b0005
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1023/A:1022627411411
– volume: 9
  issue: 1
  year: 2018
  ident: 10.1016/j.ins.2022.03.060_b0235
  article-title: Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04482-4
– volume: 6
  start-page: 28
  issue: 8
  year: 2004
  ident: 10.1016/j.ins.2022.03.060_b0220
  article-title: Study on the universality of the normal cloud model
  publication-title: Eng. Sci.
– volume: 195
  start-page: 659
  year: 2017
  ident: 10.1016/j.ins.2022.03.060_b0055
  article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.034
– volume: 74
  start-page: 14
  year: 2016
  ident: 10.1016/j.ins.2022.03.060_b0120
  article-title: TWSVR: regression via twin support vector machine
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2015.10.007
– volume: 9
  start-page: 221
  issue: 3
  year: 2016
  ident: 10.1016/j.ins.2022.03.060_b0160
  article-title: Hybridizing DEMD and quantum PSO with SVR in electric load forecasting
  publication-title: Energies
  doi: 10.3390/en9030221
– volume: 94
  start-page: 629
  year: 2016
  ident: 10.1016/j.ins.2022.03.060_b0225
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2016.03.103
– volume: 10
  start-page: 2163
  issue: 8
  year: 2019
  ident: 10.1016/j.ins.2022.03.060_b0240
  article-title: Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-0799-4
– volume: 6
  start-page: 1887
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2022.03.060_b0165
  article-title: Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting
  publication-title: Energies
  doi: 10.3390/en6041887
– volume: 238
  start-page: 1010
  year: 2019
  ident: 10.1016/j.ins.2022.03.060_b0060
  article-title: Sequential grid approach based support vector regression for short-term electric load forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.127
– volume: 571
  start-page: 279
  year: 2021
  ident: 10.1016/j.ins.2022.03.060_b0090
  article-title: On Lagrangian L2-norm pinball twin bounded support vector machine via unconstrained convex minimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.04.031
– volume: 11
  start-page: 1009
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2022.03.060_b0125
  article-title: A hybrid seasonal mechanism with a chaotic cuckoo search algorithm with a support vector regression model for electric load forecasting
  publication-title: Energies
  doi: 10.3390/en11041009
– volume: 91
  start-page: 63
  year: 2018
  ident: 10.1016/j.ins.2022.03.060_b0070
  article-title: Parameter optimization of support vector regression based on sine cosine algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.08.038
– volume: 10
  start-page: 3943
  issue: 4
  year: 2019
  ident: 10.1016/j.ins.2022.03.060_b0230
  article-title: Short-term load forecasting with deep residual networks
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2844307
– volume: 373
  start-page: 499
  year: 2016
  ident: 10.1016/j.ins.2022.03.060_b0185
  article-title: Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.09.033
– volume: 2
  start-page: 108
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2022.03.060_b0145
  article-title: A recurrent neural network based on attention mechanism to predict the trend of univariate time series
  publication-title: Int. J. Collaborative Intell.
– volume: 22
  start-page: 1138
  issue: 2
  year: 2021
  ident: 10.1016/j.ins.2022.03.060_b0155
  article-title: Optimized graph convolution recurrent neural network for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2963722
– ident: 10.1016/j.ins.2022.03.060_b0215
  doi: 10.3115/v1/D14-1179
– volume: 11
  start-page: 841
  issue: 4
  year: 2020
  ident: 10.1016/j.ins.2022.03.060_b0250
  article-title: DeepSite: bidirectional LSTM and CNN models for predicting DNA–protein binding
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-00990-x
– volume: 11
  start-page: 1307
  issue: 6
  year: 2020
  ident: 10.1016/j.ins.2022.03.060_b0245
  article-title: Study on the prediction of stock price based on the associated network model of LSTM
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-01041-1
– volume: 9
  start-page: 3341
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2022.03.060_b0065
  article-title: A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2628061
– volume: 63
  start-page: 1
  issue: 10
  year: 2020
  ident: 10.1016/j.ins.2022.03.060_b0040
  article-title: Support vector machine based machine learning method for GS 8QAM constellation classification in seamless integrated fiber and visible light communication system
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-019-2850-3
– volume: 31
  start-page: 3814
  issue: 10
  year: 2020
  ident: 10.1016/j.ins.2022.03.060_b0150
  article-title: Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2019.2946414
– volume: 559
  start-page: 153
  year: 2021
  ident: 10.1016/j.ins.2022.03.060_b0030
  article-title: Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.059
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.ins.2022.03.060_b0200
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adaptive Data Analysis
  doi: 10.1142/S1793536909000047
– volume: 28
  start-page: 56
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2022.03.060_b0080
  article-title: Short-term prediction of urban PM 2.5 based on a hybrid modified variational mode decomposition and support vector regression model
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-11065-8
– volume: 480
  start-page: 324
  year: 2019
  ident: 10.1016/j.ins.2022.03.060_b0020
  article-title: A novel perspective on multiclass classification: Regular simplex support vector machine
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.12.026
– volume: 581
  start-page: 215
  year: 2021
  ident: 10.1016/j.ins.2022.03.060_b0175
  article-title: Serial-EMD: Fast empirical mode decomposition method for multi-dimensional signals based on serialization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.09.033
– volume: 263
  start-page: 22
  year: 2014
  ident: 10.1016/j.ins.2022.03.060_b0050
  article-title: Nonparallel hyperplane support vector machine for binary classification problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.11.003
– volume: 47
  start-page: 33
  year: 2016
  ident: 10.1016/j.ins.2022.03.060_b0110
  article-title: Robust least squares twin support vector machine for human activity recognition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.05.025
– volume: 563
  start-page: 269
  year: 2021
  ident: 10.1016/j.ins.2022.03.060_b0170
  article-title: Adaptive denoising algorithm using peak statistics-based thresholding and novel adaptive complementary ensemble empirical mode decomposition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.02.040
– volume: 19
  start-page: 100242
  year: 2019
  ident: 10.1016/j.ins.2022.03.060_b0205
  article-title: Short-term wind speed forecasting approach using Ensemble Empirical Mode Decomposition and Deep Boltzmann Machine
  publication-title: Sustainable Energy Grids Networks
  doi: 10.1016/j.segan.2019.100242
– volume: 236
  start-page: 700
  year: 2019
  ident: 10.1016/j.ins.2022.03.060_b0140
  article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.004
– volume: 9
  start-page: 70
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2022.03.060_b0035
  article-title: Electric load forecasting based on a least squares support vector machine with fuzzy time series and global harmony search algorithm
  publication-title: Energies
  doi: 10.3390/en9020070
– volume: 23
  start-page: 365
  issue: 3
  year: 2010
  ident: 10.1016/j.ins.2022.03.060_b0115
  article-title: TSVR: an efficient twin support vector machine for regression
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.07.002
– volume: 7
  start-page: 193
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2022.03.060_b0105
  article-title: Twin support vector machines based on fruit fly optimization algorithm
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-015-0424-8
SSID ssj0004766
Score 2.492127
Snippet Despite the rapid development of support vector regression (SVR), it costs unacceptable training time in large-scale datasets and is hard to fit complex, high...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms Cloud theory
Ensemble empirical mode decomposition (EEMD)
Gated recurrent unit (GRU)
Salp swarm algorithm (SSA)
Twin support vector regression (TWSVR)
Title An optimized twin support vector regression algorithm enhanced by ensemble empirical mode decomposition and gated recurrent unit
URI https://dx.doi.org/10.1016/j.ins.2022.03.060
Volume 598
WOSCitedRecordID wos000783324300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcEBQQBYreAXEgiuSsTo4jVDahCqkFDVyixHY6qWYyo2kyFE78Dn4tz7HjSVuK6IFLFFmOs7wvb_NbCHmeCoGCJAhdHpaRGwovcYsy8dy8kHHMBE2Tzqf7-QM7OEgmk_TjaPSrz4VZz1hdJ2dn6fK_khrHkNgqdfYa5LaL4gCeI9HxiGTH4z8RfowKIPKBefUDdcnmW1U7p-1SadnOuvPQOyt5rINfayefHS9WVTOdO7Ke6lgAVEfRspVzlVEl58tKlxBRDXMcIVUAuony6nYdlA9Opb9wU-WpRQYxVHdNslM338jaTSN7003lcFqVsrrkwP6qYlQtct-0C-1BmNmZh23HML-0TS99jfMC7V4bZGWTCairzJohQ450X2rDUj0zX0tnT6dJX2L82gdxgtaKqsHu-13lWt2p4HyR7QvCz4Yk9tFuJxkukaklMhpkuMQNsu2zKEWmvz1-tz95v8m6ZXonvH-Ffs-8ix688Bx_1noGmszRXXLHmCAw1tC5R0ay3iG3B4Upd8ieSWeBFzAgIRhBcJ_8HNdgQQYKZGBABhpksAEZWJBBDzIovkMPMrAgAwUyOAcyQJBBBzKwIAMFsgfk0-v9o1dvXdPLw-W-zxo3FsKjeRCgglvSEvlCzuIiVO0MuJ9Hca4dCXEQlknCg0CmaRmLJOQ8pH6aB17wkGzVi1o-IpCGnBYJYxGPZFgymbA88oQakIVIKd0ltP_WGTeF7lW_lVl2JY13yUt7yVJXefnb5LAnYGZ-Ha1-ZgjGqy97fJ17PCG3Nr_LU7LVrFq5R27ydVOdrp4ZJP4G30S4rA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+twin+support+vector+regression+algorithm+enhanced+by+ensemble+empirical+mode+decomposition+and+gated+recurrent+unit&rft.jtitle=Information+sciences&rft.au=Ding%2C+Shifei&rft.au=Zhang%2C+Zichen&rft.au=Guo%2C+Lili&rft.au=Sun%2C+Yuting&rft.date=2022-06-01&rft.issn=0020-0255&rft.volume=598&rft.spage=101&rft.epage=125&rft_id=info:doi/10.1016%2Fj.ins.2022.03.060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_03_060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon