An improved parameter identification method considering multi-timescale characteristics of lithium-ion batteries

To monitor and predict battery states, a battery model with accurate model parameters is important to battery management systems (BMS). However, for multi-timescale dynamic characteristics, the precision and adaptability of parameter identification of the Li-ion battery model is unsatisfactory up to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of energy storage Ročník 59; s. 106462
Hlavní autoři: Yang, Zhao, Wang, Xuemei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2023
Témata:
ISSN:2352-152X, 2352-1538
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To monitor and predict battery states, a battery model with accurate model parameters is important to battery management systems (BMS). However, for multi-timescale dynamic characteristics, the precision and adaptability of parameter identification of the Li-ion battery model is unsatisfactory up to now. In this paper, an improved parameter identification algorithm is proposed combining fixed memory recursive least squares (FMRLS) and fading extended Kalman filter (FEKF) which are used to obtain the fast dynamic (FD) and slow dynamic (SD) parameters of equivalent circuit model (ECM) respectively. Open-circuit voltage (OCV) is identified as a component of the SD part because of its slow dynamic nature in this algorithm. Federal urban driving schedule (FUDS) and dynamic stress test (DST) tests with different initial state of charge (SOC) and temperatures were employed for verifications, and the results show that the algorithm can track the battery terminal voltage in time and the root mean square error (RMSE) is as low as 1 mV. Meanwhile, the results reveal that the advanced SOC-OCV tests can be avoided indeed, and model parameters identified by this algorithm have good robustness in different temperatures and high consistency in different operating conditions which are significantly better than conventional algorithms. •Parameter identification based on the multi-timescale characteristics of Li-ion batteries.•Synchronous OCV identification instead of OCV-SOC tests.•More reasonable ciruit model and coupling mode to improve the identification accuracy.•The proposed method offers high consistency and strong robustness at different temperatures and operation conditions.
AbstractList To monitor and predict battery states, a battery model with accurate model parameters is important to battery management systems (BMS). However, for multi-timescale dynamic characteristics, the precision and adaptability of parameter identification of the Li-ion battery model is unsatisfactory up to now. In this paper, an improved parameter identification algorithm is proposed combining fixed memory recursive least squares (FMRLS) and fading extended Kalman filter (FEKF) which are used to obtain the fast dynamic (FD) and slow dynamic (SD) parameters of equivalent circuit model (ECM) respectively. Open-circuit voltage (OCV) is identified as a component of the SD part because of its slow dynamic nature in this algorithm. Federal urban driving schedule (FUDS) and dynamic stress test (DST) tests with different initial state of charge (SOC) and temperatures were employed for verifications, and the results show that the algorithm can track the battery terminal voltage in time and the root mean square error (RMSE) is as low as 1 mV. Meanwhile, the results reveal that the advanced SOC-OCV tests can be avoided indeed, and model parameters identified by this algorithm have good robustness in different temperatures and high consistency in different operating conditions which are significantly better than conventional algorithms. •Parameter identification based on the multi-timescale characteristics of Li-ion batteries.•Synchronous OCV identification instead of OCV-SOC tests.•More reasonable ciruit model and coupling mode to improve the identification accuracy.•The proposed method offers high consistency and strong robustness at different temperatures and operation conditions.
ArticleNumber 106462
Author Wang, Xuemei
Yang, Zhao
Author_xml – sequence: 1
  givenname: Zhao
  surname: Yang
  fullname: Yang, Zhao
– sequence: 2
  givenname: Xuemei
  surname: Wang
  fullname: Wang, Xuemei
  email: epxmwang@scut.edu.cn
BookMark eNp9kMtqwzAUREVJoWmaD-hOP-DUki0_6CqEviDQTQvdCVm6bm6wZSMpgf595aZ00UVW9zGcgZlrMrODBUJuWbpiKSvu9ivwYcVTzuNd5AW_IHOeCZ4wkVWzv51_XJGl9_s0jZBgrC7mZFxbiv3ohiMYOiqnegjgKBqwAVvUKuBgaXzuBkP1YH1UHNpP2h-6gEnAHrxWHVC9i7COLPqA2tOhpR2GHR76ZHJoVJg08DfkslWdh-XvXJD3x4e3zXOyfX162ay3iea8DEkOedlkbaPyIq8EZ5XiRvHWpCKruTCVNk1dANQp1KVSvCorw0TFyxqYzo0w2YKUJ1_tBu8dtFJj-EkTnMJOslRO3cm9jN3JqTt56i6S7B85OuyV-zrL3J8YiJGOCE56jWA1GHSggzQDnqG_AVk0jFU
CitedBy_id crossref_primary_10_1007_s11581_024_05686_z
crossref_primary_10_1149_1945_7111_adee4d
crossref_primary_10_1016_j_est_2025_115581
crossref_primary_10_3390_en16196846
crossref_primary_10_1016_j_energy_2024_132805
crossref_primary_10_1088_1742_6596_2971_1_012011
crossref_primary_10_1109_TIM_2024_3509591
crossref_primary_10_3390_en16103995
crossref_primary_10_1016_j_est_2025_116955
crossref_primary_10_1016_j_apenergy_2023_122364
crossref_primary_10_1016_j_est_2024_114444
crossref_primary_10_3390_en16052218
crossref_primary_10_3390_en16176239
crossref_primary_10_3390_batteries10060208
crossref_primary_10_1007_s40819_024_01682_z
crossref_primary_10_3390_pr12102166
Cites_doi 10.1016/j.est.2022.104174
10.1109/TSMC.2016.2599281
10.1016/j.est.2022.104427
10.3390/pr10061192
10.1016/j.apenergy.2016.09.010
10.1016/j.rser.2016.05.033
10.1016/j.pnsc.2018.11.002
10.1016/j.energy.2017.10.043
10.1016/j.jpowsour.2020.228450
10.1081/SAC-120028438
10.1016/j.jpowsour.2010.08.070
10.1016/j.jpowsour.2020.229204
10.3390/en11010003
10.1016/j.jclepro.2021.126044
10.1016/j.est.2021.103252
10.1016/j.apenergy.2017.02.016
10.3390/en14154617
10.1016/j.energy.2021.120301
10.1016/j.est.2021.103518
10.1016/j.jpowsour.2016.03.042
10.1109/TIE.2016.2610398
10.1109/TCST.2014.2358846
10.1016/j.electacta.2021.138501
10.1109/ACCESS.2020.2979570
10.1016/j.apenergy.2016.10.020
10.1080/00423110412331290446
10.1016/j.energy.2022.124224
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.est.2022.106462
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-1538
ExternalDocumentID 10_1016_j_est_2022_106462
S2352152X22024513
GroupedDBID --M
0R~
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AARIN
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSR
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c227t-4e47b3fba46485218a2da2fd053925d8cdb96ee90e97aa2878d158279e1c4d5d3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001127012400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-152X
IngestDate Tue Nov 18 21:34:47 EST 2025
Wed Nov 12 18:35:50 EST 2025
Fri Feb 23 02:37:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords FEKF
Equivalent circuit model
Parameter identification
FMRLS
Multi-timescale characteristics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-4e47b3fba46485218a2da2fd053925d8cdb96ee90e97aa2878d158279e1c4d5d3
ParticipantIDs crossref_citationtrail_10_1016_j_est_2022_106462
crossref_primary_10_1016_j_est_2022_106462
elsevier_sciencedirect_doi_10_1016_j_est_2022_106462
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Journal of energy storage
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Seo, Song, Kim, Paek, Kim, Kim (b16) 2021; 226
(b28) 2022
Bicer, Babacan, Ozbek (b26) 2012; 20
Fang, Xiao (b23) 1988
Hossain, Haque, Arif (b6) 2022; 51
Tan, Tan, Zhan, Yu, Fan, Qiu, Li (b8) 2020; 8
Li (b14) 2015
Fotouhi, Auger, Propp, Longo (b17) 2018; 48
Zhang, Wang, Tang (b34) 2011; 196
Surya, Rao, Williamson (b1) 2021; 14
Wang, Fernandez, Yu, Fan, Cao, Stroe (b4) 2020; 471
Zhao, Panchal, Kollmeyer, Emadi, Gross, Dronzkowski, Mahajan, David (b12) 2022
Xia, Lao, Zhang, Tian, Chen, Sun, Wang, Sun, Lai, Wang, Wang (b31) 2018; 11
Wei, Zhao, Ji, Tseng (b24) 2017; 204
Zheng, Xing, Jiang, Sun, Kim, Pecht (b29) 2016; 183
Pradhan, Chakraborty (b5) 2022; 51
Dai, Xu, Zhu, Wei, Sun (b20) 2016; 184
Vahidi, Stefanopoulou, Peng (b35) 2005; 43
Zhang, Li, Deng, Song (b19) 2017; 64
Zhou, Xi, Zhang (b27) 1991; 17
Wang, Takyi-Aninakwa, Jin, Yu, Fernandez, Stroe (b3) 2022; 254
Tran, Mathew, Janhunen, Panchal, Raahemifar, Fraser, Fowler (b18) 2021; 43
Ma, Jiang, Tao, Song, Wu, Wang, Deng, Shang (b33) 2018; 28
Hossain Lipu, Hannan, Karim, Hussain, Saad, Ayob, Miah, Indra Mahlia (b2) 2021; 292
Zhang, Allafi, Dinh, Ascencio, Marco (b21) 2018; 142
Tran, Mevawalla, Aziz, Panchal, Xie, Fowler (b13) 2022; 10
(b30) 1996
Shi, Chen, Niu, He, Wang, Cui (b7) 2022; 45
Nejad, Gladwin, Stone (b10) 2016; 316
Li, Wang, Yan, Zhao (b15) 2021; 484
Hu, Wang (b22) 2015; 23
Wang, Jiang, Li, Yan (b9) 2016; 64
Ozbek, Efe (b25) 2004; 33
Sun, Lin, Cai, Gao, Zhu, He (b32) 2021; 387
Liang, Emadi, Gross, Vidal, Canova, Panchal, Kollmeyer, Naguib, Khanum (b11) 2022
Sun (10.1016/j.est.2022.106462_b32) 2021; 387
Li (10.1016/j.est.2022.106462_b15) 2021; 484
Ozbek (10.1016/j.est.2022.106462_b25) 2004; 33
Zhou (10.1016/j.est.2022.106462_b27) 1991; 17
Tan (10.1016/j.est.2022.106462_b8) 2020; 8
Wang (10.1016/j.est.2022.106462_b4) 2020; 471
Hu (10.1016/j.est.2022.106462_b22) 2015; 23
Zheng (10.1016/j.est.2022.106462_b29) 2016; 183
(10.1016/j.est.2022.106462_b28) 2022
Surya (10.1016/j.est.2022.106462_b1) 2021; 14
Fang (10.1016/j.est.2022.106462_b23) 1988
Zhang (10.1016/j.est.2022.106462_b34) 2011; 196
Fotouhi (10.1016/j.est.2022.106462_b17) 2018; 48
Vahidi (10.1016/j.est.2022.106462_b35) 2005; 43
Seo (10.1016/j.est.2022.106462_b16) 2021; 226
Zhao (10.1016/j.est.2022.106462_b12) 2022
Nejad (10.1016/j.est.2022.106462_b10) 2016; 316
Bicer (10.1016/j.est.2022.106462_b26) 2012; 20
Wei (10.1016/j.est.2022.106462_b24) 2017; 204
Hossain Lipu (10.1016/j.est.2022.106462_b2) 2021; 292
Hossain (10.1016/j.est.2022.106462_b6) 2022; 51
Tran (10.1016/j.est.2022.106462_b13) 2022; 10
Pradhan (10.1016/j.est.2022.106462_b5) 2022; 51
Ma (10.1016/j.est.2022.106462_b33) 2018; 28
Xia (10.1016/j.est.2022.106462_b31) 2018; 11
Wang (10.1016/j.est.2022.106462_b9) 2016; 64
Zhang (10.1016/j.est.2022.106462_b19) 2017; 64
Zhang (10.1016/j.est.2022.106462_b21) 2018; 142
Wang (10.1016/j.est.2022.106462_b3) 2022; 254
(10.1016/j.est.2022.106462_b30) 1996
Liang (10.1016/j.est.2022.106462_b11) 2022
Dai (10.1016/j.est.2022.106462_b20) 2016; 184
Shi (10.1016/j.est.2022.106462_b7) 2022; 45
Li (10.1016/j.est.2022.106462_b14) 2015
Tran (10.1016/j.est.2022.106462_b18) 2021; 43
References_xml – volume: 43
  start-page: 31
  year: 2005
  end-page: 55
  ident: b35
  article-title: Recursive least squares with forgetting for online estimation of vehicle mass and road grade: theory and experiments
  publication-title: Veh. Syst. Dyn.
– volume: 51
  year: 2022
  ident: b5
  article-title: Battery management strategies: An essential review for battery state of health monitoring techniques
  publication-title: J. Energy Storage
– volume: 11
  year: 2018
  ident: b31
  article-title: Online parameter identification and state of charge estimation of lithium-ion batteries based on forgetting factor recursive least squares and nonlinear Kalman filter
  publication-title: Energies
– volume: 8
  start-page: 56811
  year: 2020
  end-page: 56822
  ident: b8
  article-title: Real-time state-of-health estimation of lithium-ion batteries based on the equivalent internal resistance
  publication-title: IEEE Access
– volume: 43
  year: 2021
  ident: b18
  article-title: A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters
  publication-title: J. Energy Storage
– year: 1996
  ident: b30
  article-title: USABC electric vehicle battery test procedures manual. Revision 2
– volume: 196
  start-page: 1513
  year: 2011
  end-page: 1520
  ident: b34
  article-title: Cycling degradation of an automotive LiFePO4 lithium-ion battery
  publication-title: J. Power Sources
– volume: 316
  start-page: 183
  year: 2016
  end-page: 196
  ident: b10
  article-title: A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states
  publication-title: J. Power Sources
– year: 2022
  ident: b11
  article-title: A comparative study between physics, electrical and data driven lithium-ion battery voltage modeling approaches
  publication-title: WCX SAE World Congress Experience
– volume: 28
  start-page: 653
  year: 2018
  end-page: 666
  ident: b33
  article-title: Temperature effect and thermal impact in lithium-ion batteries: A review
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 184
  start-page: 119
  year: 2016
  end-page: 131
  ident: b20
  article-title: Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales
  publication-title: Appl. Energy
– volume: 20
  start-page: 819
  year: 2012
  end-page: 833
  ident: b26
  article-title: Stability of the adaptive fading extended Kalman filter with the matrix forgetting factor
  publication-title: Turk. J. Electr. Eng. Comput. Sci.,
– volume: 45
  year: 2022
  ident: b7
  article-title: State-of-charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification
  publication-title: J. Energy Storage
– volume: 226
  year: 2021
  ident: b16
  article-title: Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures
  publication-title: Energy
– volume: 254
  year: 2022
  ident: b3
  article-title: An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation
  publication-title: Energy
– volume: 14
  start-page: 4617
  year: 2021
  ident: b1
  article-title: Comprehensive review on smart techniques for estimation of state of health for battery management system application
  publication-title: Energies
– volume: 64
  start-page: 106
  year: 2016
  end-page: 128
  ident: b9
  article-title: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles
  publication-title: Renew. Sustain. Energy Rev.
– volume: 64
  start-page: 654
  year: 2017
  end-page: 663
  ident: b19
  article-title: Improved realtime state-of-charge estimation of LiFePO
  publication-title: IEEE Trans. Ind. Electron.
– volume: 17
  year: 1991
  ident: b27
  article-title: A suboptimal multiple fading extended Kalman filter
  publication-title: Acta Automat. Sinica
– year: 1988
  ident: b23
  article-title: Process Identification
– volume: 10
  year: 2022
  ident: b13
  article-title: A review of lithium-ion battery thermal runaway modeling and diagnosis approaches
  publication-title: Processes
– volume: 183
  start-page: 513
  year: 2016
  end-page: 525
  ident: b29
  article-title: Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries
  publication-title: Appl. Energy
– year: 2022
  ident: b12
  article-title: 3D FEA thermal modeling with experimentally measured loss gradient of large format ultra-fast charging battery module used for EVs
  publication-title: WCX SAE World Congress Experience
– volume: 23
  start-page: 1180
  year: 2015
  end-page: 1188
  ident: b22
  article-title: Two time-scaled battery model identification with application to battery state estimation
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 48
  start-page: 195
  year: 2018
  end-page: 206
  ident: b17
  article-title: Accuracy versus simplicity in online battery model identification
  publication-title: EEE Trans. Syst. Man Cybern.: Systems
– volume: 387
  year: 2021
  ident: b32
  article-title: Improved parameter identification and state-of-charge estimation for lithium-ion battery with fixed memory recursive least squares and sigma-point Kalman filter
  publication-title: Electrochim. Acta
– volume: 292
  year: 2021
  ident: b2
  article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook
  publication-title: J. Clean. Prod.
– year: 2022
  ident: b28
  article-title: Battery research data
– volume: 471
  year: 2020
  ident: b4
  article-title: A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm
  publication-title: J. Power Sources
– volume: 51
  year: 2022
  ident: b6
  article-title: Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis
  publication-title: J. Energy Storage
– volume: 484
  year: 2021
  ident: b15
  article-title: A combination state of charge estimation method for ternary polymer lithium battery considering temperature influence
  publication-title: J. Power Sources
– year: 2015
  ident: b14
  article-title: Study on Li-ion battery identification and state-of-health estimation for electric vehicles
– volume: 33
  start-page: 145
  year: 2004
  end-page: 158
  ident: b25
  article-title: An adaptive extended Kalman filter with application to compartment models
  publication-title: Comm. Statist. Simulation Comput.
– volume: 142
  start-page: 678
  year: 2018
  end-page: 688
  ident: b21
  article-title: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique
  publication-title: Energy
– volume: 204
  start-page: 1264
  year: 2017
  end-page: 1274
  ident: b24
  article-title: A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model
  publication-title: Appl. Energy
– volume: 51
  year: 2022
  ident: 10.1016/j.est.2022.106462_b6
  article-title: Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: A comparative analysis
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104174
– volume: 48
  start-page: 195
  issue: 2
  year: 2018
  ident: 10.1016/j.est.2022.106462_b17
  article-title: Accuracy versus simplicity in online battery model identification
  publication-title: EEE Trans. Syst. Man Cybern.: Systems
  doi: 10.1109/TSMC.2016.2599281
– volume: 51
  year: 2022
  ident: 10.1016/j.est.2022.106462_b5
  article-title: Battery management strategies: An essential review for battery state of health monitoring techniques
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104427
– volume: 10
  issue: 6
  year: 2022
  ident: 10.1016/j.est.2022.106462_b13
  article-title: A review of lithium-ion battery thermal runaway modeling and diagnosis approaches
  publication-title: Processes
  doi: 10.3390/pr10061192
– volume: 183
  start-page: 513
  year: 2016
  ident: 10.1016/j.est.2022.106462_b29
  article-title: Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.09.010
– year: 2022
  ident: 10.1016/j.est.2022.106462_b28
– volume: 64
  start-page: 106
  year: 2016
  ident: 10.1016/j.est.2022.106462_b9
  article-title: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.05.033
– year: 2022
  ident: 10.1016/j.est.2022.106462_b11
  article-title: A comparative study between physics, electrical and data driven lithium-ion battery voltage modeling approaches
– volume: 28
  start-page: 653
  issue: 6
  year: 2018
  ident: 10.1016/j.est.2022.106462_b33
  article-title: Temperature effect and thermal impact in lithium-ion batteries: A review
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2018.11.002
– volume: 142
  start-page: 678
  year: 2018
  ident: 10.1016/j.est.2022.106462_b21
  article-title: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique
  publication-title: Energy
  doi: 10.1016/j.energy.2017.10.043
– volume: 471
  year: 2020
  ident: 10.1016/j.est.2022.106462_b4
  article-title: A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228450
– volume: 33
  start-page: 145
  issue: 1
  year: 2004
  ident: 10.1016/j.est.2022.106462_b25
  article-title: An adaptive extended Kalman filter with application to compartment models
  publication-title: Comm. Statist. Simulation Comput.
  doi: 10.1081/SAC-120028438
– volume: 196
  start-page: 1513
  issue: 3
  year: 2011
  ident: 10.1016/j.est.2022.106462_b34
  article-title: Cycling degradation of an automotive LiFePO4 lithium-ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.08.070
– year: 2022
  ident: 10.1016/j.est.2022.106462_b12
  article-title: 3D FEA thermal modeling with experimentally measured loss gradient of large format ultra-fast charging battery module used for EVs
– volume: 484
  year: 2021
  ident: 10.1016/j.est.2022.106462_b15
  article-title: A combination state of charge estimation method for ternary polymer lithium battery considering temperature influence
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229204
– volume: 20
  start-page: 819
  issue: 5
  year: 2012
  ident: 10.1016/j.est.2022.106462_b26
  article-title: Stability of the adaptive fading extended Kalman filter with the matrix forgetting factor
  publication-title: Turk. J. Electr. Eng. Comput. Sci.,
– year: 1996
  ident: 10.1016/j.est.2022.106462_b30
– volume: 11
  issue: 1
  year: 2018
  ident: 10.1016/j.est.2022.106462_b31
  article-title: Online parameter identification and state of charge estimation of lithium-ion batteries based on forgetting factor recursive least squares and nonlinear Kalman filter
  publication-title: Energies
  doi: 10.3390/en11010003
– volume: 292
  year: 2021
  ident: 10.1016/j.est.2022.106462_b2
  article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126044
– volume: 17
  year: 1991
  ident: 10.1016/j.est.2022.106462_b27
  article-title: A suboptimal multiple fading extended Kalman filter
  publication-title: Acta Automat. Sinica
– volume: 43
  year: 2021
  ident: 10.1016/j.est.2022.106462_b18
  article-title: A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103252
– volume: 204
  start-page: 1264
  year: 2017
  ident: 10.1016/j.est.2022.106462_b24
  article-title: A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.02.016
– volume: 14
  start-page: 4617
  issue: 15
  year: 2021
  ident: 10.1016/j.est.2022.106462_b1
  article-title: Comprehensive review on smart techniques for estimation of state of health for battery management system application
  publication-title: Energies
  doi: 10.3390/en14154617
– volume: 226
  year: 2021
  ident: 10.1016/j.est.2022.106462_b16
  article-title: Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120301
– volume: 45
  year: 2022
  ident: 10.1016/j.est.2022.106462_b7
  article-title: State-of-charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103518
– volume: 316
  start-page: 183
  year: 2016
  ident: 10.1016/j.est.2022.106462_b10
  article-title: A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.042
– year: 1988
  ident: 10.1016/j.est.2022.106462_b23
– volume: 64
  start-page: 654
  issue: 1
  year: 2017
  ident: 10.1016/j.est.2022.106462_b19
  article-title: Improved realtime state-of-charge estimation of LiFePO4 battery based on a novel thermoelectric model
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2610398
– year: 2015
  ident: 10.1016/j.est.2022.106462_b14
– volume: 23
  start-page: 1180
  issue: 3
  year: 2015
  ident: 10.1016/j.est.2022.106462_b22
  article-title: Two time-scaled battery model identification with application to battery state estimation
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2358846
– volume: 387
  year: 2021
  ident: 10.1016/j.est.2022.106462_b32
  article-title: Improved parameter identification and state-of-charge estimation for lithium-ion battery with fixed memory recursive least squares and sigma-point Kalman filter
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138501
– volume: 8
  start-page: 56811
  year: 2020
  ident: 10.1016/j.est.2022.106462_b8
  article-title: Real-time state-of-health estimation of lithium-ion batteries based on the equivalent internal resistance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2979570
– volume: 184
  start-page: 119
  year: 2016
  ident: 10.1016/j.est.2022.106462_b20
  article-title: Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.020
– volume: 43
  start-page: 31
  issue: 1
  year: 2005
  ident: 10.1016/j.est.2022.106462_b35
  article-title: Recursive least squares with forgetting for online estimation of vehicle mass and road grade: theory and experiments
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423110412331290446
– volume: 254
  year: 2022
  ident: 10.1016/j.est.2022.106462_b3
  article-title: An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124224
SSID ssj0001651196
Score 2.350393
Snippet To monitor and predict battery states, a battery model with accurate model parameters is important to battery management systems (BMS). However, for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106462
SubjectTerms Equivalent circuit model
FEKF
FMRLS
Multi-timescale characteristics
Parameter identification
Title An improved parameter identification method considering multi-timescale characteristics of lithium-ion batteries
URI https://dx.doi.org/10.1016/j.est.2022.106462
Volume 59
WOSCitedRecordID wos001127012400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-1538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001651196
  issn: 2352-152X
  databaseCode: AIEXJ
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELYm2MP2gAZsGgwmP_DE5KlxnNh-rBAT4wFNGkjZXqIkdkYRTarSIv783cXOjxY2bZP2ElWn2qnuc8_n8913hBzFsA8YlccsC0vLhMlHTBtZMKXKMjAmDkzomk3IiwuVJPqLJ1S4a9oJyKpSDw969l-hBhmAjaWzfwF3NykI4DOADk-AHZ5_BPy4wtLHeX0PriQSe08x4eXDxPi0IAe4axyNOedNu06MFzSphazpNQ-4WSwJXqFyrpt65evJcspwhrwh5mxTEB-7t9YVFWLyZfajWz3ffHj6-3VW97F8J0uWdmonwzAED_s8LBcba-tj-mQkMGEc3DsGHkLidpuhzHG6tDbYsYI_MucusnDzETZIOMpzDpJYeOu9ypL9FafFN3GOl8nYx3iTy0iDodscfz5NzvvAW4xXp67poP917W13k_e39q6n_ZWBD3L5imx57dKxA32bPLPVDnk5oJTcJbNxRVv4aQc_XYWfOvjpAH66Bj9dg5_WJR3ATzv4X5OrT6eXJ2fMd9VgBedywYQVMg_LPBOxUKAzlXGT8dKANdY8wmZWuY6t1SOrZZbBgVqZIFJcahsUwkQmfEM2qrqybwktpJYjC2bARlxY8FQlnD7h36_youCBKffIqNVdWnjKeex8cpu2uYU3Kag7RXWnTt175LgbMnN8K7_7smgBSb3D6BzBFBbQr4ft_9uwd-RFv_APyMZivrSH5Hlxv5jczd_7ZfYTc9eUgQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+parameter+identification+method+considering+multi-timescale+characteristics+of+lithium-ion+batteries&rft.jtitle=Journal+of+energy+storage&rft.au=Yang%2C+Zhao&rft.au=Wang%2C+Xuemei&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.eissn=2352-1538&rft.volume=59&rft_id=info:doi/10.1016%2Fj.est.2022.106462&rft.externalDocID=S2352152X22024513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon