Acyclic matching in some subclasses of graphs

A subset M⊆E of edges of a graph G=(V,E) is called a matching if no two edges of M share a common vertex. Given a matching M in G, a vertex v∈V is called M-saturated if there exists an edge e∈M incident with v. A matching M of a graph G is called an acyclic matching if, G[V(M)], the subgraph of G in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 943; s. 36 - 49
Hlavní autoři: Panda, B.S., Chaudhary, Juhi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 17.01.2023
Témata:
ISSN:0304-3975
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A subset M⊆E of edges of a graph G=(V,E) is called a matching if no two edges of M share a common vertex. Given a matching M in G, a vertex v∈V is called M-saturated if there exists an edge e∈M incident with v. A matching M of a graph G is called an acyclic matching if, G[V(M)], the subgraph of G induced by the M-saturated vertices of G is an acyclic graph. Given a graph G, the Acyclic Matching problem asks to find an acyclic matching of maximum cardinality in G. The Decide-Acyclic Matching problem takes a graph G and an integer k and asks whether G has an acyclic matching of cardinality at least k. The Decide-Acyclic Matching problem is known to be NP-complete for general graphs as well as for bipartite graphs. In this paper, we strengthen this result by showing that the Decide-Acyclic Matching problem remains NP-complete for comb-convex bipartite graphs, star-convex bipartite graphs, and dually chordal graphs. On the positive side, we show that the Acyclic Matching problem is linear time solvable for split graphs, block graphs, and proper interval graphs. We show that the Acyclic Matching problem is hard to approximate within a factor of n1−ϵ for any ϵ>0 unless P=NP. Also, we show that the Acyclic Matching problem is APX-complete for (2k+1)-regular graphs for every fixed integer k≥3.
AbstractList A subset M⊆E of edges of a graph G=(V,E) is called a matching if no two edges of M share a common vertex. Given a matching M in G, a vertex v∈V is called M-saturated if there exists an edge e∈M incident with v. A matching M of a graph G is called an acyclic matching if, G[V(M)], the subgraph of G induced by the M-saturated vertices of G is an acyclic graph. Given a graph G, the Acyclic Matching problem asks to find an acyclic matching of maximum cardinality in G. The Decide-Acyclic Matching problem takes a graph G and an integer k and asks whether G has an acyclic matching of cardinality at least k. The Decide-Acyclic Matching problem is known to be NP-complete for general graphs as well as for bipartite graphs. In this paper, we strengthen this result by showing that the Decide-Acyclic Matching problem remains NP-complete for comb-convex bipartite graphs, star-convex bipartite graphs, and dually chordal graphs. On the positive side, we show that the Acyclic Matching problem is linear time solvable for split graphs, block graphs, and proper interval graphs. We show that the Acyclic Matching problem is hard to approximate within a factor of n1−ϵ for any ϵ>0 unless P=NP. Also, we show that the Acyclic Matching problem is APX-complete for (2k+1)-regular graphs for every fixed integer k≥3.
Author Chaudhary, Juhi
Panda, B.S.
Author_xml – sequence: 1
  givenname: B.S.
  surname: Panda
  fullname: Panda, B.S.
  email: bspanda@maths.iitd.ac.in
  organization: Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India
– sequence: 2
  givenname: Juhi
  orcidid: 0000-0001-5560-9129
  surname: Chaudhary
  fullname: Chaudhary, Juhi
  email: juhic@post.bgu.ac.il
  organization: Department of Computer Science, Ben-Gurion University of the Negev, Beersheba, Israel
BookMark eNp9z8lqwzAQxnEdUmiS9gF68wvY1eJN9BRCNwj00p6FPB4lMl6CRi3k7euQnnrIXL7Tf-C3YotxGpGxB8EzwUX52GURKJNcykzIjPN6wZZc8TxVuipu2Yqo4_MVVblk6QZO0HtIBhvh4Md94seEpgET-m6gt0RIyeSSfbDHA92xG2d7wvu_XbOvl-fP7Vu6-3h93252KUhZxVSVpbNNg6LIsc5RVlpbXWgt5m0EOMh1gVgpoWrldF20DdSyVU7WbalcXqo1qy5_IUxEAZ0BH2300xiD9b0R3JylpjOz1JylRkgzS-dS_CuPwQ82nK42T5cGZ9KPx2AIPI6ArQ8I0bSTv1L_Aovqb2o
CitedBy_id crossref_primary_10_1016_j_tcs_2025_115149
crossref_primary_10_1007_s10878_024_01200_3
crossref_primary_10_3390_math13050889
crossref_primary_10_1016_j_jcss_2024_103599
crossref_primary_10_1016_j_tcs_2023_113862
crossref_primary_10_1137_23M160013X
Cites_doi 10.1111/j.1467-8640.2012.00418.x
10.1007/s10479-019-03311-1
10.1016/S0304-3975(98)00158-3
10.1016/0022-0000(91)90023-X
10.1016/j.dam.2018.03.029
10.1016/0898-1221(93)90308-I
10.1016/S0020-0190(03)00298-9
10.1016/j.dam.2018.01.002
10.1142/S1793830912500504
10.1016/j.disc.2004.08.027
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2022.12.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EndPage 49
ExternalDocumentID 10_1016_j_tcs_2022_12_008
S0304397522007253
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGRNS
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSH
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
ADVLN
AEXQZ
AGHFR
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
R2-
SEW
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c227t-366fabbe154e84e2799a9599199ab1cfc495ee731383f985dbc82d3f28d63f463
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000914103800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Sat Nov 29 07:00:44 EST 2025
Tue Nov 18 22:25:20 EST 2025
Sat Jun 21 16:54:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Matching
Polynomial-time algorithms
Acyclic matching
Graph algorithms
NP-completeness
APX-completeness
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-366fabbe154e84e2799a9599199ab1cfc495ee731383f985dbc82d3f28d63f463
ORCID 0000-0001-5560-9129
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_tcs_2022_12_008
crossref_primary_10_1016_j_tcs_2022_12_008
elsevier_sciencedirect_doi_10_1016_j_tcs_2022_12_008
PublicationCentury 2000
PublicationDate 2023-01-17
PublicationDateYYYYMMDD 2023-01-17
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-17
  day: 17
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Aho, Hopcroft, Ullman (br0010) 1974
Pandey, Panda (br0140) 2019; 252
Papadimitriou, Yannakakis (br0150) 1991; 43
Goddard, Hedetniemi, Hedetniemi, Laskar (br0080) 2005; 293
Ausiello, Crescenzi, Gambosi, Kann, Spaccamela, Protasi (br0030) 2012
Panda, Das (br0120) 2003; 87
Baste, Rautenbach (br0060) 2018; 239
Panda, Pradhan (br0130) 2012; 4
Looges, Olariu (br0100) 1993; 25
Zuckerman (br0160) 2006
Bao, Zhang (br0040) 2012; 28
Fürst, Rautenbach (br0070) 2019; 279
Alimonti, Kann (br0020) 2000; 237
Panda, Chaudhary (br0110) 2020; vol. 12126
Baste, Fürst, Rautenbach (br0050) 2020
Heggernes, Kratsch (br0090) 2007; 14
Panda (10.1016/j.tcs.2022.12.008_br0130) 2012; 4
Panda (10.1016/j.tcs.2022.12.008_br0110) 2020; vol. 12126
Aho (10.1016/j.tcs.2022.12.008_br0010) 1974
Baste (10.1016/j.tcs.2022.12.008_br0050) 2020
Heggernes (10.1016/j.tcs.2022.12.008_br0090) 2007; 14
Bao (10.1016/j.tcs.2022.12.008_br0040) 2012; 28
Panda (10.1016/j.tcs.2022.12.008_br0120) 2003; 87
Baste (10.1016/j.tcs.2022.12.008_br0060) 2018; 239
Zuckerman (10.1016/j.tcs.2022.12.008_br0160) 2006
Pandey (10.1016/j.tcs.2022.12.008_br0140) 2019; 252
Looges (10.1016/j.tcs.2022.12.008_br0100) 1993; 25
Goddard (10.1016/j.tcs.2022.12.008_br0080) 2005; 293
Papadimitriou (10.1016/j.tcs.2022.12.008_br0150) 1991; 43
Alimonti (10.1016/j.tcs.2022.12.008_br0020) 2000; 237
Ausiello (10.1016/j.tcs.2022.12.008_br0030) 2012
Fürst (10.1016/j.tcs.2022.12.008_br0070) 2019; 279
References_xml – volume: 237
  start-page: 123
  year: 2000
  end-page: 134
  ident: br0020
  article-title: Some APX-completeness results for cubic graphs
  publication-title: Theor. Comput. Sci.
– year: 2012
  ident: br0030
  article-title: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties
– volume: 25
  start-page: 15
  year: 1993
  end-page: 25
  ident: br0100
  article-title: Optimal greedy algorithms for indifference graphs
  publication-title: Comput. Math. Appl.
– volume: vol. 12126
  start-page: 409
  year: 2020
  end-page: 421
  ident: br0110
  article-title: Acyclic matching in some subclasses of graphs
  publication-title: International Workshop on Combinatorial Algorithms
– volume: 28
  start-page: 358
  year: 2012
  end-page: 372
  ident: br0040
  article-title: A review of tree convex sets test
  publication-title: Comput. Intell.
– start-page: 542
  year: 2020
  end-page: 553
  ident: br0050
  article-title: Approximating maximum acyclic matchings by greedy and local search strategies
  publication-title: International Computing and Combinatorics Conference
– volume: 14
  start-page: 87
  year: 2007
  end-page: 108
  ident: br0090
  article-title: Linear-time certifying recognition algorithms and forbidden induced subgraphs
  publication-title: Nord. J. Comput.
– start-page: 681
  year: 2006
  end-page: 690
  ident: br0160
  article-title: Linear degree extractors and the inapproximability of max clique and chromatic number
  publication-title: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing
– volume: 279
  start-page: 291
  year: 2019
  end-page: 300
  ident: br0070
  article-title: On some hard and some tractable cases of the maximum acyclic matching problem
  publication-title: Ann. Oper. Res.
– volume: 293
  start-page: 129
  year: 2005
  end-page: 138
  ident: br0080
  article-title: Generalized subgraph-restricted matchings in graphs
  publication-title: Discrete Math.
– year: 1974
  ident: br0010
  article-title: The Design and Analysis of Computer Algorithms
– volume: 43
  start-page: 425
  year: 1991
  end-page: 440
  ident: br0150
  article-title: Optimization, approximation, and complexity classes
  publication-title: J. Comput. Syst. Sci.
– volume: 239
  start-page: 38
  year: 2018
  end-page: 44
  ident: br0060
  article-title: Degenerate matchings and edge colorings
  publication-title: Discrete Appl. Math.
– volume: 4
  year: 2012
  ident: br0130
  article-title: Acyclic matchings in subclasses of bipartite graphs
  publication-title: Discrete Math. Algorithms Appl.
– volume: 252
  start-page: 51
  year: 2019
  end-page: 66
  ident: br0140
  article-title: Domination in some subclasses of bipartite graphs
  publication-title: Discrete Appl. Math.
– volume: 87
  start-page: 153
  year: 2003
  end-page: 161
  ident: br0120
  article-title: A linear time recognition algorithm for proper interval graphs
  publication-title: Inf. Process. Lett.
– volume: 28
  start-page: 358
  issue: 3
  year: 2012
  ident: 10.1016/j.tcs.2022.12.008_br0040
  article-title: A review of tree convex sets test
  publication-title: Comput. Intell.
  doi: 10.1111/j.1467-8640.2012.00418.x
– year: 1974
  ident: 10.1016/j.tcs.2022.12.008_br0010
– year: 2012
  ident: 10.1016/j.tcs.2022.12.008_br0030
– volume: 279
  start-page: 291
  issue: 1–2
  year: 2019
  ident: 10.1016/j.tcs.2022.12.008_br0070
  article-title: On some hard and some tractable cases of the maximum acyclic matching problem
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-019-03311-1
– volume: vol. 12126
  start-page: 409
  year: 2020
  ident: 10.1016/j.tcs.2022.12.008_br0110
  article-title: Acyclic matching in some subclasses of graphs
– volume: 237
  start-page: 123
  issue: 1–2
  year: 2000
  ident: 10.1016/j.tcs.2022.12.008_br0020
  article-title: Some APX-completeness results for cubic graphs
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(98)00158-3
– start-page: 542
  year: 2020
  ident: 10.1016/j.tcs.2022.12.008_br0050
  article-title: Approximating maximum acyclic matchings by greedy and local search strategies
– volume: 43
  start-page: 425
  issue: 3
  year: 1991
  ident: 10.1016/j.tcs.2022.12.008_br0150
  article-title: Optimization, approximation, and complexity classes
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(91)90023-X
– start-page: 681
  year: 2006
  ident: 10.1016/j.tcs.2022.12.008_br0160
  article-title: Linear degree extractors and the inapproximability of max clique and chromatic number
– volume: 252
  start-page: 51
  year: 2019
  ident: 10.1016/j.tcs.2022.12.008_br0140
  article-title: Domination in some subclasses of bipartite graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2018.03.029
– volume: 25
  start-page: 15
  issue: 7
  year: 1993
  ident: 10.1016/j.tcs.2022.12.008_br0100
  article-title: Optimal greedy algorithms for indifference graphs
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(93)90308-I
– volume: 87
  start-page: 153
  issue: 3
  year: 2003
  ident: 10.1016/j.tcs.2022.12.008_br0120
  article-title: A linear time recognition algorithm for proper interval graphs
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(03)00298-9
– volume: 239
  start-page: 38
  year: 2018
  ident: 10.1016/j.tcs.2022.12.008_br0060
  article-title: Degenerate matchings and edge colorings
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2018.01.002
– volume: 4
  issue: 04
  year: 2012
  ident: 10.1016/j.tcs.2022.12.008_br0130
  article-title: Acyclic matchings in subclasses of bipartite graphs
  publication-title: Discrete Math. Algorithms Appl.
  doi: 10.1142/S1793830912500504
– volume: 293
  start-page: 129
  issue: 1
  year: 2005
  ident: 10.1016/j.tcs.2022.12.008_br0080
  article-title: Generalized subgraph-restricted matchings in graphs
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2004.08.027
– volume: 14
  start-page: 87
  issue: 1–2
  year: 2007
  ident: 10.1016/j.tcs.2022.12.008_br0090
  article-title: Linear-time certifying recognition algorithms and forbidden induced subgraphs
  publication-title: Nord. J. Comput.
SSID ssj0000576
Score 2.4221683
Snippet A subset M⊆E of edges of a graph G=(V,E) is called a matching if no two edges of M share a common vertex. Given a matching M in G, a vertex v∈V is called...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 36
SubjectTerms [formula omitted]-completeness
Acyclic matching
Graph algorithms
Matching
Polynomial-time algorithms
Title Acyclic matching in some subclasses of graphs
URI https://dx.doi.org/10.1016/j.tcs.2022.12.008
Volume 943
WOSCitedRecordID wos000914103800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 20211213
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000576
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH-CjgMc-BggxgD5wInKVWM7iX2s0KZtgglpReotih1b6zTSaWnR-O95jp0mYoAAiUtaRXEdvd-r_b78ewBvjUlLkZiUKpFoKrKppCW3hhr0xKTw9C-6pcz_kJ-eysVCfYpd-Jq2nUBe1_LmRl39V6jxHoLtj87-BdzbH8Ub-B1BxyvCjtc_An5mvhnPXI2maKiTXNbjZvXFjpuNNt5WDjSzLVN1M7RN54MzjSY2exjHHbLPNKEL3-rE5GwyKA3YVOdlSMifbM6Xw1AC84VUNJycDPGtW2dcwrkqnztRob9Jt2YqwQerHs8G-2dgIL21MocgwcVkbTxJOmNtEHYq-21oWxx45mf0EzIfR2Upvws7LE-VHMHO7PhgcdLvtGkectHxDbusdVu_98NEP7c7BrbE_DE8jE4AmQXwnsAdW-_Co67BBonr7S48-Lgl1W2eAo3Ikg5ZsqyJR5b0yJKVIwHZZ_D58GD-_ojGbhfUMJavKc8yV2pt8f9hpbAsV6pUKZrv-KkT4wy6stbmPOGSOyXTShvJKu6YrDLuRMafw6he1fYFEItPS-mcVDoVeqpKdBurTLuKK1miwboH004WhYlU8L4jyWXR1fxdFCi-wouvSFiB4tuDd9shV4EH5XcPi07ARVTTYKAVqA2_Hvby34btw_1emV_BaH29sa_hnvm6XjbXb6LOfAcojml-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acyclic+matching+in+some+subclasses+of+graphs&rft.jtitle=Theoretical+computer+science&rft.au=Panda%2C+B.S.&rft.au=Chaudhary%2C+Juhi&rft.date=2023-01-17&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.volume=943&rft.spage=36&rft.epage=49&rft_id=info:doi/10.1016%2Fj.tcs.2022.12.008&rft.externalDocID=S0304397522007253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon