Acyclic matching in some subclasses of graphs
A subset M⊆E of edges of a graph G=(V,E) is called a matching if no two edges of M share a common vertex. Given a matching M in G, a vertex v∈V is called M-saturated if there exists an edge e∈M incident with v. A matching M of a graph G is called an acyclic matching if, G[V(M)], the subgraph of G in...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 943; s. 36 - 49 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
17.01.2023
|
| Témata: | |
| ISSN: | 0304-3975 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A subset M⊆E of edges of a graph G=(V,E) is called a matching if no two edges of M share a common vertex. Given a matching M in G, a vertex v∈V is called M-saturated if there exists an edge e∈M incident with v. A matching M of a graph G is called an acyclic matching if, G[V(M)], the subgraph of G induced by the M-saturated vertices of G is an acyclic graph. Given a graph G, the Acyclic Matching problem asks to find an acyclic matching of maximum cardinality in G. The Decide-Acyclic Matching problem takes a graph G and an integer k and asks whether G has an acyclic matching of cardinality at least k. The Decide-Acyclic Matching problem is known to be NP-complete for general graphs as well as for bipartite graphs. In this paper, we strengthen this result by showing that the Decide-Acyclic Matching problem remains NP-complete for comb-convex bipartite graphs, star-convex bipartite graphs, and dually chordal graphs. On the positive side, we show that the Acyclic Matching problem is linear time solvable for split graphs, block graphs, and proper interval graphs. We show that the Acyclic Matching problem is hard to approximate within a factor of n1−ϵ for any ϵ>0 unless P=NP. Also, we show that the Acyclic Matching problem is APX-complete for (2k+1)-regular graphs for every fixed integer k≥3. |
|---|---|
| AbstractList | A subset M⊆E of edges of a graph G=(V,E) is called a matching if no two edges of M share a common vertex. Given a matching M in G, a vertex v∈V is called M-saturated if there exists an edge e∈M incident with v. A matching M of a graph G is called an acyclic matching if, G[V(M)], the subgraph of G induced by the M-saturated vertices of G is an acyclic graph. Given a graph G, the Acyclic Matching problem asks to find an acyclic matching of maximum cardinality in G. The Decide-Acyclic Matching problem takes a graph G and an integer k and asks whether G has an acyclic matching of cardinality at least k. The Decide-Acyclic Matching problem is known to be NP-complete for general graphs as well as for bipartite graphs. In this paper, we strengthen this result by showing that the Decide-Acyclic Matching problem remains NP-complete for comb-convex bipartite graphs, star-convex bipartite graphs, and dually chordal graphs. On the positive side, we show that the Acyclic Matching problem is linear time solvable for split graphs, block graphs, and proper interval graphs. We show that the Acyclic Matching problem is hard to approximate within a factor of n1−ϵ for any ϵ>0 unless P=NP. Also, we show that the Acyclic Matching problem is APX-complete for (2k+1)-regular graphs for every fixed integer k≥3. |
| Author | Chaudhary, Juhi Panda, B.S. |
| Author_xml | – sequence: 1 givenname: B.S. surname: Panda fullname: Panda, B.S. email: bspanda@maths.iitd.ac.in organization: Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India – sequence: 2 givenname: Juhi orcidid: 0000-0001-5560-9129 surname: Chaudhary fullname: Chaudhary, Juhi email: juhic@post.bgu.ac.il organization: Department of Computer Science, Ben-Gurion University of the Negev, Beersheba, Israel |
| BookMark | eNp9z8lqwzAQxnEdUmiS9gF68wvY1eJN9BRCNwj00p6FPB4lMl6CRi3k7euQnnrIXL7Tf-C3YotxGpGxB8EzwUX52GURKJNcykzIjPN6wZZc8TxVuipu2Yqo4_MVVblk6QZO0HtIBhvh4Md94seEpgET-m6gt0RIyeSSfbDHA92xG2d7wvu_XbOvl-fP7Vu6-3h93252KUhZxVSVpbNNg6LIsc5RVlpbXWgt5m0EOMh1gVgpoWrldF20DdSyVU7WbalcXqo1qy5_IUxEAZ0BH2300xiD9b0R3JylpjOz1JylRkgzS-dS_CuPwQ82nK42T5cGZ9KPx2AIPI6ArQ8I0bSTv1L_Aovqb2o |
| CitedBy_id | crossref_primary_10_1016_j_tcs_2025_115149 crossref_primary_10_1007_s10878_024_01200_3 crossref_primary_10_3390_math13050889 crossref_primary_10_1016_j_jcss_2024_103599 crossref_primary_10_1016_j_tcs_2023_113862 crossref_primary_10_1137_23M160013X |
| Cites_doi | 10.1111/j.1467-8640.2012.00418.x 10.1007/s10479-019-03311-1 10.1016/S0304-3975(98)00158-3 10.1016/0022-0000(91)90023-X 10.1016/j.dam.2018.03.029 10.1016/0898-1221(93)90308-I 10.1016/S0020-0190(03)00298-9 10.1016/j.dam.2018.01.002 10.1142/S1793830912500504 10.1016/j.disc.2004.08.027 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tcs.2022.12.008 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EndPage | 49 |
| ExternalDocumentID | 10_1016_j_tcs_2022_12_008 S0304397522007253 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGRNS AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPC SPCBC SSH SSV SSW T5K TN5 WH7 YNT ZMT ~G- 29Q 9DU AAEDT AAQXK AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO ADVLN AEXQZ AGHFR AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB G-2 HZ~ R2- SEW SSZ TAE WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c227t-366fabbe154e84e2799a9599199ab1cfc495ee731383f985dbc82d3f28d63f463 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000914103800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-3975 |
| IngestDate | Sat Nov 29 07:00:44 EST 2025 Tue Nov 18 22:25:20 EST 2025 Sat Jun 21 16:54:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Matching Polynomial-time algorithms Acyclic matching Graph algorithms NP-completeness APX-completeness |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c227t-366fabbe154e84e2799a9599199ab1cfc495ee731383f985dbc82d3f28d63f463 |
| ORCID | 0000-0001-5560-9129 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_tcs_2022_12_008 crossref_primary_10_1016_j_tcs_2022_12_008 elsevier_sciencedirect_doi_10_1016_j_tcs_2022_12_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-17 |
| PublicationDateYYYYMMDD | 2023-01-17 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | Theoretical computer science |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Aho, Hopcroft, Ullman (br0010) 1974 Pandey, Panda (br0140) 2019; 252 Papadimitriou, Yannakakis (br0150) 1991; 43 Goddard, Hedetniemi, Hedetniemi, Laskar (br0080) 2005; 293 Ausiello, Crescenzi, Gambosi, Kann, Spaccamela, Protasi (br0030) 2012 Panda, Das (br0120) 2003; 87 Baste, Rautenbach (br0060) 2018; 239 Panda, Pradhan (br0130) 2012; 4 Looges, Olariu (br0100) 1993; 25 Zuckerman (br0160) 2006 Bao, Zhang (br0040) 2012; 28 Fürst, Rautenbach (br0070) 2019; 279 Alimonti, Kann (br0020) 2000; 237 Panda, Chaudhary (br0110) 2020; vol. 12126 Baste, Fürst, Rautenbach (br0050) 2020 Heggernes, Kratsch (br0090) 2007; 14 Panda (10.1016/j.tcs.2022.12.008_br0130) 2012; 4 Panda (10.1016/j.tcs.2022.12.008_br0110) 2020; vol. 12126 Aho (10.1016/j.tcs.2022.12.008_br0010) 1974 Baste (10.1016/j.tcs.2022.12.008_br0050) 2020 Heggernes (10.1016/j.tcs.2022.12.008_br0090) 2007; 14 Bao (10.1016/j.tcs.2022.12.008_br0040) 2012; 28 Panda (10.1016/j.tcs.2022.12.008_br0120) 2003; 87 Baste (10.1016/j.tcs.2022.12.008_br0060) 2018; 239 Zuckerman (10.1016/j.tcs.2022.12.008_br0160) 2006 Pandey (10.1016/j.tcs.2022.12.008_br0140) 2019; 252 Looges (10.1016/j.tcs.2022.12.008_br0100) 1993; 25 Goddard (10.1016/j.tcs.2022.12.008_br0080) 2005; 293 Papadimitriou (10.1016/j.tcs.2022.12.008_br0150) 1991; 43 Alimonti (10.1016/j.tcs.2022.12.008_br0020) 2000; 237 Ausiello (10.1016/j.tcs.2022.12.008_br0030) 2012 Fürst (10.1016/j.tcs.2022.12.008_br0070) 2019; 279 |
| References_xml | – volume: 237 start-page: 123 year: 2000 end-page: 134 ident: br0020 article-title: Some APX-completeness results for cubic graphs publication-title: Theor. Comput. Sci. – year: 2012 ident: br0030 article-title: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties – volume: 25 start-page: 15 year: 1993 end-page: 25 ident: br0100 article-title: Optimal greedy algorithms for indifference graphs publication-title: Comput. Math. Appl. – volume: vol. 12126 start-page: 409 year: 2020 end-page: 421 ident: br0110 article-title: Acyclic matching in some subclasses of graphs publication-title: International Workshop on Combinatorial Algorithms – volume: 28 start-page: 358 year: 2012 end-page: 372 ident: br0040 article-title: A review of tree convex sets test publication-title: Comput. Intell. – start-page: 542 year: 2020 end-page: 553 ident: br0050 article-title: Approximating maximum acyclic matchings by greedy and local search strategies publication-title: International Computing and Combinatorics Conference – volume: 14 start-page: 87 year: 2007 end-page: 108 ident: br0090 article-title: Linear-time certifying recognition algorithms and forbidden induced subgraphs publication-title: Nord. J. Comput. – start-page: 681 year: 2006 end-page: 690 ident: br0160 article-title: Linear degree extractors and the inapproximability of max clique and chromatic number publication-title: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing – volume: 279 start-page: 291 year: 2019 end-page: 300 ident: br0070 article-title: On some hard and some tractable cases of the maximum acyclic matching problem publication-title: Ann. Oper. Res. – volume: 293 start-page: 129 year: 2005 end-page: 138 ident: br0080 article-title: Generalized subgraph-restricted matchings in graphs publication-title: Discrete Math. – year: 1974 ident: br0010 article-title: The Design and Analysis of Computer Algorithms – volume: 43 start-page: 425 year: 1991 end-page: 440 ident: br0150 article-title: Optimization, approximation, and complexity classes publication-title: J. Comput. Syst. Sci. – volume: 239 start-page: 38 year: 2018 end-page: 44 ident: br0060 article-title: Degenerate matchings and edge colorings publication-title: Discrete Appl. Math. – volume: 4 year: 2012 ident: br0130 article-title: Acyclic matchings in subclasses of bipartite graphs publication-title: Discrete Math. Algorithms Appl. – volume: 252 start-page: 51 year: 2019 end-page: 66 ident: br0140 article-title: Domination in some subclasses of bipartite graphs publication-title: Discrete Appl. Math. – volume: 87 start-page: 153 year: 2003 end-page: 161 ident: br0120 article-title: A linear time recognition algorithm for proper interval graphs publication-title: Inf. Process. Lett. – volume: 28 start-page: 358 issue: 3 year: 2012 ident: 10.1016/j.tcs.2022.12.008_br0040 article-title: A review of tree convex sets test publication-title: Comput. Intell. doi: 10.1111/j.1467-8640.2012.00418.x – year: 1974 ident: 10.1016/j.tcs.2022.12.008_br0010 – year: 2012 ident: 10.1016/j.tcs.2022.12.008_br0030 – volume: 279 start-page: 291 issue: 1–2 year: 2019 ident: 10.1016/j.tcs.2022.12.008_br0070 article-title: On some hard and some tractable cases of the maximum acyclic matching problem publication-title: Ann. Oper. Res. doi: 10.1007/s10479-019-03311-1 – volume: vol. 12126 start-page: 409 year: 2020 ident: 10.1016/j.tcs.2022.12.008_br0110 article-title: Acyclic matching in some subclasses of graphs – volume: 237 start-page: 123 issue: 1–2 year: 2000 ident: 10.1016/j.tcs.2022.12.008_br0020 article-title: Some APX-completeness results for cubic graphs publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(98)00158-3 – start-page: 542 year: 2020 ident: 10.1016/j.tcs.2022.12.008_br0050 article-title: Approximating maximum acyclic matchings by greedy and local search strategies – volume: 43 start-page: 425 issue: 3 year: 1991 ident: 10.1016/j.tcs.2022.12.008_br0150 article-title: Optimization, approximation, and complexity classes publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(91)90023-X – start-page: 681 year: 2006 ident: 10.1016/j.tcs.2022.12.008_br0160 article-title: Linear degree extractors and the inapproximability of max clique and chromatic number – volume: 252 start-page: 51 year: 2019 ident: 10.1016/j.tcs.2022.12.008_br0140 article-title: Domination in some subclasses of bipartite graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2018.03.029 – volume: 25 start-page: 15 issue: 7 year: 1993 ident: 10.1016/j.tcs.2022.12.008_br0100 article-title: Optimal greedy algorithms for indifference graphs publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(93)90308-I – volume: 87 start-page: 153 issue: 3 year: 2003 ident: 10.1016/j.tcs.2022.12.008_br0120 article-title: A linear time recognition algorithm for proper interval graphs publication-title: Inf. Process. Lett. doi: 10.1016/S0020-0190(03)00298-9 – volume: 239 start-page: 38 year: 2018 ident: 10.1016/j.tcs.2022.12.008_br0060 article-title: Degenerate matchings and edge colorings publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2018.01.002 – volume: 4 issue: 04 year: 2012 ident: 10.1016/j.tcs.2022.12.008_br0130 article-title: Acyclic matchings in subclasses of bipartite graphs publication-title: Discrete Math. Algorithms Appl. doi: 10.1142/S1793830912500504 – volume: 293 start-page: 129 issue: 1 year: 2005 ident: 10.1016/j.tcs.2022.12.008_br0080 article-title: Generalized subgraph-restricted matchings in graphs publication-title: Discrete Math. doi: 10.1016/j.disc.2004.08.027 – volume: 14 start-page: 87 issue: 1–2 year: 2007 ident: 10.1016/j.tcs.2022.12.008_br0090 article-title: Linear-time certifying recognition algorithms and forbidden induced subgraphs publication-title: Nord. J. Comput. |
| SSID | ssj0000576 |
| Score | 2.4220853 |
| Snippet | A subset M⊆E of edges of a graph G=(V,E) is called a matching if no two edges of M share a common vertex. Given a matching M in G, a vertex v∈V is called... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 36 |
| SubjectTerms | [formula omitted]-completeness Acyclic matching Graph algorithms Matching Polynomial-time algorithms |
| Title | Acyclic matching in some subclasses of graphs |
| URI | https://dx.doi.org/10.1016/j.tcs.2022.12.008 |
| Volume | 943 |
| WOSCitedRecordID | wos000914103800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0304-3975 databaseCode: AIEXJ dateStart: 20211212 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000576 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wCHAQPENkA-cKJy1frbx2ratE0wIa1IvUWO42idRjotLRr__Z5jp4kYIEDiklRRXEfv9_Te8_tE6L0GiadBrxMqnCDcckGMnRhiAJHSyUKKsikU_qjOzvR8bj6nKXx1M05AVZW-vTXX_xVqeAZgh9LZv4B786fwAH4D6HAF2OH6R8BP3XcXOleDKRrzJBfVsF5-9cN6nbtgK8c2s02n6rpvm856NY0uDXsYJg3ZRZrgCN_wxOh81EsNWBcXNgbkT9cXi74rgYZEKhIrJ6N_616NS6yrCrETE-ebtDLTcNaTekz29GfsQHpPMkcnweVo5UKTdEobJ-xYd2pokxx4HnYMG9LgR6WCPURbVAmjB2hrenI4P-00rVAxFp2-sI1aN_l7P2z0c7ujZ0vMnqHtdAjA0wjec_TAVzvoaTtgAyd5u4OefNo01a1fIJKQxS2yeFHhgCzukMXLEkdkX6IvR4ezg2OSpl0QR6laESZlafPcg03rNfdUGWONAPMd7vnElQ6Ost4rNmGalUaLIneaFqykupCs5JK9QoNqWfnXCFvuGbNwbBoXkhfMGZFLZa3KFRx-JXe7aNzSInOpFXyYSHKVtTl_lxmQLwvkyyY0A_Ltog-bJdexD8rvXuYtgbPEptFAy4Abfr1s79-W7aPHHTO_QYPVzdq_RY_ct9WivnmXeOYOHsloiA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acyclic+matching+in+some+subclasses+of+graphs&rft.jtitle=Theoretical+computer+science&rft.au=Panda%2C+B.S.&rft.au=Chaudhary%2C+Juhi&rft.date=2023-01-17&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.volume=943&rft.spage=36&rft.epage=49&rft_id=info:doi/10.1016%2Fj.tcs.2022.12.008&rft.externalDocID=S0304397522007253 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |