Interval possibilistic C-means algorithm and its application in image segmentation

Currently, image segmentation is widely used in face recognition, medical imaging, traffic control systems, and many other fields. The traditional possibilistic C-means (PCM) algorithm reduces the impact of outliers and noise on the computation of clustering centers; however, the clustering results...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 612; pp. 465 - 480
Main Authors: Zeng, Wenyi, Liu, Yuqing, Cui, Hanshuai, Ma, Rong, Xu, Zeshui
Format: Journal Article
Language:English
Published: Elsevier Inc 01.10.2022
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Currently, image segmentation is widely used in face recognition, medical imaging, traffic control systems, and many other fields. The traditional possibilistic C-means (PCM) algorithm reduces the impact of outliers and noise on the computation of clustering centers; however, the clustering results are still poor due to high noise points. In this paper, an interval possibilistic C-means (IVPCM) algorithm is proposed that expands the natural number of image pixels to an interval value. In addition, a method to calculate the sample distance is proposed. Then, secondary feature extraction of interval values is conducted to improve the clustering. Several experiments show that IVPCM has more advantages in segmentation performance.
AbstractList Currently, image segmentation is widely used in face recognition, medical imaging, traffic control systems, and many other fields. The traditional possibilistic C-means (PCM) algorithm reduces the impact of outliers and noise on the computation of clustering centers; however, the clustering results are still poor due to high noise points. In this paper, an interval possibilistic C-means (IVPCM) algorithm is proposed that expands the natural number of image pixels to an interval value. In addition, a method to calculate the sample distance is proposed. Then, secondary feature extraction of interval values is conducted to improve the clustering. Several experiments show that IVPCM has more advantages in segmentation performance.
Author Zeng, Wenyi
Ma, Rong
Liu, Yuqing
Cui, Hanshuai
Xu, Zeshui
Author_xml – sequence: 1
  givenname: Wenyi
  surname: Zeng
  fullname: Zeng, Wenyi
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
– sequence: 2
  givenname: Yuqing
  surname: Liu
  fullname: Liu, Yuqing
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
– sequence: 3
  givenname: Hanshuai
  surname: Cui
  fullname: Cui, Hanshuai
  email: cuihanshuai@126.com
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
– sequence: 4
  givenname: Rong
  surname: Ma
  fullname: Ma, Rong
  email: macrosse@163.com
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
– sequence: 5
  givenname: Zeshui
  surname: Xu
  fullname: Xu, Zeshui
  organization: Business School, Sichuan University, Chengdu 610064, China
BookMark eNp9kM1KAzEUhYMo2FYfwN28wIw3N9PJFFdS_CkUBNF1yN_UlJnMkISCb29qXbkoHLhw4Duce-bk0o_eEnJHoaJAm_t95XysEBAraLPwgsxoy7FscEUvyQwAoQRcLq_JPMY9ANS8aWbkfeOTDQfZF9MYo1OudzE5XazLwUofC9nvxuDS11BIbwqXsjNNvdMyudEXLmuQO1tEuxusT7_uDbnqZB_t7d9dkM_np4_1a7l9e9msH7elRuSpRM55ZwDYUjayaeuWW6YkA6VblNYYVjOG0CmqsKNa1VJZZfQKG9pI5IaxBaGnXB1y9WA7MYXcJnwLCuI4itiLPIo4jiKgzcLM8H-MdqfWKUjXnyUfTqTNLx2cDSJqZ722xgWrkzCjO0P_ANqVgDg
CitedBy_id crossref_primary_10_1016_j_ins_2023_03_103
crossref_primary_10_1109_TAI_2024_3377172
crossref_primary_10_1038_s41598_024_68777_x
crossref_primary_10_1109_TFUZZ_2024_3376328
crossref_primary_10_1007_s13042_024_02167_7
crossref_primary_10_1007_s10462_024_11057_x
crossref_primary_10_1016_j_asoc_2024_112108
crossref_primary_10_1108_ECAM_08_2023_0777
crossref_primary_10_1109_TNNLS_2024_3499996
crossref_primary_10_3390_bioengineering11030266
crossref_primary_10_1016_j_optlaseng_2024_108175
crossref_primary_10_1007_s11042_025_20848_5
crossref_primary_10_3390_sym16091208
Cites_doi 10.1109/FUZZY.1997.616338
10.1016/j.ins.2022.05.097
10.1109/CISP-BMEI48845.2019.8965703
10.1142/S021848851850040X
10.1109/TSMC.1979.4310076
10.1109/TFUZZ.2004.840099
10.1109/34.295913
10.1109/TPAMI.1986.4767851
10.1016/j.ins.2021.07.053
10.1109/CIMCA.2005.1631233
10.1109/TPAMI.2010.161
10.1109/TFUZZ.2019.2945232
10.1109/TIT.1975.1055330
10.1016/j.ins.2021.11.056
10.1016/S0019-9958(65)90241-X
10.1016/j.ins.2021.10.054
10.1049/iet-ipr.2010.0078
10.1109/91.227387
10.1109/TIP.2020.3011269
10.1016/j.patcog.2005.07.005
10.1007/s40815-018-0537-9
10.1109/91.531779
10.1080/01969727308546046
10.1109/TIP.2012.2219547
10.1109/42.996338
10.1016/j.eswa.2021.116153
10.1109/ACCESS.2018.2884956
10.1109/TIP.2010.2040763
10.1109/TII.2020.3020259
10.1016/j.asoc.2017.12.024
10.1016/j.ins.2020.10.003
10.1016/j.neucom.2016.09.025
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.08.082
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 480
ExternalDocumentID 10_1016_j_ins_2022_08_082
S0020025522009926
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c227t-2777fd0035a6a68487e3ba30bc82aedd343320fb1b2f1cb4abebdc92616a27d33
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863219500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 21:12:35 EST 2025
Sat Nov 29 07:29:18 EST 2025
Fri Feb 23 02:38:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interval value
Image segmentation
Possibilistic C-means algorithm
Fuzzy C-means algorithm
Information fusion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-2777fd0035a6a68487e3ba30bc82aedd343320fb1b2f1cb4abebdc92616a27d33
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_ins_2022_08_082
crossref_citationtrail_10_1016_j_ins_2022_08_082
elsevier_sciencedirect_doi_10_1016_j_ins_2022_08_082
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References D. Zhang, S. Chen, Kernel-based fuzzy and possibilistic c-means clustering, in: Proceedings of the International Conference Artificial Neural Network, vol. 122, Citeseer, 2003, pp. 122–125.
MacQueen (b0200) 1967; vol. 1
Saberi, Sharbati, Farzanegan (b0135) 2022; 191
Wang, Yang, Liu, Li, Yi, Nie (b0070) 2022; 607
Zadeh (b0030) 1965; 8
Kim, Kanezaki, Tanaka (b0175) 2020; 29
Bezdek (b0040) 1981; 22
Yu, Fan (b0145) 2018; 64
Ahmed, Yamany, Mohamed, Farag, Moriarty (b0045) 2002; 21
Mai, Ngo, Hagras (b0130) 2021; 548
Memon, Memon, Qureshi, Alvi, Kumar, Shah (b0170) 2019; 21
Gandelsman, Shocher, Irani (b0235) 2019; 2019
Zhang, Li, Zhang, Nie (b0180) 2020; 28
Pelekis, Iakovidis, Kotsifakos, Kopanakis (b0205) 2008; 3
Yang, Wu (b0155) 2006; 39
N.R. Pal, K. Pal, J.C. Bezdek, A mixed c-means clustering model, in: Proceedings of 6th International Fuzzy Systems Conference, vol. 1, IEEE, 1997, pp. 11–21.
Fukunaga, Hostetler (b0025) 1975; 21
Hussain, Merigó, Raza, Gao (b0080) 2022; 584
Kushwaha, Jadon (b0105) 2020
J.B. Benjamin, I. Hussain, M. Yang, Possiblistic c-means clustering on directional data, in: 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2019, pp. 1–6.
S. Sotudian, M.H. Fazel Zarandi, Interval type-2 enhanced possibilistic fuzzy c-means clustering for gene expression data analysis, 2021. arXiv:2101.00304.
Fan, Gao, Hailan, Chen (b0095) 2021; 43
Dunn (b0035) 1973; 3
Arbelaez, Maire, Fowlkes, Malik (b0225) 2010; 33
Gong, Liang, Shi, Ma, Ma (b0055) 2012; 22
Krishnapuram, Keller (b0090) 1996; 4
Pal, Pal, Keller, Bezdek (b0110) 2005; 13
Yang, Chang Chien, Nataliani (b0160) 2018; 6
I.K. Vlachos, G.D. Sergiadis, Towards intuitionistic fuzzy image processing, in: International Conference on Computational Intelligence for Modelling, Control and Automation, vol. 1, IEEE Computer Society, 2005, pp. 2–7.
Zheng, Li, Zheng, Yu, Chen, Zhou, Lv, Yang (b0065) 2021; 576
Krinidis, Chatzis (b0050) 2010; 19
Pimentel, Souza (b0120) 2018; 26
Krishnapuram, Keller (b0085) 1993; 1
Askari, Montazerin, Zarandi, Hakimi (b0125) 2017; 219
Zhang, Wang (b0140) 2011; 26
Xiao, Zhang, Zhang, Hu (b0220) 2020; 42
Zeng, Ma, Yin, Zheng, Xu (b0060) 2020; 39
Pang, Shi, Zhang, Song, Sun (b0075) 2022; 585
Moore, Kearfott, Cloud (b0195) 2009
Cheng, Peng, Zhang (b0185) 2021; 17
Adams, Bischof (b0015) 1994; 16
Gao, Fan, Xie (b0215) 1999; 26
Chen, Zhao, Lu, Kuang, Wang, Jiang (b0010) 2012; 6
Canny (b0020) 1986; 8
A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, J. Garcia-Rodriguez, A review on deep learning techniques applied to semantic segmentation arXiv:1704.06857.
Zuo, Li (b0190) 2010; 38
Otsu (b0005) 1979; 9
10.1016/j.ins.2022.08.082_b0230
Fan (10.1016/j.ins.2022.08.082_b0095) 2021; 43
Zhang (10.1016/j.ins.2022.08.082_b0140) 2011; 26
Hussain (10.1016/j.ins.2022.08.082_b0080) 2022; 584
10.1016/j.ins.2022.08.082_b0150
Moore (10.1016/j.ins.2022.08.082_b0195) 2009
Wang (10.1016/j.ins.2022.08.082_b0070) 2022; 607
Pal (10.1016/j.ins.2022.08.082_b0110) 2005; 13
Otsu (10.1016/j.ins.2022.08.082_b0005) 1979; 9
Ahmed (10.1016/j.ins.2022.08.082_b0045) 2002; 21
10.1016/j.ins.2022.08.082_b0115
Kim (10.1016/j.ins.2022.08.082_b0175) 2020; 29
Zheng (10.1016/j.ins.2022.08.082_b0065) 2021; 576
10.1016/j.ins.2022.08.082_b0210
Fukunaga (10.1016/j.ins.2022.08.082_b0025) 1975; 21
Pang (10.1016/j.ins.2022.08.082_b0075) 2022; 585
Pelekis (10.1016/j.ins.2022.08.082_b0205) 2008; 3
Mai (10.1016/j.ins.2022.08.082_b0130) 2021; 548
MacQueen (10.1016/j.ins.2022.08.082_b0200) 1967; vol. 1
Canny (10.1016/j.ins.2022.08.082_b0020) 1986; 8
Dunn (10.1016/j.ins.2022.08.082_b0035) 1973; 3
Xiao (10.1016/j.ins.2022.08.082_b0220) 2020; 42
Askari (10.1016/j.ins.2022.08.082_b0125) 2017; 219
Zuo (10.1016/j.ins.2022.08.082_b0190) 2010; 38
Zadeh (10.1016/j.ins.2022.08.082_b0030) 1965; 8
Chen (10.1016/j.ins.2022.08.082_b0010) 2012; 6
Yang (10.1016/j.ins.2022.08.082_b0160) 2018; 6
10.1016/j.ins.2022.08.082_b0165
Gao (10.1016/j.ins.2022.08.082_b0215) 1999; 26
Saberi (10.1016/j.ins.2022.08.082_b0135) 2022; 191
Kushwaha (10.1016/j.ins.2022.08.082_b0105) 2020
Yang (10.1016/j.ins.2022.08.082_b0155) 2006; 39
Gandelsman (10.1016/j.ins.2022.08.082_b0235) 2019; 2019
Memon (10.1016/j.ins.2022.08.082_b0170) 2019; 21
Cheng (10.1016/j.ins.2022.08.082_b0185) 2021; 17
Bezdek (10.1016/j.ins.2022.08.082_b0040) 1981; 22
10.1016/j.ins.2022.08.082_b0100
Zhang (10.1016/j.ins.2022.08.082_b0180) 2020; 28
Zeng (10.1016/j.ins.2022.08.082_b0060) 2020; 39
Adams (10.1016/j.ins.2022.08.082_b0015) 1994; 16
Gong (10.1016/j.ins.2022.08.082_b0055) 2012; 22
Krinidis (10.1016/j.ins.2022.08.082_b0050) 2010; 19
Arbelaez (10.1016/j.ins.2022.08.082_b0225) 2010; 33
Krishnapuram (10.1016/j.ins.2022.08.082_b0085) 1993; 1
Krishnapuram (10.1016/j.ins.2022.08.082_b0090) 1996; 4
Pimentel (10.1016/j.ins.2022.08.082_b0120) 2018; 26
Yu (10.1016/j.ins.2022.08.082_b0145) 2018; 64
References_xml – volume: 19
  start-page: 1328
  year: 2010
  end-page: 1337
  ident: b0050
  article-title: A robust fuzzy local information c-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
– volume: 64
  start-page: 401
  year: 2018
  end-page: 422
  ident: b0145
  article-title: Cutset-type possibilistic c-means clustering algorithm
  publication-title: Appl. Soft Comput.
– volume: 28
  start-page: 2814
  year: 2020
  end-page: 2824
  ident: b0180
  article-title: Deep fuzzy k-means with adaptive loss and entropy regularization
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 4
  start-page: 385
  year: 1996
  end-page: 393
  ident: b0090
  article-title: The possibilistic c-means algorithm: insights and recommendations
  publication-title: IEEE Trans. Fuzzy Syst.
– reference: N.R. Pal, K. Pal, J.C. Bezdek, A mixed c-means clustering model, in: Proceedings of 6th International Fuzzy Systems Conference, vol. 1, IEEE, 1997, pp. 11–21.
– volume: vol. 1
  start-page: 281
  year: 1967
  end-page: 297
  ident: b0200
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA
– volume: 16
  start-page: 641
  year: 1994
  end-page: 647
  ident: b0015
  article-title: Seeded region growing
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: S. Sotudian, M.H. Fazel Zarandi, Interval type-2 enhanced possibilistic fuzzy c-means clustering for gene expression data analysis, 2021. arXiv:2101.00304.
– volume: 21
  start-page: 32
  year: 1975
  end-page: 40
  ident: b0025
  article-title: The estimation of the gradient of a density function, with applications in pattern recognition
  publication-title: IEEE Trans. Inf. Theory
– volume: 584
  start-page: 280
  year: 2022
  end-page: 300
  ident: b0080
  article-title: A new qos prediction model using hybrid iowa-anfis with fuzzy c-means, subtractive clustering and grid partitioning
  publication-title: Inf. Sci.
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: b0030
  article-title: Fuzzy sets
  publication-title: Inf. Control
– reference: A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, J. Garcia-Rodriguez, A review on deep learning techniques applied to semantic segmentation arXiv:1704.06857.
– volume: 22
  start-page: 573
  year: 2012
  end-page: 584
  ident: b0055
  article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 548
  start-page: 398
  year: 2021
  end-page: 422
  ident: b0130
  article-title: A hybrid interval type-2 semi-supervised possibilistic fuzzy c-means clustering and particle swarm optimization for satellite image analysis
  publication-title: Inf. Sci.
– reference: I.K. Vlachos, G.D. Sergiadis, Towards intuitionistic fuzzy image processing, in: International Conference on Computational Intelligence for Modelling, Control and Automation, vol. 1, IEEE Computer Society, 2005, pp. 2–7.
– reference: J.B. Benjamin, I. Hussain, M. Yang, Possiblistic c-means clustering on directional data, in: 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2019, pp. 1–6.
– volume: 585
  start-page: 209
  year: 2022
  end-page: 231
  ident: b0075
  article-title: Pr-fcm: A polynomial regression-based fuzzy c-means algorithm for attribute-associated data
  publication-title: Inf. Sci.
– reference: D. Zhang, S. Chen, Kernel-based fuzzy and possibilistic c-means clustering, in: Proceedings of the International Conference Artificial Neural Network, vol. 122, Citeseer, 2003, pp. 122–125.
– volume: 39
  start-page: 3681
  year: 2020
  end-page: 3695
  ident: b0060
  article-title: Hesitant fuzzy c-means algorithm and its application in image segmentation
  publication-title: J. Intell. Fuzzy Syst.
– volume: 33
  start-page: 898
  year: 2010
  end-page: 916
  ident: b0225
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 191
  year: 2022
  ident: b0135
  article-title: A gradient ascent algorithm based on possibilistic fuzzy c-means for clustering noisy data
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 78308
  year: 2018
  end-page: 78320
  ident: b0160
  article-title: A fully-unsupervised possibilistic c-means clustering algorithm
  publication-title: IEEE Access
– volume: 22
  start-page: 203
  year: 1981
  end-page: 239
  ident: b0040
  article-title: Pattern recognition with fuzzy objective function algorithms
  publication-title: Adv. Appl. Pattern Recogn.
– volume: 26
  start-page: 893
  year: 2018
  end-page: 916
  ident: b0120
  article-title: A generalized multivariate approach for possibilistic fuzzy c-means clustering
  publication-title: Int. J. Uncertainty, Fuzziness Knowl.-Based Syst.
– volume: 607
  start-page: 553
  year: 2022
  end-page: 571
  ident: b0070
  article-title: Projected fuzzy c-means with probabilistic neighbors
  publication-title: Inf. Sci.
– volume: 13
  start-page: 517
  year: 2005
  end-page: 530
  ident: b0110
  article-title: A possibilistic fuzzy c-means clustering algorithm
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 576
  start-page: 658
  year: 2021
  end-page: 680
  ident: b0065
  article-title: Uffdfr: Undersampling framework with denoising, fuzzy c-means clustering, and representative sample selection for imbalanced data classification
  publication-title: Inf. Sci.
– volume: 26
  start-page: 101
  year: 2011
  end-page: 105
  ident: b0140
  article-title: Mahalanobis distancebased possibilistic clustering algorithm and its analysis
  publication-title: J. Data Acquisit. Process.
– volume: 38
  start-page: 148
  year: 2010
  end-page: 151
  ident: b0190
  article-title: Improved PCM clustering algorithm and its application in image segmentation
  publication-title: Comput. Digital Eng.
– volume: 1
  start-page: 98
  year: 1993
  end-page: 110
  ident: b0085
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 29
  start-page: 8055
  year: 2020
  end-page: 8068
  ident: b0175
  article-title: Unsupervised learning of image segmentation based on differentiable feature clustering
  publication-title: IEEE Trans. Image Process.
– volume: 3
  start-page: 32
  year: 1973
  end-page: 57
  ident: b0035
  article-title: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
  publication-title: Cybernetics
– volume: 2019
  start-page: 11018
  year: 2019
  end-page: 11027
  ident: b0235
  article-title: ”double-dip”: Unsupervised image decomposition via coupled deep-image-priors
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 134
  year: 2020
  end-page: 139
  ident: b0105
  article-title: Improved performance using fuzzy possibilistic c-means clustering algorithm in wireless sensor network
  publication-title: 2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT)
– volume: 17
  start-page: 4575
  year: 2021
  end-page: 4583
  ident: b0185
  article-title: Fuzzy k-means cluster based generalized predictive control of ultra supercritical power plant
  publication-title: IEEE Trans. Industr. Inf.
– volume: 39
  start-page: 5
  year: 2006
  end-page: 21
  ident: b0155
  article-title: Unsupervised possibilistic clustering
  publication-title: Pattern Recogn.
– volume: 26
  start-page: 604
  year: 1999
  end-page: 609
  ident: b0215
  article-title: A novel algorithm of fcm clustering for interval valued data
  publication-title: J. XIDIAN Univ.
– volume: 3
  start-page: 45
  year: 2008
  end-page: 65
  ident: b0205
  article-title: Fuzzy clustering of intuitionistic fuzzy data
  publication-title: Int. J. Bus. Intell. Data Mining
– volume: 219
  start-page: 186
  year: 2017
  end-page: 202
  ident: b0125
  article-title: Generalized entropy based possibilistic fuzzy c-means for clustering noisy data and its convergence proof
  publication-title: Neurocomputing
– volume: 42
  start-page: 1968
  year: 2020
  end-page: 1974
  ident: b0220
  article-title: An improved fuzzy clustering method for interval uncertain data
  publication-title: J. Electron. Inform. Technol.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b0005
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst., Man, Cybern.
– volume: 43
  start-page: 2378
  year: 2021
  end-page: 2385
  ident: b0095
  article-title: Cutset-type possibilistic c-means clustering algorithms based on semi-supervised information
  publication-title: J. Electron. Inform. Technol.
– volume: 21
  start-page: 321
  year: 2019
  end-page: 332
  ident: b0170
  article-title: Kernel possibilistic fuzzy c-means clustering with local information for image segmentation
  publication-title: Int. J. Fuzzy Syst.
– volume: 6
  start-page: 426
  year: 2012
  end-page: 433
  ident: b0010
  article-title: Modified two-dimensional otsu image segmentation algorithm and fast realisation
  publication-title: IEEE Trans. Image Process.
– year: 2009
  ident: b0195
  article-title: Introduction to interval analysis
– volume: 8
  start-page: 679
  year: 1986
  end-page: 698
  ident: b0020
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 21
  start-page: 193
  year: 2002
  end-page: 199
  ident: b0045
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of mri data
  publication-title: IEEE Trans. Med. Imaging
– ident: 10.1016/j.ins.2022.08.082_b0100
  doi: 10.1109/FUZZY.1997.616338
– volume: 42
  start-page: 1968
  year: 2020
  ident: 10.1016/j.ins.2022.08.082_b0220
  article-title: An improved fuzzy clustering method for interval uncertain data
  publication-title: J. Electron. Inform. Technol.
– volume: 607
  start-page: 553
  year: 2022
  ident: 10.1016/j.ins.2022.08.082_b0070
  article-title: Projected fuzzy c-means with probabilistic neighbors
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.05.097
– ident: 10.1016/j.ins.2022.08.082_b0150
  doi: 10.1109/CISP-BMEI48845.2019.8965703
– volume: 22
  start-page: 203
  year: 1981
  ident: 10.1016/j.ins.2022.08.082_b0040
  article-title: Pattern recognition with fuzzy objective function algorithms
  publication-title: Adv. Appl. Pattern Recogn.
– volume: 26
  start-page: 893
  year: 2018
  ident: 10.1016/j.ins.2022.08.082_b0120
  article-title: A generalized multivariate approach for possibilistic fuzzy c-means clustering
  publication-title: Int. J. Uncertainty, Fuzziness Knowl.-Based Syst.
  doi: 10.1142/S021848851850040X
– volume: 9
  start-page: 62
  year: 1979
  ident: 10.1016/j.ins.2022.08.082_b0005
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst., Man, Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 13
  start-page: 517
  year: 2005
  ident: 10.1016/j.ins.2022.08.082_b0110
  article-title: A possibilistic fuzzy c-means clustering algorithm
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2004.840099
– volume: 16
  start-page: 641
  year: 1994
  ident: 10.1016/j.ins.2022.08.082_b0015
  article-title: Seeded region growing
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.295913
– volume: 8
  start-page: 679
  year: 1986
  ident: 10.1016/j.ins.2022.08.082_b0020
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– volume: 576
  start-page: 658
  year: 2021
  ident: 10.1016/j.ins.2022.08.082_b0065
  article-title: Uffdfr: Undersampling framework with denoising, fuzzy c-means clustering, and representative sample selection for imbalanced data classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.07.053
– ident: 10.1016/j.ins.2022.08.082_b0210
  doi: 10.1109/CIMCA.2005.1631233
– volume: 33
  start-page: 898
  year: 2010
  ident: 10.1016/j.ins.2022.08.082_b0225
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.161
– volume: 26
  start-page: 101
  year: 2011
  ident: 10.1016/j.ins.2022.08.082_b0140
  article-title: Mahalanobis distancebased possibilistic clustering algorithm and its analysis
  publication-title: J. Data Acquisit. Process.
– volume: 28
  start-page: 2814
  year: 2020
  ident: 10.1016/j.ins.2022.08.082_b0180
  article-title: Deep fuzzy k-means with adaptive loss and entropy regularization
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2945232
– volume: 21
  start-page: 32
  year: 1975
  ident: 10.1016/j.ins.2022.08.082_b0025
  article-title: The estimation of the gradient of a density function, with applications in pattern recognition
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1975.1055330
– volume: 585
  start-page: 209
  year: 2022
  ident: 10.1016/j.ins.2022.08.082_b0075
  article-title: Pr-fcm: A polynomial regression-based fuzzy c-means algorithm for attribute-associated data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.11.056
– volume: 8
  start-page: 338
  year: 1965
  ident: 10.1016/j.ins.2022.08.082_b0030
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 584
  start-page: 280
  year: 2022
  ident: 10.1016/j.ins.2022.08.082_b0080
  article-title: A new qos prediction model using hybrid iowa-anfis with fuzzy c-means, subtractive clustering and grid partitioning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.10.054
– volume: 26
  start-page: 604
  year: 1999
  ident: 10.1016/j.ins.2022.08.082_b0215
  article-title: A novel algorithm of fcm clustering for interval valued data
  publication-title: J. XIDIAN Univ.
– volume: 6
  start-page: 426
  year: 2012
  ident: 10.1016/j.ins.2022.08.082_b0010
  article-title: Modified two-dimensional otsu image segmentation algorithm and fast realisation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1049/iet-ipr.2010.0078
– volume: 1
  start-page: 98
  year: 1993
  ident: 10.1016/j.ins.2022.08.082_b0085
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.227387
– volume: 29
  start-page: 8055
  year: 2020
  ident: 10.1016/j.ins.2022.08.082_b0175
  article-title: Unsupervised learning of image segmentation based on differentiable feature clustering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3011269
– year: 2009
  ident: 10.1016/j.ins.2022.08.082_b0195
– volume: 2019
  start-page: 11018
  year: 2019
  ident: 10.1016/j.ins.2022.08.082_b0235
  article-title: ”double-dip”: Unsupervised image decomposition via coupled deep-image-priors
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– ident: 10.1016/j.ins.2022.08.082_b0230
– volume: 39
  start-page: 3681
  year: 2020
  ident: 10.1016/j.ins.2022.08.082_b0060
  article-title: Hesitant fuzzy c-means algorithm and its application in image segmentation
  publication-title: J. Intell. Fuzzy Syst.
– volume: 39
  start-page: 5
  year: 2006
  ident: 10.1016/j.ins.2022.08.082_b0155
  article-title: Unsupervised possibilistic clustering
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2005.07.005
– volume: 21
  start-page: 321
  year: 2019
  ident: 10.1016/j.ins.2022.08.082_b0170
  article-title: Kernel possibilistic fuzzy c-means clustering with local information for image segmentation
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-018-0537-9
– volume: 38
  start-page: 148
  year: 2010
  ident: 10.1016/j.ins.2022.08.082_b0190
  article-title: Improved PCM clustering algorithm and its application in image segmentation
  publication-title: Comput. Digital Eng.
– volume: 4
  start-page: 385
  year: 1996
  ident: 10.1016/j.ins.2022.08.082_b0090
  article-title: The possibilistic c-means algorithm: insights and recommendations
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.531779
– start-page: 134
  year: 2020
  ident: 10.1016/j.ins.2022.08.082_b0105
  article-title: Improved performance using fuzzy possibilistic c-means clustering algorithm in wireless sensor network
– volume: 3
  start-page: 32
  year: 1973
  ident: 10.1016/j.ins.2022.08.082_b0035
  article-title: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
  publication-title: Cybernetics
  doi: 10.1080/01969727308546046
– ident: 10.1016/j.ins.2022.08.082_b0165
– volume: 22
  start-page: 573
  year: 2012
  ident: 10.1016/j.ins.2022.08.082_b0055
  article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2219547
– volume: vol. 1
  start-page: 281
  year: 1967
  ident: 10.1016/j.ins.2022.08.082_b0200
  article-title: Some methods for classification and analysis of multivariate observations
– volume: 21
  start-page: 193
  year: 2002
  ident: 10.1016/j.ins.2022.08.082_b0045
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of mri data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– ident: 10.1016/j.ins.2022.08.082_b0115
– volume: 191
  year: 2022
  ident: 10.1016/j.ins.2022.08.082_b0135
  article-title: A gradient ascent algorithm based on possibilistic fuzzy c-means for clustering noisy data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116153
– volume: 3
  start-page: 45
  year: 2008
  ident: 10.1016/j.ins.2022.08.082_b0205
  article-title: Fuzzy clustering of intuitionistic fuzzy data
  publication-title: Int. J. Bus. Intell. Data Mining
– volume: 43
  start-page: 2378
  year: 2021
  ident: 10.1016/j.ins.2022.08.082_b0095
  article-title: Cutset-type possibilistic c-means clustering algorithms based on semi-supervised information
  publication-title: J. Electron. Inform. Technol.
– volume: 6
  start-page: 78308
  year: 2018
  ident: 10.1016/j.ins.2022.08.082_b0160
  article-title: A fully-unsupervised possibilistic c-means clustering algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2884956
– volume: 19
  start-page: 1328
  year: 2010
  ident: 10.1016/j.ins.2022.08.082_b0050
  article-title: A robust fuzzy local information c-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2040763
– volume: 17
  start-page: 4575
  year: 2021
  ident: 10.1016/j.ins.2022.08.082_b0185
  article-title: Fuzzy k-means cluster based generalized predictive control of ultra supercritical power plant
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2020.3020259
– volume: 64
  start-page: 401
  year: 2018
  ident: 10.1016/j.ins.2022.08.082_b0145
  article-title: Cutset-type possibilistic c-means clustering algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.024
– volume: 548
  start-page: 398
  year: 2021
  ident: 10.1016/j.ins.2022.08.082_b0130
  article-title: A hybrid interval type-2 semi-supervised possibilistic fuzzy c-means clustering and particle swarm optimization for satellite image analysis
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.10.003
– volume: 219
  start-page: 186
  year: 2017
  ident: 10.1016/j.ins.2022.08.082_b0125
  article-title: Generalized entropy based possibilistic fuzzy c-means for clustering noisy data and its convergence proof
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.025
SSID ssj0004766
Score 2.4449575
Snippet Currently, image segmentation is widely used in face recognition, medical imaging, traffic control systems, and many other fields. The traditional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 465
SubjectTerms Fuzzy C-means algorithm
Image segmentation
Information fusion
Interval value
Possibilistic C-means algorithm
Title Interval possibilistic C-means algorithm and its application in image segmentation
URI https://dx.doi.org/10.1016/j.ins.2022.08.082
Volume 612
WOSCitedRecordID wos000863219500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB609UEfRKti1ZZ5EB8sA9kz6czksZSKLbSIVFx8CZPJpE3pZuteSv33nrmlab2ggrCEJczshjlfzv1CyOs8043QDWe1kZblpjZMKS5YlfHCCFWo3Gg_bEIeHanxuPgQfbpzP05Adp26uiou_iup8R4S25XO_gW5-x_FG_gdiY5XJDte_4jw3sd36QqspvOQ--paMW_tsolFsbSlz0-ms3ZxOunDBoMYtvN-tBOXxjO3J5NYltQNFdhYvuQXR-nZa-VfbGAcn233re0zfdqlZ_PLr0lI-oTsMCwbH-h0qfu1h0GTncaF0RmBdmxKa4seslQlcyOJ06mkzNkuQeYERqskMAFhUlfixCJmVAdemovtgVjOw8CnHzh-cD6coZnimq8D-IasYZ7RrUbaLi7tTShwEaECxF2yCnK7QF64urO_Nz64rqeVIcadnjtFw31e4K0_-rk-M9BRjh-Rh9G4oDsBFI_JHdutkQeDlpNrZCMWqtA3dEBKGln8E_IxwYfegA-N8KE9fCjChyJ86AA-tMWPgw8dwucp-fRu73j3PYtzN5gBkAsGUsqmdjFmLbRQaNJaXmmeVUaBtnXNXc-7rKlGFTQjU-W6slVt8EBHQoOsOX9GVrppZ58TCq794MhI3dgih8ZWUGS1RpW1EUJq4OskS6dXmtiU3s1GOS9T9uFZiQdeugMv3bxUBevkbb_lInRk-d3iPJGkjC9FUBVLxM-vt734t20vyf3rl-IVWVnMlnaD3DOXi3Y-24wo-w7oxpv8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interval+possibilistic+C-means+algorithm+and+its+application+in+image+segmentation&rft.jtitle=Information+sciences&rft.au=Zeng%2C+Wenyi&rft.au=Liu%2C+Yuqing&rft.au=Cui%2C+Hanshuai&rft.au=Ma%2C+Rong&rft.date=2022-10-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=612&rft.spage=465&rft.epage=480&rft_id=info:doi/10.1016%2Fj.ins.2022.08.082&rft.externalDocID=S0020025522009926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon