Interval possibilistic C-means algorithm and its application in image segmentation

Currently, image segmentation is widely used in face recognition, medical imaging, traffic control systems, and many other fields. The traditional possibilistic C-means (PCM) algorithm reduces the impact of outliers and noise on the computation of clustering centers; however, the clustering results...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 612; s. 465 - 480
Hlavní autoři: Zeng, Wenyi, Liu, Yuqing, Cui, Hanshuai, Ma, Rong, Xu, Zeshui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.10.2022
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Currently, image segmentation is widely used in face recognition, medical imaging, traffic control systems, and many other fields. The traditional possibilistic C-means (PCM) algorithm reduces the impact of outliers and noise on the computation of clustering centers; however, the clustering results are still poor due to high noise points. In this paper, an interval possibilistic C-means (IVPCM) algorithm is proposed that expands the natural number of image pixels to an interval value. In addition, a method to calculate the sample distance is proposed. Then, secondary feature extraction of interval values is conducted to improve the clustering. Several experiments show that IVPCM has more advantages in segmentation performance.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2022.08.082