Interval possibilistic C-means algorithm and its application in image segmentation
Currently, image segmentation is widely used in face recognition, medical imaging, traffic control systems, and many other fields. The traditional possibilistic C-means (PCM) algorithm reduces the impact of outliers and noise on the computation of clustering centers; however, the clustering results...
Saved in:
| Published in: | Information sciences Vol. 612; pp. 465 - 480 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.10.2022
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Currently, image segmentation is widely used in face recognition, medical imaging, traffic control systems, and many other fields. The traditional possibilistic C-means (PCM) algorithm reduces the impact of outliers and noise on the computation of clustering centers; however, the clustering results are still poor due to high noise points. In this paper, an interval possibilistic C-means (IVPCM) algorithm is proposed that expands the natural number of image pixels to an interval value. In addition, a method to calculate the sample distance is proposed. Then, secondary feature extraction of interval values is conducted to improve the clustering. Several experiments show that IVPCM has more advantages in segmentation performance. |
|---|---|
| ISSN: | 0020-0255 1872-6291 |
| DOI: | 10.1016/j.ins.2022.08.082 |