Natural evolutionary strategies for variational quantum computation
Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly initialized parameterized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimat...
Uloženo v:
| Vydáno v: | Machine learning: science and technology Ročník 2; číslo 4; s. 45012 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United Kingdom
IOP Publishing
01.12.2021
|
| ISSN: | 2632-2153, 2632-2153 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly initialized parameterized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimator the exponential decrease in variance can be alleviated. We implement two specific approaches, the exponential and separable NES, for parameter optimization of PQCs and compare them against standard gradient descent. We apply them to two different problems of ground state energy estimation using variational quantum eigensolver and state preparation with circuits of varying depth and length. We also introduce batch optimization for circuits with larger depth to extend the use of ES to a larger number of parameters. We achieve accuracy comparable to state-of-the-art optimization techniques in all the above cases with a lower number of circuit evaluations. Our empirical results indicate that one can use NES as a hybrid tool in tandem with other gradient-based methods for optimization of deep quantum circuits in regions with vanishing gradients. |
|---|---|
| AbstractList | Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly initialized parameterized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimator the exponential decrease in variance can be alleviated. We implement two specific approaches, the exponential and separable NES, for parameter optimization of PQCs and compare them against standard gradient descent. We apply them to two different problems of ground state energy estimation using variational quantum eigensolver and state preparation with circuits of varying depth and length. We also introduce batch optimization for circuits with larger depth to extend the use of ES to a larger number of parameters. We achieve accuracy comparable to state-of-the-art optimization techniques in all the above cases with a lower number of circuit evaluations. Our empirical results indicate that one can use NES as a hybrid tool in tandem with other gradient-based methods for optimization of deep quantum circuits in regions with vanishing gradients. Abstract Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly initialized parameterized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimator the exponential decrease in variance can be alleviated. We implement two specific approaches, the exponential and separable NES, for parameter optimization of PQCs and compare them against standard gradient descent. We apply them to two different problems of ground state energy estimation using variational quantum eigensolver and state preparation with circuits of varying depth and length. We also introduce batch optimization for circuits with larger depth to extend the use of ES to a larger number of parameters. We achieve accuracy comparable to state-of-the-art optimization techniques in all the above cases with a lower number of circuit evaluations. Our empirical results indicate that one can use NES as a hybrid tool in tandem with other gradient-based methods for optimization of deep quantum circuits in regions with vanishing gradients. |
| Author | Aspuru-Guzik, Alán Anand, Abhinav Degroote, Matthias |
| Author_xml | – sequence: 1 givenname: Abhinav orcidid: 0000-0002-8081-2310 surname: Anand fullname: Anand, Abhinav – sequence: 2 givenname: Matthias orcidid: 0000-0002-8850-7708 surname: Degroote fullname: Degroote, Matthias – sequence: 3 givenname: Alán orcidid: 0000-0002-8277-4434 surname: Aspuru-Guzik fullname: Aspuru-Guzik, Alán |
| BackLink | https://www.osti.gov/biblio/1835362$$D View this record in Osti.gov |
| BookMark | eNp1kM1LAzEQxYNUsNbePS7e1yaT7iZ7lOIXiF70HJLsRCPbTU2yBf97t62ICJ5mePPeMPM7JZM-9EjIOaOXjEq5gJpDCaziC20c1_aITH-kya_-hMxTeqeUQsV4BXRKVo86D1F3BW5DN2Qfeh0_i5SjzvjqMRUuxGKro9f7WVd8DLrPw7qwYb0Z8l49I8dOdwnn33VGXm6un1d35cPT7f3q6qG0AMKWBlpoKW35kjcSAQUIcIJVpqnqZStQIoJpl7JpjTRcGOFszXgNruXCamz4jFwc9oaUvUrWZ7RvNvQ92qyY5NVoHk31wWRjSCmiU6Nvf-b4k-8Uo2qHTO2YqB0TdUA2Bumf4Cb69Ujj_8gXToxykw |
| CitedBy_id | crossref_primary_10_1016_j_ins_2022_11_020 crossref_primary_10_1103_PhysRevResearch_7_013243 crossref_primary_10_3390_math12111627 crossref_primary_10_1007_s11433_022_2057_y crossref_primary_10_1103_PhysRevResearch_5_033071 crossref_primary_10_1103_PhysRevA_111_012437 crossref_primary_10_1007_s42484_025_00282_4 crossref_primary_10_1103_PhysRevResearch_3_033090 crossref_primary_10_1038_s41598_023_45015_4 crossref_primary_10_1088_2058_9565_ac1ab1 crossref_primary_10_1088_2632_2153_ad8e2b crossref_primary_10_1038_s41598_023_37003_5 crossref_primary_10_1186_s41313_021_00032_6 crossref_primary_10_1038_s42256_022_00493_5 crossref_primary_10_1103_PhysRevA_111_022630 crossref_primary_10_1007_s11128_023_03876_8 crossref_primary_10_1088_1361_6633_ad7f69 crossref_primary_10_1103_jkcp_6km5 crossref_primary_10_1103_PhysRevResearch_6_033029 |
| Cites_doi | 10.1038/s41467-018-07090-4 10.22331/q-2020-02-06-226 10.1038/ncomms5213 10.1103/RevModPhys.92.015003 10.1103/PhysRevLett.121.040502 10.1162/106365601750190398 10.1103/PhysRevA.98.012324 10.1088/2632-2153/abcb50 10.1103/PhysRevLett.122.060501 10.1038/s41534-018-0116-9 10.1103/PhysRevA.101.032308 10.1088/1367-2630/18/2/023023 10.1007/978-3-642-81283-5_8 10.1088/2058-9565/abe567 10.1021/acs.chemrev.8b00803 10.1162/089976698300017746 10.1109/ICASSP.1998.675489 10.1038/s41586-019-1666-5 10.1126/sciadv.aav2761 10.22331/q-2018-08-06-79 10.1145/3332186.3332195 10.1109/CEC.2008.4631255 10.1109/9.119632 10.1088/2058-9565/abe107 10.1088/2058-9565/aa8072 10.1038/s41534-017-0032-4 10.1126/sciadv.aaw9918 10.1145/1830483.1830557 10.1088/1742-6596/256/1/012026 10.1007/978-3-0348-5927-1 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION OTOTI |
| DOI | 10.1088/2632-2153/abf3ac |
| DatabaseName | CrossRef OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2632-2153 |
| ExternalDocumentID | 1835362 10_1088_2632_2153_abf3ac |
| GroupedDBID | 88I AAYXX ABHWH ABUWG ACHIP AEINN AFFHD AFKRA AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION CJUJL DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IOP K7- M2P M~E N5L O3W OK1 PHGZM PHGZT PIMPY PQGLB OTOTI |
| ID | FETCH-LOGICAL-c227c-b2d2d00d34398e2e7272f715b9564d7e8ee2bd489db8b37b7fc61362fd37cae93 |
| ISSN | 2632-2153 |
| IngestDate | Fri May 19 00:37:10 EDT 2023 Sat Nov 29 04:11:29 EST 2025 Tue Nov 18 21:27:20 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c227c-b2d2d00d34398e2e7272f715b9564d7e8ee2bd489db8b37b7fc61362fd37cae93 |
| Notes | USDOE |
| ORCID | 0000-0002-8277-4434 0000-0002-8081-2310 0000-0002-8850-7708 0000000280812310 0000000282774434 0000000288507708 |
| OpenAccessLink | https://doi.org/10.1088/2632-2153/abf3ac |
| ParticipantIDs | osti_scitechconnect_1835362 crossref_citationtrail_10_1088_2632_2153_abf3ac crossref_primary_10_1088_2632_2153_abf3ac |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United Kingdom |
| PublicationPlace_xml | – name: United Kingdom |
| PublicationTitle | Machine learning: science and technology |
| PublicationYear | 2021 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Zhu (mlstabf3acbib16) 2019; 5 Volkoff (mlstabf3acbib32) 2020 Hu (mlstabf3acbib19) 2019; 5 Loken (mlstabf3acbib50) 2010; 256 Skolik (mlstabf3acbib48) 2020 Wang (mlstabf3acbib27) 2020 Zhao (mlstabf3acbib37) 2020; 2 Amari (mlstabf3acbib43) 1998; 10 Farhi (mlstabf3acbib21) 2014 Glasmachers (mlstabf3acbib36) 2010 Spall (mlstabf3acbib42) 1992; 37 Wierstra (mlstabf3acbib35) 2008 Hansen (mlstabf3acbib40) 2001; 9 Arrasmith (mlstabf3acbib30) 2020 Ponce (mlstabf3acbib51) 2019 Kyaw (mlstabf3acbib23) 2020 Kottmann (mlstabf3acbib22) 2020 McArdle (mlstabf3acbib8) 2020; 92 Cao (mlstabf3acbib7) 2019; 119 Coopmans (mlstabf3acbib38) 2020 Lloyd (mlstabf3acbib17) 2018; 121 Romero (mlstabf3acbib15) 2019 Schwefel (mlstabf3acbib34) 1977 Pino (mlstabf3acbib3) 2020 Peruzzo (mlstabf3acbib6) 2014; 5 Uvarov (mlstabf3acbib29) 2020 Pepper (mlstabf3acbib11) 2019; 122 Grant (mlstabf3acbib13) 2018; 4 Sim (mlstabf3acbib49) 2021; 6 Wan (mlstabf3acbib10) 2017; 3 Verdon (mlstabf3acbib31) 2019 Schuld (mlstabf3acbib12) 2020; 101 Dallaire-Demers (mlstabf3acbib18) 2018; 98 Preskill (mlstabf3acbib4) 2018; 2 McClean (mlstabf3acbib5) 2016; 18 Jurcevic (mlstabf3acbib2) 2020 Romero (mlstabf3acbib9) 2017; 2 McClean (mlstabf3acbib25) 2018; 9 Amari (mlstabf3acbib44) 1998 Kottmann (mlstabf3acbib45) 2021; 6 Salimans (mlstabf3acbib41) 2017 Rechenberg (mlstabf3acbib33) 1978 Marrero (mlstabf3acbib28) 2020 Cervera-Lierta (mlstabf3acbib47) 2020 Bharti (mlstabf3acbib24) 2021 Anand (mlstabf3acbib20) 2020 Wierstra (mlstabf3acbib39) 2014; 15 Pérez-Salinas (mlstabf3acbib14) 2020; 4 Arute (mlstabf3acbib1) 2019; 574 Suzuki (mlstabf3acbib46) 2020 Cerezo (mlstabf3acbib26) 2020 |
| References_xml | – volume: 9 start-page: 1 year: 2018 ident: mlstabf3acbib25 article-title: Barren plateaus in quantum neural network training landscapes publication-title: Nat. Commun. doi: 10.1038/s41467-018-07090-4 – volume: 4 start-page: 226 year: 2020 ident: mlstabf3acbib14 article-title: Data re-uploading for a universal quantum classifier publication-title: Quantum doi: 10.22331/q-2020-02-06-226 – volume: 5 start-page: 4213 year: 2014 ident: mlstabf3acbib6 article-title: A variational eigenvalue solver on a photonic quantum processor publication-title: Nat. Commun. doi: 10.1038/ncomms5213 – year: 2020 ident: mlstabf3acbib23 article-title: Quantum computer-aided design: digital quantum simulation of quantum processors – volume: 92 year: 2020 ident: mlstabf3acbib8 article-title: Quantum computational chemistry publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.92.015003 – volume: 121 year: 2018 ident: mlstabf3acbib17 article-title: Quantum generative adversarial learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.040502 – volume: 9 start-page: 159 year: 2001 ident: mlstabf3acbib40 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol. Comput. doi: 10.1162/106365601750190398 – volume: 98 year: 2018 ident: mlstabf3acbib18 article-title: Quantum generative adversarial networks publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.012324 – volume: 2 start-page: 02LT01 year: 2020 ident: mlstabf3acbib37 article-title: Natural evolution strategies and variational Monte Carlo publication-title: Mach. Learn.: Sci. Technol. doi: 10.1088/2632-2153/abcb50 – volume: 122 year: 2019 ident: mlstabf3acbib11 article-title: Experimental realization of a quantum autoencoder: the compression of qutrits via machine learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.060501 – volume: 4 start-page: 1 year: 2018 ident: mlstabf3acbib13 article-title: Hierarchical quantum classifiers publication-title: npj Quantum Inf. doi: 10.1038/s41534-018-0116-9 – volume: 101 year: 2020 ident: mlstabf3acbib12 article-title: Circuit-centric quantum classifiers publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.032308 – year: 2020 ident: mlstabf3acbib30 article-title: Effect of barren plateaus on gradient-free optimization – year: 2020 ident: mlstabf3acbib2 article-title: Demonstration of quantum volume 64 on a superconducting quantum computing system – volume: 18 year: 2016 ident: mlstabf3acbib5 article-title: The theory of variational hybrid quantum-classical algorithms publication-title: New J. Phys. doi: 10.1088/1367-2630/18/2/023023 – start-page: 83 year: 1978 ident: mlstabf3acbib33 doi: 10.1007/978-3-642-81283-5_8 – volume: 6 year: 2021 ident: mlstabf3acbib45 article-title: Tequila: a platform for rapid development of quantum algorithms publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/abe567 – year: 2021 ident: mlstabf3acbib24 article-title: Noisy intermediate-scale quantum (NISQ) algorithms – year: 2019 ident: mlstabf3acbib31 article-title: Learning to learn with quantum neural networks via classical neural networks – volume: 15 start-page: 949 year: 2014 ident: mlstabf3acbib39 article-title: Natural evolution strategies publication-title: J. Mach. Learn. Res. – volume: 119 year: 2019 ident: mlstabf3acbib7 article-title: Quantum chemistry in the age of quantum computing publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00803 – volume: 10 start-page: 251 year: 1998 ident: mlstabf3acbib43 article-title: Natural gradient works efficiently in learning publication-title: Neural Comput. doi: 10.1162/089976698300017746 – year: 2020 ident: mlstabf3acbib27 article-title: Noise-induced barren plateaus in variational quantum algorithms – year: 2020 ident: mlstabf3acbib46 article-title: Qulacs: a fast and versatile quantum circuit simulator for research purpose – start-page: 1213 year: 1998 ident: mlstabf3acbib44 article-title: Why natural gradient? doi: 10.1109/ICASSP.1998.675489 – volume: 574 start-page: 505 year: 2019 ident: mlstabf3acbib1 article-title: Quantum supremacy using a programmable superconducting processor publication-title: Nature doi: 10.1038/s41586-019-1666-5 – year: 2020 ident: mlstabf3acbib29 article-title: On barren plateaus and cost function locality in variational quantum algorithms – volume: 5 start-page: eaav2761 year: 2019 ident: mlstabf3acbib19 article-title: Quantum generative adversarial learning in a superconducting quantum circuit publication-title: Sci. Adv. doi: 10.1126/sciadv.aav2761 – year: 2020 ident: mlstabf3acbib22 article-title: Quantum computer-aided design of quantum optics hardware – volume: 2 start-page: 79 year: 2018 ident: mlstabf3acbib4 article-title: Quantum computing in the NISQ era and beyond publication-title: Quantum doi: 10.22331/q-2018-08-06-79 – year: 2020 ident: mlstabf3acbib47 article-title: The meta-variational quantum eigensolver (meta-VQE): learning energy profiles of parameterized Hamiltonians for quantum simulation – year: 2014 ident: mlstabf3acbib21 article-title: A quantum approximate optimization algorithm – year: 2019 ident: mlstabf3acbib15 article-title: Variational quantum generators: generative adversarial quantum machine learning for continuous distributions – year: 2019 ident: mlstabf3acbib51 article-title: Deploying a top-100 supercomputer for large parallel workloads: the Niagara supercomputer doi: 10.1145/3332186.3332195 – start-page: 3381 year: 2008 ident: mlstabf3acbib35 article-title: Natural evolution strategies doi: 10.1109/CEC.2008.4631255 – volume: 37 start-page: 332 year: 1992 ident: mlstabf3acbib42 article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.119632 – volume: 6 year: 2021 ident: mlstabf3acbib49 article-title: Adaptive pruning-based optimization of parameterized quantum circuits publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/abe107 – volume: 2 year: 2017 ident: mlstabf3acbib9 article-title: Quantum autoencoders for efficient compression of quantum data publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aa8072 – year: 2020 ident: mlstabf3acbib28 article-title: Entanglement induced barren plateaus – year: 2017 ident: mlstabf3acbib41 article-title: Evolution strategies as a scalable alternative to reinforcement learning – volume: 3 start-page: 1 year: 2017 ident: mlstabf3acbib10 article-title: Quantum generalisation of feedforward neural networks publication-title: npj Quantum Inf. doi: 10.1038/s41534-017-0032-4 – volume: 5 start-page: eaaw9918 year: 2019 ident: mlstabf3acbib16 article-title: Training of quantum circuits on a hybrid quantum computer publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw9918 – year: 2020 ident: mlstabf3acbib48 article-title: Layerwise learning for quantum neural networks – year: 2020 ident: mlstabf3acbib20 article-title: Experimental demonstration of a quantum generative adversarial network for continuous distributions – year: 2020 ident: mlstabf3acbib38 article-title: Protocol discovery for the quantum control of majoranas by differential programming and natural evolution strategies – year: 2020 ident: mlstabf3acbib26 – year: 2020 ident: mlstabf3acbib32 article-title: Large gradients via correlation in random parameterized quantum circuits – start-page: 393 year: 2010 ident: mlstabf3acbib36 article-title: Exponential natural evolution strategies doi: 10.1145/1830483.1830557 – volume: 256 year: 2010 ident: mlstabf3acbib50 article-title: SciNet: lessons learned from building a power-efficient top-20 system and data centre publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/256/1/012026 – year: 2020 ident: mlstabf3acbib3 article-title: Demonstration of the QCCD trapped-ion quantum computer architecture – year: 1977 ident: mlstabf3acbib34 doi: 10.1007/978-3-0348-5927-1 |
| SSID | ssj0002513520 |
| Score | 2.424336 |
| Snippet | Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of... Abstract Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the... |
| SourceID | osti crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 45012 |
| Title | Natural evolutionary strategies for variational quantum computation |
| URI | https://www.osti.gov/biblio/1835362 |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: O3W dateStart: 20200301 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: K7- dateStart: 20200301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: BENPR dateStart: 20200301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: PIMPY dateStart: 20200301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M2P dateStart: 20200301 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLdQx4HLYAw0PoZ84MIhaus4tXOsKjYmsdIDSNyi-COo2hZK21SIA387z19JYAixwy5R5DaO9N4vzz8__-yH0DHJgSTEkke9hBQRlQV8c0QnEROypyihgruqJedsPObX1-nEy8YWtpwAK0t-f5_O_quroQ2cbbbO_oO7606hAe7B6XAFt8P1XY4f5-4oDb3yrzG6uMUyHAlhdYUrmCGHLOBdBcat_lhxedVamA9lnqzaUofyEnZ3dNgLZNWXf-Xmh2UQSwpTnHtVc2V9AzTdleOzZcaneU3oh4tZNa-i79XD9Jfbd2NX8PtlOytB-i8UHj8uJq08WhPTzOnwEbAMF9P0K20-KJMW9uiroR7Co9nNEh42Y5oo4lw2A1stN4SwldiB-gNhSWpi38_HJhMHDA9YqEnG1Z359Wx4Rbdu67run_GXzi3E4RYfudxCH_1EAg8dAD6hNV1uo81QpAP7mP0ZjTwecBsPuMEDBjzgFh6wxwNu4WEHXX07vRydRb5yRiQJYTISRBHV66kY6CbXRJvV9oL1EwGzYaqY5loToShPleAiZoIVEmjdgBQqZjLXabyLOuVtqb8gHNNBQmJB2QBmzjIRnIg0Vf1CqgKm7zTZQ91gj0z6Y-VNdZPfmZU3cJ4ZC2bGgpmz4B46qZ-YuSNV3vjvgTFxBrg2cJZG_CWXmXfo_pu_HqCNBpmHqLOcV_orWper5XQxP7LJlyOLhCcGfHes |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+evolutionary+strategies+for+variational+quantum+computation&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Anand%2C+Abhinav&rft.au=Degroote%2C+Matthias&rft.au=Aspuru-Guzik%2C+Al%C3%A1n&rft.date=2021-12-01&rft.pub=IOP+Publishing&rft.issn=2632-2153&rft.eissn=2632-2153&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1088%2F2632-2153%2Fabf3ac&rft.externalDocID=1835362 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon |