Natural evolutionary strategies for variational quantum computation

Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly initialized parameterized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning: science and technology Ročník 2; číslo 4; s. 45012
Hlavní autoři: Anand, Abhinav, Degroote, Matthias, Aspuru-Guzik, Alán
Médium: Journal Article
Jazyk:angličtina
Vydáno: United Kingdom IOP Publishing 01.12.2021
ISSN:2632-2153, 2632-2153
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly initialized parameterized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimator the exponential decrease in variance can be alleviated. We implement two specific approaches, the exponential and separable NES, for parameter optimization of PQCs and compare them against standard gradient descent. We apply them to two different problems of ground state energy estimation using variational quantum eigensolver and state preparation with circuits of varying depth and length. We also introduce batch optimization for circuits with larger depth to extend the use of ES to a larger number of parameters. We achieve accuracy comparable to state-of-the-art optimization techniques in all the above cases with a lower number of circuit evaluations. Our empirical results indicate that one can use NES as a hybrid tool in tandem with other gradient-based methods for optimization of deep quantum circuits in regions with vanishing gradients.
AbstractList Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly initialized parameterized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimator the exponential decrease in variance can be alleviated. We implement two specific approaches, the exponential and separable NES, for parameter optimization of PQCs and compare them against standard gradient descent. We apply them to two different problems of ground state energy estimation using variational quantum eigensolver and state preparation with circuits of varying depth and length. We also introduce batch optimization for circuits with larger depth to extend the use of ES to a larger number of parameters. We achieve accuracy comparable to state-of-the-art optimization techniques in all the above cases with a lower number of circuit evaluations. Our empirical results indicate that one can use NES as a hybrid tool in tandem with other gradient-based methods for optimization of deep quantum circuits in regions with vanishing gradients.
Abstract Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly initialized parameterized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimator the exponential decrease in variance can be alleviated. We implement two specific approaches, the exponential and separable NES, for parameter optimization of PQCs and compare them against standard gradient descent. We apply them to two different problems of ground state energy estimation using variational quantum eigensolver and state preparation with circuits of varying depth and length. We also introduce batch optimization for circuits with larger depth to extend the use of ES to a larger number of parameters. We achieve accuracy comparable to state-of-the-art optimization techniques in all the above cases with a lower number of circuit evaluations. Our empirical results indicate that one can use NES as a hybrid tool in tandem with other gradient-based methods for optimization of deep quantum circuits in regions with vanishing gradients.
Author Aspuru-Guzik, Alán
Anand, Abhinav
Degroote, Matthias
Author_xml – sequence: 1
  givenname: Abhinav
  orcidid: 0000-0002-8081-2310
  surname: Anand
  fullname: Anand, Abhinav
– sequence: 2
  givenname: Matthias
  orcidid: 0000-0002-8850-7708
  surname: Degroote
  fullname: Degroote, Matthias
– sequence: 3
  givenname: Alán
  orcidid: 0000-0002-8277-4434
  surname: Aspuru-Guzik
  fullname: Aspuru-Guzik, Alán
BackLink https://www.osti.gov/biblio/1835362$$D View this record in Osti.gov
BookMark eNp1kM1LAzEQxYNUsNbePS7e1yaT7iZ7lOIXiF70HJLsRCPbTU2yBf97t62ICJ5mePPeMPM7JZM-9EjIOaOXjEq5gJpDCaziC20c1_aITH-kya_-hMxTeqeUQsV4BXRKVo86D1F3BW5DN2Qfeh0_i5SjzvjqMRUuxGKro9f7WVd8DLrPw7qwYb0Z8l49I8dOdwnn33VGXm6un1d35cPT7f3q6qG0AMKWBlpoKW35kjcSAQUIcIJVpqnqZStQIoJpl7JpjTRcGOFszXgNruXCamz4jFwc9oaUvUrWZ7RvNvQ92qyY5NVoHk31wWRjSCmiU6Nvf-b4k-8Uo2qHTO2YqB0TdUA2Bumf4Cb69Ujj_8gXToxykw
CitedBy_id crossref_primary_10_1016_j_ins_2022_11_020
crossref_primary_10_1103_PhysRevResearch_7_013243
crossref_primary_10_3390_math12111627
crossref_primary_10_1007_s11433_022_2057_y
crossref_primary_10_1103_PhysRevResearch_5_033071
crossref_primary_10_1103_PhysRevA_111_012437
crossref_primary_10_1007_s42484_025_00282_4
crossref_primary_10_1103_PhysRevResearch_3_033090
crossref_primary_10_1038_s41598_023_45015_4
crossref_primary_10_1088_2058_9565_ac1ab1
crossref_primary_10_1088_2632_2153_ad8e2b
crossref_primary_10_1038_s41598_023_37003_5
crossref_primary_10_1186_s41313_021_00032_6
crossref_primary_10_1038_s42256_022_00493_5
crossref_primary_10_1103_PhysRevA_111_022630
crossref_primary_10_1007_s11128_023_03876_8
crossref_primary_10_1088_1361_6633_ad7f69
crossref_primary_10_1103_jkcp_6km5
crossref_primary_10_1103_PhysRevResearch_6_033029
Cites_doi 10.1038/s41467-018-07090-4
10.22331/q-2020-02-06-226
10.1038/ncomms5213
10.1103/RevModPhys.92.015003
10.1103/PhysRevLett.121.040502
10.1162/106365601750190398
10.1103/PhysRevA.98.012324
10.1088/2632-2153/abcb50
10.1103/PhysRevLett.122.060501
10.1038/s41534-018-0116-9
10.1103/PhysRevA.101.032308
10.1088/1367-2630/18/2/023023
10.1007/978-3-642-81283-5_8
10.1088/2058-9565/abe567
10.1021/acs.chemrev.8b00803
10.1162/089976698300017746
10.1109/ICASSP.1998.675489
10.1038/s41586-019-1666-5
10.1126/sciadv.aav2761
10.22331/q-2018-08-06-79
10.1145/3332186.3332195
10.1109/CEC.2008.4631255
10.1109/9.119632
10.1088/2058-9565/abe107
10.1088/2058-9565/aa8072
10.1038/s41534-017-0032-4
10.1126/sciadv.aaw9918
10.1145/1830483.1830557
10.1088/1742-6596/256/1/012026
10.1007/978-3-0348-5927-1
ContentType Journal Article
DBID AAYXX
CITATION
OTOTI
DOI 10.1088/2632-2153/abf3ac
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2632-2153
ExternalDocumentID 1835362
10_1088_2632_2153_abf3ac
GroupedDBID 88I
AAYXX
ABHWH
ABUWG
ACHIP
AEINN
AFFHD
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PHGZM
PHGZT
PIMPY
PQGLB
OTOTI
ID FETCH-LOGICAL-c227c-b2d2d00d34398e2e7272f715b9564d7e8ee2bd489db8b37b7fc61362fd37cae93
ISSN 2632-2153
IngestDate Fri May 19 00:37:10 EDT 2023
Sat Nov 29 04:11:29 EST 2025
Tue Nov 18 21:27:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227c-b2d2d00d34398e2e7272f715b9564d7e8ee2bd489db8b37b7fc61362fd37cae93
Notes USDOE
ORCID 0000-0002-8277-4434
0000-0002-8081-2310
0000-0002-8850-7708
0000000280812310
0000000282774434
0000000288507708
OpenAccessLink https://doi.org/10.1088/2632-2153/abf3ac
ParticipantIDs osti_scitechconnect_1835362
crossref_citationtrail_10_1088_2632_2153_abf3ac
crossref_primary_10_1088_2632_2153_abf3ac
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Machine learning: science and technology
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Zhu (mlstabf3acbib16) 2019; 5
Volkoff (mlstabf3acbib32) 2020
Hu (mlstabf3acbib19) 2019; 5
Loken (mlstabf3acbib50) 2010; 256
Skolik (mlstabf3acbib48) 2020
Wang (mlstabf3acbib27) 2020
Zhao (mlstabf3acbib37) 2020; 2
Amari (mlstabf3acbib43) 1998; 10
Farhi (mlstabf3acbib21) 2014
Glasmachers (mlstabf3acbib36) 2010
Spall (mlstabf3acbib42) 1992; 37
Wierstra (mlstabf3acbib35) 2008
Hansen (mlstabf3acbib40) 2001; 9
Arrasmith (mlstabf3acbib30) 2020
Ponce (mlstabf3acbib51) 2019
Kyaw (mlstabf3acbib23) 2020
Kottmann (mlstabf3acbib22) 2020
McArdle (mlstabf3acbib8) 2020; 92
Cao (mlstabf3acbib7) 2019; 119
Coopmans (mlstabf3acbib38) 2020
Lloyd (mlstabf3acbib17) 2018; 121
Romero (mlstabf3acbib15) 2019
Schwefel (mlstabf3acbib34) 1977
Pino (mlstabf3acbib3) 2020
Peruzzo (mlstabf3acbib6) 2014; 5
Uvarov (mlstabf3acbib29) 2020
Pepper (mlstabf3acbib11) 2019; 122
Grant (mlstabf3acbib13) 2018; 4
Sim (mlstabf3acbib49) 2021; 6
Wan (mlstabf3acbib10) 2017; 3
Verdon (mlstabf3acbib31) 2019
Schuld (mlstabf3acbib12) 2020; 101
Dallaire-Demers (mlstabf3acbib18) 2018; 98
Preskill (mlstabf3acbib4) 2018; 2
McClean (mlstabf3acbib5) 2016; 18
Jurcevic (mlstabf3acbib2) 2020
Romero (mlstabf3acbib9) 2017; 2
McClean (mlstabf3acbib25) 2018; 9
Amari (mlstabf3acbib44) 1998
Kottmann (mlstabf3acbib45) 2021; 6
Salimans (mlstabf3acbib41) 2017
Rechenberg (mlstabf3acbib33) 1978
Marrero (mlstabf3acbib28) 2020
Cervera-Lierta (mlstabf3acbib47) 2020
Bharti (mlstabf3acbib24) 2021
Anand (mlstabf3acbib20) 2020
Wierstra (mlstabf3acbib39) 2014; 15
Pérez-Salinas (mlstabf3acbib14) 2020; 4
Arute (mlstabf3acbib1) 2019; 574
Suzuki (mlstabf3acbib46) 2020
Cerezo (mlstabf3acbib26) 2020
References_xml – volume: 9
  start-page: 1
  year: 2018
  ident: mlstabf3acbib25
  article-title: Barren plateaus in quantum neural network training landscapes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07090-4
– volume: 4
  start-page: 226
  year: 2020
  ident: mlstabf3acbib14
  article-title: Data re-uploading for a universal quantum classifier
  publication-title: Quantum
  doi: 10.22331/q-2020-02-06-226
– volume: 5
  start-page: 4213
  year: 2014
  ident: mlstabf3acbib6
  article-title: A variational eigenvalue solver on a photonic quantum processor
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5213
– year: 2020
  ident: mlstabf3acbib23
  article-title: Quantum computer-aided design: digital quantum simulation of quantum processors
– volume: 92
  year: 2020
  ident: mlstabf3acbib8
  article-title: Quantum computational chemistry
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.92.015003
– volume: 121
  year: 2018
  ident: mlstabf3acbib17
  article-title: Quantum generative adversarial learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.040502
– volume: 9
  start-page: 159
  year: 2001
  ident: mlstabf3acbib40
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
– volume: 98
  year: 2018
  ident: mlstabf3acbib18
  article-title: Quantum generative adversarial networks
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.012324
– volume: 2
  start-page: 02LT01
  year: 2020
  ident: mlstabf3acbib37
  article-title: Natural evolution strategies and variational Monte Carlo
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/abcb50
– volume: 122
  year: 2019
  ident: mlstabf3acbib11
  article-title: Experimental realization of a quantum autoencoder: the compression of qutrits via machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.060501
– volume: 4
  start-page: 1
  year: 2018
  ident: mlstabf3acbib13
  article-title: Hierarchical quantum classifiers
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-018-0116-9
– volume: 101
  year: 2020
  ident: mlstabf3acbib12
  article-title: Circuit-centric quantum classifiers
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.032308
– year: 2020
  ident: mlstabf3acbib30
  article-title: Effect of barren plateaus on gradient-free optimization
– year: 2020
  ident: mlstabf3acbib2
  article-title: Demonstration of quantum volume 64 on a superconducting quantum computing system
– volume: 18
  year: 2016
  ident: mlstabf3acbib5
  article-title: The theory of variational hybrid quantum-classical algorithms
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/2/023023
– start-page: 83
  year: 1978
  ident: mlstabf3acbib33
  doi: 10.1007/978-3-642-81283-5_8
– volume: 6
  year: 2021
  ident: mlstabf3acbib45
  article-title: Tequila: a platform for rapid development of quantum algorithms
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/abe567
– year: 2021
  ident: mlstabf3acbib24
  article-title: Noisy intermediate-scale quantum (NISQ) algorithms
– year: 2019
  ident: mlstabf3acbib31
  article-title: Learning to learn with quantum neural networks via classical neural networks
– volume: 15
  start-page: 949
  year: 2014
  ident: mlstabf3acbib39
  article-title: Natural evolution strategies
  publication-title: J. Mach. Learn. Res.
– volume: 119
  year: 2019
  ident: mlstabf3acbib7
  article-title: Quantum chemistry in the age of quantum computing
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00803
– volume: 10
  start-page: 251
  year: 1998
  ident: mlstabf3acbib43
  article-title: Natural gradient works efficiently in learning
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017746
– year: 2020
  ident: mlstabf3acbib27
  article-title: Noise-induced barren plateaus in variational quantum algorithms
– year: 2020
  ident: mlstabf3acbib46
  article-title: Qulacs: a fast and versatile quantum circuit simulator for research purpose
– start-page: 1213
  year: 1998
  ident: mlstabf3acbib44
  article-title: Why natural gradient?
  doi: 10.1109/ICASSP.1998.675489
– volume: 574
  start-page: 505
  year: 2019
  ident: mlstabf3acbib1
  article-title: Quantum supremacy using a programmable superconducting processor
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– year: 2020
  ident: mlstabf3acbib29
  article-title: On barren plateaus and cost function locality in variational quantum algorithms
– volume: 5
  start-page: eaav2761
  year: 2019
  ident: mlstabf3acbib19
  article-title: Quantum generative adversarial learning in a superconducting quantum circuit
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav2761
– year: 2020
  ident: mlstabf3acbib22
  article-title: Quantum computer-aided design of quantum optics hardware
– volume: 2
  start-page: 79
  year: 2018
  ident: mlstabf3acbib4
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– year: 2020
  ident: mlstabf3acbib47
  article-title: The meta-variational quantum eigensolver (meta-VQE): learning energy profiles of parameterized Hamiltonians for quantum simulation
– year: 2014
  ident: mlstabf3acbib21
  article-title: A quantum approximate optimization algorithm
– year: 2019
  ident: mlstabf3acbib15
  article-title: Variational quantum generators: generative adversarial quantum machine learning for continuous distributions
– year: 2019
  ident: mlstabf3acbib51
  article-title: Deploying a top-100 supercomputer for large parallel workloads: the Niagara supercomputer
  doi: 10.1145/3332186.3332195
– start-page: 3381
  year: 2008
  ident: mlstabf3acbib35
  article-title: Natural evolution strategies
  doi: 10.1109/CEC.2008.4631255
– volume: 37
  start-page: 332
  year: 1992
  ident: mlstabf3acbib42
  article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.119632
– volume: 6
  year: 2021
  ident: mlstabf3acbib49
  article-title: Adaptive pruning-based optimization of parameterized quantum circuits
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/abe107
– volume: 2
  year: 2017
  ident: mlstabf3acbib9
  article-title: Quantum autoencoders for efficient compression of quantum data
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aa8072
– year: 2020
  ident: mlstabf3acbib28
  article-title: Entanglement induced barren plateaus
– year: 2017
  ident: mlstabf3acbib41
  article-title: Evolution strategies as a scalable alternative to reinforcement learning
– volume: 3
  start-page: 1
  year: 2017
  ident: mlstabf3acbib10
  article-title: Quantum generalisation of feedforward neural networks
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-017-0032-4
– volume: 5
  start-page: eaaw9918
  year: 2019
  ident: mlstabf3acbib16
  article-title: Training of quantum circuits on a hybrid quantum computer
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw9918
– year: 2020
  ident: mlstabf3acbib48
  article-title: Layerwise learning for quantum neural networks
– year: 2020
  ident: mlstabf3acbib20
  article-title: Experimental demonstration of a quantum generative adversarial network for continuous distributions
– year: 2020
  ident: mlstabf3acbib38
  article-title: Protocol discovery for the quantum control of majoranas by differential programming and natural evolution strategies
– year: 2020
  ident: mlstabf3acbib26
– year: 2020
  ident: mlstabf3acbib32
  article-title: Large gradients via correlation in random parameterized quantum circuits
– start-page: 393
  year: 2010
  ident: mlstabf3acbib36
  article-title: Exponential natural evolution strategies
  doi: 10.1145/1830483.1830557
– volume: 256
  year: 2010
  ident: mlstabf3acbib50
  article-title: SciNet: lessons learned from building a power-efficient top-20 system and data centre
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/256/1/012026
– year: 2020
  ident: mlstabf3acbib3
  article-title: Demonstration of the QCCD trapped-ion quantum computer architecture
– year: 1977
  ident: mlstabf3acbib34
  doi: 10.1007/978-3-0348-5927-1
SSID ssj0002513520
Score 2.424336
Snippet Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of...
Abstract Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the...
SourceID osti
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 45012
Title Natural evolutionary strategies for variational quantum computation
URI https://www.osti.gov/biblio/1835362
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: O3W
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: K7-
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: BENPR
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: PIMPY
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M2P
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLdQx4HLYAw0PoZ84MIhaus4tXOsKjYmsdIDSNyi-COo2hZK21SIA387z19JYAixwy5R5DaO9N4vzz8__-yH0DHJgSTEkke9hBQRlQV8c0QnEROypyihgruqJedsPObX1-nEy8YWtpwAK0t-f5_O_quroQ2cbbbO_oO7606hAe7B6XAFt8P1XY4f5-4oDb3yrzG6uMUyHAlhdYUrmCGHLOBdBcat_lhxedVamA9lnqzaUofyEnZ3dNgLZNWXf-Xmh2UQSwpTnHtVc2V9AzTdleOzZcaneU3oh4tZNa-i79XD9Jfbd2NX8PtlOytB-i8UHj8uJq08WhPTzOnwEbAMF9P0K20-KJMW9uiroR7Co9nNEh42Y5oo4lw2A1stN4SwldiB-gNhSWpi38_HJhMHDA9YqEnG1Z359Wx4Rbdu67run_GXzi3E4RYfudxCH_1EAg8dAD6hNV1uo81QpAP7mP0ZjTwecBsPuMEDBjzgFh6wxwNu4WEHXX07vRydRb5yRiQJYTISRBHV66kY6CbXRJvV9oL1EwGzYaqY5loToShPleAiZoIVEmjdgBQqZjLXabyLOuVtqb8gHNNBQmJB2QBmzjIRnIg0Vf1CqgKm7zTZQ91gj0z6Y-VNdZPfmZU3cJ4ZC2bGgpmz4B46qZ-YuSNV3vjvgTFxBrg2cJZG_CWXmXfo_pu_HqCNBpmHqLOcV_orWper5XQxP7LJlyOLhCcGfHes
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+evolutionary+strategies+for+variational+quantum+computation&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Anand%2C+Abhinav&rft.au=Degroote%2C+Matthias&rft.au=Aspuru-Guzik%2C+Al%C3%A1n&rft.date=2021-12-01&rft.pub=IOP+Publishing&rft.issn=2632-2153&rft.eissn=2632-2153&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1088%2F2632-2153%2Fabf3ac&rft.externalDocID=1835362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon