Reinforcement learning enhanced quantum-inspired algorithm for combinatorial optimization
Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to...
Uloženo v:
| Vydáno v: | Machine learning: science and technology Ročník 2; číslo 2; s. 25009 - 25020 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bristol
IOP Publishing
01.06.2021
|
| Témata: | |
| ISSN: | 2632-2153, 2632-2153 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables a stable single-player version of self-play training and helps the agent escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach. |
|---|---|
| AbstractList | Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables a stable single-player version of self-play training and helps the agent escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach. |
| Author | Ulanov, A E Whiteson, Shimon Lvovsky, A I Beloborodov, Dmitrii Foerster, Jakob N |
| Author_xml | – sequence: 1 givenname: Dmitrii surname: Beloborodov fullname: Beloborodov, Dmitrii email: dmitribeloborodov@yandex.ru organization: Russian Quantum Center , Moscow, Russia – sequence: 2 givenname: A E orcidid: 0000-0003-2211-559X surname: Ulanov fullname: Ulanov, A E organization: Russian Quantum Center , Moscow, Russia – sequence: 3 givenname: Jakob N surname: Foerster fullname: Foerster, Jakob N organization: University of Oxford Department of Computer Science, Oxford, United Kingdom – sequence: 4 givenname: Shimon surname: Whiteson fullname: Whiteson, Shimon organization: University of Oxford Department of Computer Science, Oxford, United Kingdom – sequence: 5 givenname: A I surname: Lvovsky fullname: Lvovsky, A I organization: University of Oxford Department of Physics, Oxford, United Kingdom |
| BookMark | eNp9kc1LwzAYxoNMcM7dPRY8eLEuH22aHmX4BYIgevAU0jTZMtqkS9OD_vVmVlREdsrLw_N7k-fJMZhYZxUApwheIsjYAlOCU4xyshCVJJgdgOm3NPk1H4F5328ghDhHJMdwCl6flLHaealaZUPSKOGtsatE2bWwUtXJdhA2DG1qbN8ZHwXRrJw3Yd0mEUukaytjRYiSaBLXBdOadxGMsyfgUIumV_OvcwZebq6fl3fpw-Pt_fLqIZUYFyzVeV0ixVQGC6hLiCqtiiKTmrA6E0WFMCoJoURUsFAk11pWWckgkZJWtWCakhk4G_d23m0H1Qe-cYO38UoeU-KSUlyg6IKjS3rX915p3nnTCv_GEeS7DvmuJL4riY8dRoT-QaQJn9GCF6bZB16MoHHdz2P22M__sbdNTBKNPP4VhCXvak0-ANWflMk |
| CODEN | MLSTCK |
| CitedBy_id | crossref_primary_10_1038_s42256_022_00446_y crossref_primary_10_1007_s10489_021_02920_3 crossref_primary_10_1016_j_knosys_2021_107526 crossref_primary_10_1109_TSMC_2024_3428707 crossref_primary_10_3390_s22010244 |
| Cites_doi | 10.1103/PhysRevLett.122.040607 10.1038/srep00571 10.1088/0305-4470/15/10/028 doi.org/10.1007/s42484-019-00001-w 10.1126/science.aah5178 10.1109/WACV.2017.58 10.1016/j.engappai.2012.09.001 10.1126/science.3755256 10.1002/9781118593486.ch4 10.1126/science.220.4598.671 10.1609/aaai.v34i03.5616 10.1364/OE.27.010288 10.1109/MC.2019.2908836 10.1126/science.aah4243 10.1162/106365603321828970 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s). Published by IOP Publishing Ltd 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Author(s). Published by IOP Publishing Ltd – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1088/2632-2153/abc328 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| DocumentTitleAlternate | Reinforcement learning enhanced quantum-inspired algorithm for combinatorial optimization |
| EISSN | 2632-2153 |
| ExternalDocumentID | 10_1088_2632_2153_abc328 mlstabc328 |
| GrantInformation_xml | – fundername: Russian Science Foundation grantid: 19-71-10092 funderid: http://dx.doi.org/10.13039/501100006769 |
| GroupedDBID | 88I ABHWH ABUWG ACHIP AFKRA AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CJUJL DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IOP K7- M2P M~E N5L O3W OK1 PIMPY TSCCA AAYXX AEINN AFFHD CITATION PHGZM PHGZT PQGLB 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c2278-f5d91e8e4070f901bfe774cf38d4a7b12193363ab07e35ffcb49803cc6bda8f63 |
| IEDL.DBID | BENPR |
| ISSN | 2632-2153 |
| IngestDate | Sun Nov 09 08:18:13 EST 2025 Sat Nov 29 04:11:29 EST 2025 Tue Nov 18 20:55:03 EST 2025 Wed Aug 21 03:37:01 EDT 2024 Wed Feb 24 05:40:47 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2278-f5d91e8e4070f901bfe774cf38d4a7b12193363ab07e35ffcb49803cc6bda8f63 |
| Notes | MLST-100171.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2211-559X |
| OpenAccessLink | https://www.proquest.com/docview/2512966271?pq-origsite=%requestingapplication% |
| PQID | 2512966271 |
| PQPubID | 4916454 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2512966271 crossref_primary_10_1088_2632_2153_abc328 iop_journals_10_1088_2632_2153_abc328 crossref_citationtrail_10_1088_2632_2153_abc328 |
| PublicationCentury | 2000 |
| PublicationDate | 20210601 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 20210601 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Machine learning: science and technology |
| PublicationTitleAbbrev | MLST |
| PublicationTitleAlternate | Mach. Learn.: Sci. Technol |
| PublicationYear | 2021 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | 22 Feurer M (9) 2018 23 24 27 Farhi E (8) 2014 Barahona F (2) 1982; 15 Ye Y (36) 2003 Dumoulin V (6) 2016 King A D (16) 2018 Xinyun C (35) 2018 31 Abe K (1) 2019 11 33 Barrett T D (3) 2019 12 Smith L N (30) 2017 13 14 Mirhoseini A (25) 2017 Erdős P (7) 1960; 5 17 Kool W (18) 2018 Ulanov A E (32) 2019 Cplex optimizer (5) 2019 Vinyals O (34) 2015 Laterre A (19) 2018 Mittal A (26) 2019 4 Khalil E (15) 2017 Li Z (21) 2018 Gurobi optimization (10) 2019 Schulman J (28) 2017 Silver D (29) 2017 20 |
| References_xml | – year: 2019 ident: 3 – ident: 20 doi: 10.1103/PhysRevLett.122.040607 – start-page: 3 year: 2018 ident: 9 publication-title: Automatic Machine Learning: Methods, Systems, Challenges – ident: 27 doi: 10.1038/srep00571 – volume: 15 start-page: 3241 issn: 0305-4470 year: 1982 ident: 2 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/15/10/028 – year: 2017 ident: 29 – year: 2019 ident: 32 – year: 2017 ident: 28 – ident: 33 doi: doi.org/10.1007/s42484-019-00001-w – year: 2019 ident: 5 – ident: 24 doi: 10.1126/science.aah5178 – start-page: 464 year: 2017 ident: 30 publication-title: 2017 IEEE Conf. on Applications of Computer Vision (WACV) doi: 10.1109/WACV.2017.58 – year: 2014 ident: 8 – ident: 4 doi: 10.1016/j.engappai.2012.09.001 – start-page: 539 year: 2018 ident: 21 publication-title: Advances in Neural Information Processing Systems – year: 2016 ident: 6 – ident: 12 doi: 10.1126/science.3755256 – year: 2018 ident: 16 – year: 2003 ident: 36 – start-page: 2692 issn: 1049-5258 year: 2015 ident: 34 publication-title: Adv. Neural Inf. Process. Syst. – year: 2018 ident: 19 – ident: 22 doi: 10.1002/9781118593486.ch4 – ident: 17 doi: 10.1126/science.220.4598.671 – ident: 14 doi: 10.1609/aaai.v34i03.5616 – year: 2018 ident: 18 – ident: 31 doi: 10.1364/OE.27.010288 – year: 2019 ident: 1 – ident: 23 doi: 10.1109/MC.2019.2908836 – year: 2018 ident: 35 – start-page: 6348 year: 2017 ident: 15 publication-title: Advances in Neural Information Processing Systems – year: 2019 ident: 10 – ident: 13 doi: 10.1126/science.aah4243 – year: 2019 ident: 26 – ident: 11 doi: 10.1162/106365603321828970 – volume: 5 start-page: 17 year: 1960 ident: 7 publication-title: Publ. Math. Inst. Hung. Acad. Sci – start-page: 2430 year: 2017 ident: 25 publication-title: Proc. of the 34th Int. Conf. on Machine Learning-Volume 70 |
| SSID | ssj0002513520 |
| Score | 2.1454768 |
| Snippet | Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 25009 |
| SubjectTerms | Algorithms Combinatorial analysis combinatorial optimization Ising model Machine learning maximum cut Optimization reinforcement learning Training Tuning |
| SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HbjwRoyXcoADh7C2abtEnBBi4oAAIRDjFKVpApO2buzB78dps6EJNCFxqypHrRzH_pzEnwFOuOaxYllCwzxSNDahokrplKY6TK1gcSx4WSh827i7462WeFiAi2ktTK_vXf85PlZEwZUK_YU4XncM4xQjFaurTLOIL8Iy40nsiPPv2ct0gwUDN4KLwB9N_jZwJhQt4ud--OMyyDTX__V7G7DmsSW5rEQ3YcEUW7A-6dtA_DLehtdHU_Kl6nJrkPjGEW_EFO_lfQDyMUZ9j7u0XbhzeHyhOm-9QXv03iU4jKCRYj7tsnU0XtJDp9P11Zw78Ny8frq6ob7FAtWuBpbaJBeh4QbTusAiNMisQTyoLeN5rBpZiP6MsZSpLGgYllirM5y8gGmdZrniNmW7sFT0CrMHBHFV5LIPlgqNGEwJ0VCRtZzlSaaFVTWoT7Qttecfd20wOrI8B-dcOs1JpzlZaa4GZ9MR_Yp7Y47sKU6I9AtwOEeOzMh1O8ORRAnpsGAgZD-3NTicWMG3nIOBwpHlh_t__NIBrEbu_ku5Y3MIS6PB2BzBiv4ctYeD49JWvwB1COqS priority: 102 providerName: IOP Publishing |
| Title | Reinforcement learning enhanced quantum-inspired algorithm for combinatorial optimization |
| URI | https://iopscience.iop.org/article/10.1088/2632-2153/abc328 https://www.proquest.com/docview/2512966271 |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: O3W dateStart: 20200301 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: K7- dateStart: 20200301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: BENPR dateStart: 20200301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: PIMPY dateStart: 20200301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M2P dateStart: 20200301 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED5tHQ-8MDZAFMbkB3jYg9UkThP7CQHqtGmsRBOI7clyHHur1Kbd2vLIb-fOdTcQUl_2cg_JWYl89t13d_YdwHtpZW5E3edpkxmeu9RwY2zBC5sWXok8VzJcFP5aDofy8lJVMeA2j8cq1zoxKOpmailG3iM7rKhaefpxdsupaxRlV2MLjW3YoUplWQd2Pg-G1cV9lAVHIcJIYn4Sd1SP6pNztHOiZ2orqAn7X_ZoezSd_aeUg6U53n3sPz6HZxFjsk-rRbEHW67dh911_wYWt_MLuLpwoW6qDSFCFhtIXDPX3oRzAex2ifO-nPBRS_l4fGDG1_i9xc2E4TCGP4V-NXntuIjZFJXPJN7qfAk_jgffv5zw2GqBW7oLy32_UamTDt27xCNEqL1DXGi9kE1uyjpFvSZEIUydlE70vbc1CjER1hZ1Y6QvxCvotNPWvQaG-CojL0QUyiIWM0qVJvNeiqZfW-VNF3rrCdc21iGndhhjHfLhUmoSkSYR6ZWIunB0P2K2qsGxgfcDylDHjTjfwMf-4ZuM5wuNHJowYaL0rPFdOFhL-YHvQcRvNr9-C08zOv4SAjYH0FncLd07eGJ_LUbzu8O4Tg9DCADpWcmRnmcV0d8DpN_ET-SqTs-rqz8uHfg7 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH-CMoldYGyglcHmwzjsYDWJk9Q-TGhjIBBdhRCT2MmzHRsqtWmhLYh_ir-R59SBTZN648A1eY4c-_c-_Pw-AD5zw1PFdEbjIlE0tbGiSpmc5ibOnWBpKniVKNxpd7v8_FycLMB9nQvjwyprmVgJ6mJovI-85fWw8NXK493RFfVdo_ztat1CYwaLY3t3i0e28dejH7i_O0lysH-2d0hDVwFqfNondVkhYsstnmQih9pQO4smkHGMF6lq6xhZmLGcKR21LcucMxrnGzFjcl0o7nKG312EpZSlWdqApe_73ZPTR68OzhItmijchyIHt3w9dIp6lbWUNsw3ff9L_y32hqP_lECl2Q5WX9qavIGVYEOTbzPQr8GCLd_Cat2fggRx9Q5-n9qqLqypXKAkNMi4ILa8rOIeyNUUcTUd0F7p4w3wgepf4P9NLgcEhxFcBN0rvVcCmZQMUbgOQtbqOvx6lh_cgEY5LO17IGg_Jv6UxXJh0NZUQrRV4hxnRaaNcKoJrXqDpQl11n27j76s7vs5lx4S0kNCziDRhC-PI0azGiNzaHcQMzIImvEcOvIP3aA_nkikkN7mjYQcFa4JWzWqnuieILU5__UnWD48-9mRnaPu8Qd4nfhQn8o5tQWNyfXUbsMrczPpja8_Bh4h8Oe5IfgAiRVO2g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xgiZeKF8ThcL8wB72YJrESWo_IqACrSoVGlr3ZDmO3VZq09IP_n7OjltUDVVIe4ussxydz3e_8_nuAN5zzVPFiozGZaJoamJFldI5zXWcW8HSVHCfKNzvDgZ8NBLD0OfU58IslkH1f8DPulBwzcLwII53XIVxipaKdVShWcI7y9KewMPMhcRQoL-zm_0lCxpvBBhRCE_-a_KBOTrBJe_oZG9oes17_-JTeBIwJvlYkz-DB6Z6Ds1d_wYSjvMLuP1hfN1U7a8ISWggMSammvh3AeTXFvm-ndNp5eLxOKBm48VqupnMCU4jKKzoVzuvHYWYLFD5zENW50v42fty_ekrDa0WqHa5sNRmpYgNN-jeRRYhQmEN4kJtGS9T1S1i1GuM5UwVUdewzFpd4CZGTOu8KBW3OTuDRrWozCsgiK8S54WwXGjEYkqIrkqs5azMCi2sakFnx3GpQx1y1w5jJn08nHPpuCcd92TNvRZc7mcs6xocR2gvcFNkOIjrI3TkgG4-W28kUkiHCSMhccNa0N5Jwl86BweFK5ofv_7Plc7hdPi5J_vfBldv4HHinsT4S5w2NDarrXkLj_TvzXS9eudF9w8ple_x |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+learning+enhanced+quantum-inspired+algorithm+for+combinatorial+optimization&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Beloborodov%2C+Dmitrii&rft.au=Ulanov%2C+A+E&rft.au=Foerster%2C+Jakob+N&rft.au=Whiteson%2C+Shimon&rft.date=2021-06-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1088%2F2632-2153%2Fabc328 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon |