Reinforcement learning enhanced quantum-inspired algorithm for combinatorial optimization

Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning: science and technology Ročník 2; číslo 2; s. 25009 - 25020
Hlavní autoři: Beloborodov, Dmitrii, Ulanov, A E, Foerster, Jakob N, Whiteson, Shimon, Lvovsky, A I
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.06.2021
Témata:
ISSN:2632-2153, 2632-2153
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables a stable single-player version of self-play training and helps the agent escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.
AbstractList Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables a stable single-player version of self-play training and helps the agent escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.
Author Ulanov, A E
Whiteson, Shimon
Lvovsky, A I
Beloborodov, Dmitrii
Foerster, Jakob N
Author_xml – sequence: 1
  givenname: Dmitrii
  surname: Beloborodov
  fullname: Beloborodov, Dmitrii
  email: dmitribeloborodov@yandex.ru
  organization: Russian Quantum Center , Moscow, Russia
– sequence: 2
  givenname: A E
  orcidid: 0000-0003-2211-559X
  surname: Ulanov
  fullname: Ulanov, A E
  organization: Russian Quantum Center , Moscow, Russia
– sequence: 3
  givenname: Jakob N
  surname: Foerster
  fullname: Foerster, Jakob N
  organization: University of Oxford Department of Computer Science, Oxford, United Kingdom
– sequence: 4
  givenname: Shimon
  surname: Whiteson
  fullname: Whiteson, Shimon
  organization: University of Oxford Department of Computer Science, Oxford, United Kingdom
– sequence: 5
  givenname: A I
  surname: Lvovsky
  fullname: Lvovsky, A I
  organization: University of Oxford Department of Physics, Oxford, United Kingdom
BookMark eNp9kc1LwzAYxoNMcM7dPRY8eLEuH22aHmX4BYIgevAU0jTZMtqkS9OD_vVmVlREdsrLw_N7k-fJMZhYZxUApwheIsjYAlOCU4xyshCVJJgdgOm3NPk1H4F5328ghDhHJMdwCl6flLHaealaZUPSKOGtsatE2bWwUtXJdhA2DG1qbN8ZHwXRrJw3Yd0mEUukaytjRYiSaBLXBdOadxGMsyfgUIumV_OvcwZebq6fl3fpw-Pt_fLqIZUYFyzVeV0ixVQGC6hLiCqtiiKTmrA6E0WFMCoJoURUsFAk11pWWckgkZJWtWCakhk4G_d23m0H1Qe-cYO38UoeU-KSUlyg6IKjS3rX915p3nnTCv_GEeS7DvmuJL4riY8dRoT-QaQJn9GCF6bZB16MoHHdz2P22M__sbdNTBKNPP4VhCXvak0-ANWflMk
CODEN MLSTCK
CitedBy_id crossref_primary_10_1038_s42256_022_00446_y
crossref_primary_10_1007_s10489_021_02920_3
crossref_primary_10_1016_j_knosys_2021_107526
crossref_primary_10_1109_TSMC_2024_3428707
crossref_primary_10_3390_s22010244
Cites_doi 10.1103/PhysRevLett.122.040607
10.1038/srep00571
10.1088/0305-4470/15/10/028
doi.org/10.1007/s42484-019-00001-w
10.1126/science.aah5178
10.1109/WACV.2017.58
10.1016/j.engappai.2012.09.001
10.1126/science.3755256
10.1002/9781118593486.ch4
10.1126/science.220.4598.671
10.1609/aaai.v34i03.5616
10.1364/OE.27.010288
10.1109/MC.2019.2908836
10.1126/science.aah4243
10.1162/106365603321828970
ContentType Journal Article
Copyright 2020 The Author(s). Published by IOP Publishing Ltd
2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Author(s). Published by IOP Publishing Ltd
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1088/2632-2153/abc328
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Reinforcement learning enhanced quantum-inspired algorithm for combinatorial optimization
EISSN 2632-2153
ExternalDocumentID 10_1088_2632_2153_abc328
mlstabc328
GrantInformation_xml – fundername: Russian Science Foundation
  grantid: 19-71-10092
  funderid: http://dx.doi.org/10.13039/501100006769
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PIMPY
TSCCA
AAYXX
AEINN
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2278-f5d91e8e4070f901bfe774cf38d4a7b12193363ab07e35ffcb49803cc6bda8f63
IEDL.DBID BENPR
ISSN 2632-2153
IngestDate Sun Nov 09 08:18:13 EST 2025
Sat Nov 29 04:11:29 EST 2025
Tue Nov 18 20:55:03 EST 2025
Wed Aug 21 03:37:01 EDT 2024
Wed Feb 24 05:40:47 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2278-f5d91e8e4070f901bfe774cf38d4a7b12193363ab07e35ffcb49803cc6bda8f63
Notes MLST-100171.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2211-559X
OpenAccessLink https://www.proquest.com/docview/2512966271?pq-origsite=%requestingapplication%
PQID 2512966271
PQPubID 4916454
PageCount 12
ParticipantIDs proquest_journals_2512966271
crossref_primary_10_1088_2632_2153_abc328
iop_journals_10_1088_2632_2153_abc328
crossref_citationtrail_10_1088_2632_2153_abc328
PublicationCentury 2000
PublicationDate 20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 20210601
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
Feurer M (9) 2018
23
24
27
Farhi E (8) 2014
Barahona F (2) 1982; 15
Ye Y (36) 2003
Dumoulin V (6) 2016
King A D (16) 2018
Xinyun C (35) 2018
31
Abe K (1) 2019
11
33
Barrett T D (3) 2019
12
Smith L N (30) 2017
13
14
Mirhoseini A (25) 2017
Erdős P (7) 1960; 5
17
Kool W (18) 2018
Ulanov A E (32) 2019
Cplex optimizer (5) 2019
Vinyals O (34) 2015
Laterre A (19) 2018
Mittal A (26) 2019
4
Khalil E (15) 2017
Li Z (21) 2018
Gurobi optimization (10) 2019
Schulman J (28) 2017
Silver D (29) 2017
20
References_xml – year: 2019
  ident: 3
– ident: 20
  doi: 10.1103/PhysRevLett.122.040607
– start-page: 3
  year: 2018
  ident: 9
  publication-title: Automatic Machine Learning: Methods, Systems, Challenges
– ident: 27
  doi: 10.1038/srep00571
– volume: 15
  start-page: 3241
  issn: 0305-4470
  year: 1982
  ident: 2
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/15/10/028
– year: 2017
  ident: 29
– year: 2019
  ident: 32
– year: 2017
  ident: 28
– ident: 33
  doi: doi.org/10.1007/s42484-019-00001-w
– year: 2019
  ident: 5
– ident: 24
  doi: 10.1126/science.aah5178
– start-page: 464
  year: 2017
  ident: 30
  publication-title: 2017 IEEE Conf. on Applications of Computer Vision (WACV)
  doi: 10.1109/WACV.2017.58
– year: 2014
  ident: 8
– ident: 4
  doi: 10.1016/j.engappai.2012.09.001
– start-page: 539
  year: 2018
  ident: 21
  publication-title: Advances in Neural Information Processing Systems
– year: 2016
  ident: 6
– ident: 12
  doi: 10.1126/science.3755256
– year: 2018
  ident: 16
– year: 2003
  ident: 36
– start-page: 2692
  issn: 1049-5258
  year: 2015
  ident: 34
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: 19
– ident: 22
  doi: 10.1002/9781118593486.ch4
– ident: 17
  doi: 10.1126/science.220.4598.671
– ident: 14
  doi: 10.1609/aaai.v34i03.5616
– year: 2018
  ident: 18
– ident: 31
  doi: 10.1364/OE.27.010288
– year: 2019
  ident: 1
– ident: 23
  doi: 10.1109/MC.2019.2908836
– year: 2018
  ident: 35
– start-page: 6348
  year: 2017
  ident: 15
  publication-title: Advances in Neural Information Processing Systems
– year: 2019
  ident: 10
– ident: 13
  doi: 10.1126/science.aah4243
– year: 2019
  ident: 26
– ident: 11
  doi: 10.1162/106365603321828970
– volume: 5
  start-page: 17
  year: 1960
  ident: 7
  publication-title: Publ. Math. Inst. Hung. Acad. Sci
– start-page: 2430
  year: 2017
  ident: 25
  publication-title: Proc. of the 34th Int. Conf. on Machine Learning-Volume 70
SSID ssj0002513520
Score 2.1454768
Snippet Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25009
SubjectTerms Algorithms
Combinatorial analysis
combinatorial optimization
Ising model
Machine learning
maximum cut
Optimization
reinforcement learning
Training
Tuning
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HbjwRoyXcoADh7C2abtEnBBi4oAAIRDjFKVpApO2buzB78dps6EJNCFxqypHrRzH_pzEnwFOuOaxYllCwzxSNDahokrplKY6TK1gcSx4WSh827i7462WeFiAi2ktTK_vXf85PlZEwZUK_YU4XncM4xQjFaurTLOIL8Iy40nsiPPv2ct0gwUDN4KLwB9N_jZwJhQt4ud--OMyyDTX__V7G7DmsSW5rEQ3YcEUW7A-6dtA_DLehtdHU_Kl6nJrkPjGEW_EFO_lfQDyMUZ9j7u0XbhzeHyhOm-9QXv03iU4jKCRYj7tsnU0XtJDp9P11Zw78Ny8frq6ob7FAtWuBpbaJBeh4QbTusAiNMisQTyoLeN5rBpZiP6MsZSpLGgYllirM5y8gGmdZrniNmW7sFT0CrMHBHFV5LIPlgqNGEwJ0VCRtZzlSaaFVTWoT7Qttecfd20wOrI8B-dcOs1JpzlZaa4GZ9MR_Yp7Y47sKU6I9AtwOEeOzMh1O8ORRAnpsGAgZD-3NTicWMG3nIOBwpHlh_t__NIBrEbu_ku5Y3MIS6PB2BzBiv4ctYeD49JWvwB1COqS
  priority: 102
  providerName: IOP Publishing
Title Reinforcement learning enhanced quantum-inspired algorithm for combinatorial optimization
URI https://iopscience.iop.org/article/10.1088/2632-2153/abc328
https://www.proquest.com/docview/2512966271
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: O3W
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: K7-
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: BENPR
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: PIMPY
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M2P
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED5tHQ-8MDZAFMbkB3jYg9UkThP7CQHqtGmsRBOI7clyHHur1Kbd2vLIb-fOdTcQUl_2cg_JWYl89t13d_YdwHtpZW5E3edpkxmeu9RwY2zBC5sWXok8VzJcFP5aDofy8lJVMeA2j8cq1zoxKOpmailG3iM7rKhaefpxdsupaxRlV2MLjW3YoUplWQd2Pg-G1cV9lAVHIcJIYn4Sd1SP6pNztHOiZ2orqAn7X_ZoezSd_aeUg6U53n3sPz6HZxFjsk-rRbEHW67dh911_wYWt_MLuLpwoW6qDSFCFhtIXDPX3oRzAex2ifO-nPBRS_l4fGDG1_i9xc2E4TCGP4V-NXntuIjZFJXPJN7qfAk_jgffv5zw2GqBW7oLy32_UamTDt27xCNEqL1DXGi9kE1uyjpFvSZEIUydlE70vbc1CjER1hZ1Y6QvxCvotNPWvQaG-CojL0QUyiIWM0qVJvNeiqZfW-VNF3rrCdc21iGndhhjHfLhUmoSkSYR6ZWIunB0P2K2qsGxgfcDylDHjTjfwMf-4ZuM5wuNHJowYaL0rPFdOFhL-YHvQcRvNr9-C08zOv4SAjYH0FncLd07eGJ_LUbzu8O4Tg9DCADpWcmRnmcV0d8DpN_ET-SqTs-rqz8uHfg7
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH-CMoldYGyglcHmwzjsYDWJk9Q-TGhjIBBdhRCT2MmzHRsqtWmhLYh_ir-R59SBTZN648A1eY4c-_c-_Pw-AD5zw1PFdEbjIlE0tbGiSpmc5ibOnWBpKniVKNxpd7v8_FycLMB9nQvjwyprmVgJ6mJovI-85fWw8NXK493RFfVdo_ztat1CYwaLY3t3i0e28dejH7i_O0lysH-2d0hDVwFqfNondVkhYsstnmQih9pQO4smkHGMF6lq6xhZmLGcKR21LcucMxrnGzFjcl0o7nKG312EpZSlWdqApe_73ZPTR68OzhItmijchyIHt3w9dIp6lbWUNsw3ff9L_y32hqP_lECl2Q5WX9qavIGVYEOTbzPQr8GCLd_Cat2fggRx9Q5-n9qqLqypXKAkNMi4ILa8rOIeyNUUcTUd0F7p4w3wgepf4P9NLgcEhxFcBN0rvVcCmZQMUbgOQtbqOvx6lh_cgEY5LO17IGg_Jv6UxXJh0NZUQrRV4hxnRaaNcKoJrXqDpQl11n27j76s7vs5lx4S0kNCziDRhC-PI0azGiNzaHcQMzIImvEcOvIP3aA_nkikkN7mjYQcFa4JWzWqnuieILU5__UnWD48-9mRnaPu8Qd4nfhQn8o5tQWNyfXUbsMrczPpja8_Bh4h8Oe5IfgAiRVO2g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xgiZeKF8ThcL8wB72YJrESWo_IqACrSoVGlr3ZDmO3VZq09IP_n7OjltUDVVIe4ussxydz3e_8_nuAN5zzVPFiozGZaJoamJFldI5zXWcW8HSVHCfKNzvDgZ8NBLD0OfU58IslkH1f8DPulBwzcLwII53XIVxipaKdVShWcI7y9KewMPMhcRQoL-zm_0lCxpvBBhRCE_-a_KBOTrBJe_oZG9oes17_-JTeBIwJvlYkz-DB6Z6Ds1d_wYSjvMLuP1hfN1U7a8ISWggMSammvh3AeTXFvm-ndNp5eLxOKBm48VqupnMCU4jKKzoVzuvHYWYLFD5zENW50v42fty_ekrDa0WqHa5sNRmpYgNN-jeRRYhQmEN4kJtGS9T1S1i1GuM5UwVUdewzFpd4CZGTOu8KBW3OTuDRrWozCsgiK8S54WwXGjEYkqIrkqs5azMCi2sakFnx3GpQx1y1w5jJn08nHPpuCcd92TNvRZc7mcs6xocR2gvcFNkOIjrI3TkgG4-W28kUkiHCSMhccNa0N5Jwl86BweFK5ofv_7Plc7hdPi5J_vfBldv4HHinsT4S5w2NDarrXkLj_TvzXS9eudF9w8ple_x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+learning+enhanced+quantum-inspired+algorithm+for+combinatorial+optimization&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Beloborodov%2C+Dmitrii&rft.au=Ulanov%2C+A+E&rft.au=Foerster%2C+Jakob+N&rft.au=Whiteson%2C+Shimon&rft.date=2021-06-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1088%2F2632-2153%2Fabc328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon