Explainable artificial intelligence for digital forensics
EXplainable artificial intelligence (XAI) is an emerging research area relating to the creation of machine learning algorithms from which explanations for outputs are provided. In many fields, such as law enforcement, it is necessary that decisions made by and with the assistance of artificial intel...
Saved in:
| Published in: | WIREs. Forensic science Vol. 4; no. 2; pp. e1434 - n/a |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2022
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 2573-9468, 2573-9468 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | EXplainable artificial intelligence (XAI) is an emerging research area relating to the creation of machine learning algorithms from which explanations for outputs are provided. In many fields, such as law enforcement, it is necessary that decisions made by and with the assistance of artificial intelligence (AI)‐based tools can be justified and explained to a human. We seek to explore the potential of XAI to further enhance triage and analysis of digital forensic evidence, using examples of the current state of the art as a starting point. This opinion letter will discuss both practical and novel ideas as well as controversial points for leveraging XAI to improve the efficacy of digital forensic (DF) analysis and extract forensically sound pieces of evidence (also known as artifacts) that could be used to assist investigations and potentially in a court of law.
This article is categorized under:
Digital and Multimedia Science > Artificial Intelligence
Digital and Multimedia Science > Cybercrime Investigation
XAI for Investigative Support. |
|---|---|
| AbstractList | EXplainable artificial intelligence (XAI) is an emerging research area relating to the creation of machine learning algorithms from which explanations for outputs are provided. In many fields, such as law enforcement, it is necessary that decisions made by and with the assistance of artificial intelligence (AI)‐based tools can be justified and explained to a human. We seek to explore the potential of XAI to further enhance triage and analysis of digital forensic evidence, using examples of the current state of the art as a starting point. This opinion letter will discuss both practical and novel ideas as well as controversial points for leveraging XAI to improve the efficacy of digital forensic (DF) analysis and extract forensically sound pieces of evidence (also known as artifacts) that could be used to assist investigations and potentially in a court of law.
This article is categorized under:
Digital and Multimedia Science > Artificial Intelligence
Digital and Multimedia Science > Cybercrime Investigation
XAI for Investigative Support. EXplainable artificial intelligence (XAI) is an emerging research area relating to the creation of machine learning algorithms from which explanations for outputs are provided. In many fields, such as law enforcement, it is necessary that decisions made by and with the assistance of artificial intelligence (AI)‐based tools can be justified and explained to a human. We seek to explore the potential of XAI to further enhance triage and analysis of digital forensic evidence, using examples of the current state of the art as a starting point. This opinion letter will discuss both practical and novel ideas as well as controversial points for leveraging XAI to improve the efficacy of digital forensic (DF) analysis and extract forensically sound pieces of evidence (also known as artifacts) that could be used to assist investigations and potentially in a court of law.This article is categorized under:Digital and Multimedia Science > Artificial IntelligenceDigital and Multimedia Science > Cybercrime Investigation EXplainable artificial intelligence (XAI) is an emerging research area relating to the creation of machine learning algorithms from which explanations for outputs are provided. In many fields, such as law enforcement, it is necessary that decisions made by and with the assistance of artificial intelligence (AI)‐based tools can be justified and explained to a human. We seek to explore the potential of XAI to further enhance triage and analysis of digital forensic evidence, using examples of the current state of the art as a starting point. This opinion letter will discuss both practical and novel ideas as well as controversial points for leveraging XAI to improve the efficacy of digital forensic (DF) analysis and extract forensically sound pieces of evidence (also known as artifacts) that could be used to assist investigations and potentially in a court of law. This article is categorized under: Digital and Multimedia Science > Artificial Intelligence Digital and Multimedia Science > Cybercrime Investigation |
| Author | Hall, Stuart W. Choo, Kim‐Kwang Raymond Sakzad, Amin |
| Author_xml | – sequence: 1 givenname: Stuart W. surname: Hall fullname: Hall, Stuart W. organization: Monash University – sequence: 2 givenname: Amin orcidid: 0000-0003-4569-3384 surname: Sakzad fullname: Sakzad, Amin email: amin.sakzad@monash.edu organization: Monash University – sequence: 3 givenname: Kim‐Kwang Raymond orcidid: 0000-0001-9208-5336 surname: Choo fullname: Choo, Kim‐Kwang Raymond organization: University of Texas at San Antonio |
| BookMark | eNp9kEFLAzEQhYNUsNYe_AcLnjxsm8km2e1RSqtCwYOKxzBNZ0tKzNZkpfbfu7UeRNDTPJjvvWHeOeuFJhBjl8BHwLkY7-okRiALecL6QpVFPpG66v3QZ2yY0oZ3LEhRqqrPJrOPrUcXcOkpw9i62lmHPnOhJe_dmoKlrG5itnJr13aLTlNIzqYLdlqjTzT8ngP2PJ89Te_yxcPt_fRmkVshSpkTRyJZagRCElhKEFDACoVFKGoNSJWuAFZKVbDUqElJCxVOdCU5ghbFgF0dc7exeXun1JpN8x5Dd9IIXZSKl0oXHXV9pGxsUopUm210rxj3Brg5lGMO5ZhDOR07_sXa7rXWNaGN6Px_jp3ztP872rzMH8WX4xPcS3a- |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3204171 crossref_primary_10_3390_jimaging9010003 crossref_primary_10_1002_widm_70015 crossref_primary_10_3390_buildings13051213 crossref_primary_10_1016_j_fsigen_2023_102994 crossref_primary_10_1109_ACCESS_2023_3324403 crossref_primary_10_3390_electronics11121903 crossref_primary_10_51583_IJLTEMAS_2025_1407000002 |
| Cites_doi | 10.1109/CVPR42600.2020.01446 10.1109/MSEC.2019.2925649 10.1109/CVPR.2018.00357 10.1016/j.inffus.2019.12.012 10.1007/s10472-019-09632-y 10.1177/1365712718807226 10.1177/2053951715622512 10.52922/ti180697 10.1145/3407023.3407068 10.1109/TII.2019.2947432 10.1007/978-3-030-58592-1_24 10.1145/3290605.3300831 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley Periodicals LLC. 2022 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 8BJ FQK JBE |
| DOI | 10.1002/wfs2.1434 |
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2573-9468 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_wfs2_1434 WFS21434 |
| Genre | article |
| GroupedDBID | 1OC 1VH 33P 34L AAHQN AAMNL AANLZ AAXRX ACAHQ ACCZN ACXBN ADOZA AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB DCZOG DRFUL DRSTM LATKE LEEKS MEWTI M~E WXSBR 0R~ AAYXX AGYGG ALUQN CITATION 8BJ FQK JBE |
| ID | FETCH-LOGICAL-c2274-e0aee476a1eae2a7412131da2ca13f61ae86811d5581b6a6e54c18a96840a1623 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000904724800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2573-9468 |
| IngestDate | Wed Nov 12 17:12:18 EST 2025 Sat Nov 29 05:56:25 EST 2025 Tue Nov 18 22:15:27 EST 2025 Wed Jan 22 16:25:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2274-e0aee476a1eae2a7412131da2ca13f61ae86811d5581b6a6e54c18a96840a1623 |
| Notes | Sara Belkin, Executive Editor Edited by ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9208-5336 0000-0003-4569-3384 |
| PQID | 2637507563 |
| PQPubID | 4669295 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2637507563 crossref_primary_10_1002_wfs2_1434 crossref_citationtrail_10_1002_wfs2_1434 wiley_primary_10_1002_wfs2_1434_WFS21434 |
| PublicationCentury | 2000 |
| PublicationDate | March/April 2022 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March/April 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | WIREs. Forensic science |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2016; 3 2019; 86 2020; 12368 2020 2021; 17 2019; 23 2019; 69 2009 2019; 17 2019 2018 2020; 58 2020; 47 2017 2016 2014 Aditya K. (e_1_2_11_2_1) 2018 e_1_2_11_10_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_12_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 National Research Council (e_1_2_11_23_1) 2009 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_24_1 e_1_2_11_9_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_15_1 Kafadar K. (e_1_2_11_17_1) 2019; 69 e_1_2_11_19_1 (e_1_2_11_7_1) 2020; 47 |
| References_xml | – start-page: 1250 year: 2018 end-page: 1255 – start-page: 1 year: 2019 end-page: 15 – start-page: 3389 year: 2018 end-page: 3398 – volume: 47 start-page: 23 year: 2020 end-page: 48 article-title: Foundations of explainable knowledge‐enabled systems publication-title: Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges – year: 2009 – volume: 58 start-page: 82 year: 2020 end-page: 115 article-title: Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Information Fusion – volume: 86 start-page: 193 issue: 1–3 year: 2019 end-page: 229 article-title: Digital forensics and investigations meet artificial intelligence publication-title: Annals of Mathematics and Artificial Intelligence – volume: 12368 start-page: 396 year: 2020 end-page: 413 – year: 2020 – volume: 3 issue: 1 year: 2016 article-title: How the machine “thinks”: Understanding opacity in machine learning algorithms publication-title: Big Data & Society – volume: 69 start-page: 6 year: 2019 article-title: Statistics and the impact of the 2009 NAS report publication-title: Duke LJ Online – volume: 17 start-page: 74 issue: 5 year: 2019 end-page: 77 article-title: Artificial intelligence for law enforcement: Challenges and opportunities publication-title: IEEE Security Privacy – start-page: 14441 year: 2020 end-page: 14450 – year: 2017 – year: 2016 – year: 2018 – volume: 17 start-page: 971 issue: 2 year: 2021 end-page: 979 article-title: Semantic learning based cross‐platform binary vulnerability search for iot devices publication-title: IEEE Transactions on Industrial Informatics – year: 2014 – volume: 23 start-page: 255 issue: 3 year: 2019 end-page: 262 article-title: Determining authenticity of video evidence in the age of artificial intelligence and in the wake of deepfake videos publication-title: The International Journal of Evidence & Proof – start-page: 1250 volume-title: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering (Trustcom/Bigdatase) year: 2018 ident: e_1_2_11_2_1 – ident: e_1_2_11_8_1 doi: 10.1109/CVPR42600.2020.01446 – ident: e_1_2_11_26_1 doi: 10.1109/MSEC.2019.2925649 – ident: e_1_2_11_3_1 doi: 10.1109/CVPR.2018.00357 – ident: e_1_2_11_4_1 doi: 10.1016/j.inffus.2019.12.012 – ident: e_1_2_11_13_1 – volume-title: Strengthening forensic science in the United States: A path forward year: 2009 ident: e_1_2_11_23_1 – ident: e_1_2_11_16_1 – ident: e_1_2_11_24_1 – volume: 69 start-page: 6 year: 2019 ident: e_1_2_11_17_1 article-title: Statistics and the impact of the 2009 NAS report publication-title: Duke LJ Online – ident: e_1_2_11_21_1 – ident: e_1_2_11_9_1 doi: 10.1007/s10472-019-09632-y – ident: e_1_2_11_10_1 – volume: 47 start-page: 23 year: 2020 ident: e_1_2_11_7_1 article-title: Foundations of explainable knowledge‐enabled systems publication-title: Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges – ident: e_1_2_11_19_1 doi: 10.1177/1365712718807226 – ident: e_1_2_11_12_1 – ident: e_1_2_11_5_1 doi: 10.1177/2053951715622512 – ident: e_1_2_11_6_1 – ident: e_1_2_11_20_1 – ident: e_1_2_11_15_1 – ident: e_1_2_11_25_1 doi: 10.52922/ti180697 – ident: e_1_2_11_11_1 doi: 10.1145/3407023.3407068 – ident: e_1_2_11_28_1 – ident: e_1_2_11_14_1 doi: 10.1109/TII.2019.2947432 – ident: e_1_2_11_18_1 doi: 10.1007/978-3-030-58592-1_24 – ident: e_1_2_11_27_1 doi: 10.1145/3290605.3300831 – ident: e_1_2_11_22_1 |
| SSID | ssj0002142758 |
| Score | 2.2915416 |
| Snippet | EXplainable artificial intelligence (XAI) is an emerging research area relating to the creation of machine learning algorithms from which explanations for... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e1434 |
| SubjectTerms | Artificial intelligence Computer forensics Courts Cybercrime Decision making digital artifacts digital evidence digital forensics Efficacy Evidence EXplainable artificial intelligence Forensic evidence Forensic science Intelligence Law enforcement Machine learning Multimedia Triage |
| Title | Explainable artificial intelligence for digital forensics |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwfs2.1434 https://www.proquest.com/docview/2637507563 |
| Volume | 4 |
| WOSCitedRecordID | wos000904724800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2573-9468 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002142758 issn: 2573-9468 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2573-9468 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002142758 issn: 2573-9468 databaseCode: DRFUL dateStart: 20190101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_sw4MXP1BxOkcRD17KmqRNEzyJrniYQ9ThbiVNUhmMKevUm3-7Sb82QUHwlsNr2iTvNb-E934_gDOquCABwS6R0hxQQoJcpmTipqlnFjnxcKJyEtdhOBqxyYTfNeCiqoUp-CHqCzcbGfn_2ga4SLL-ijT0I82wiXPiN6GNjd_6LWhf30fjYX3FYtnEwlyh0_glsWLyrOIW8nC_fv77jrSCmetgNd9tou1_fecObJUg07ksvGIXGnq-B9ym25W1Uo51mII7wpmukXI6BsI6avpslURs22a3y2wfxtHg8erGLYUTXInNKdPVntDaD6lAWmgsDGjAiCAlsBSIpBQJzShDSAWBAa1UUB34EjHBLfGLQAYQHUBr_jLXh-DIUAVp4gtmuvIT7PEEc8l5SgLFhM9lB86ryYtlySpuxS1mccGHjGM7_tiOvwOntelrQaXxk1G3WoG4jKYsxpQYYBMGlJjX5XP9ewfxU_SAbePo76bHsIltVUOeWtaF1nLxpk9gQ74vp9miV7pVD5q3n4MvvGLRIw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mJuiLH6g4nVrEB1-KTdKkCfgi6phYh-iGeytpmspApqxT_32Tfm2CguBbHi5pPu6aX4673wGcsERIQgl2iVLmgRIQ5PJExW6aeuaQYw_HSU7iGgb9Ph-NxH0DzqtcmIIfona4WcvI_9fWwK1D-mzOGvqZZtgYOvGXoOUbNaJNaF09dIdh7WOxdGJBXqLTKCax1eR5RS7k4bO6__craY4zF9Fqft101_830Q1YK2Gmc1HoxSY09GQLhA24K7OlHKsyBXuEM16g5XQMiHWS8bOtJWLbNr5dZdsw7F4PLntuWTrBVdi8M13tSa39gEmkpcbSwAaMCEokVhKRlCGpOeMIJZQa2Mok09RXiEthqV8kMpBoB5qT14neBUcFCU1jX3IzlB9jT8RYKCFSQhMufaHacFrtXqRKXnFb3uIlKhiRcWTXH9n1t-G4Fn0ryDR-EupURxCV9pRFmBEDbQLKiPlcvtm_DxA9dR-xbez9XfQIVnqDuzAKb_q3-7CKbY5DHmjWgeZs-q4PYFl9zMbZ9LDUsS9XodPi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5zE_HiD1ScTi3iwUuxSZo0AS_iLIpjDHW4W0iTVAYyxzr13zfpr01QELzl8Jo2yXvNl_De9wFwRjWXmGDkY6XsASXC0GdaJX6aBnaRkwAlOidx7UX9PhuN-KABLqtamIIfor5wc5GR_69dgJupTi8WrKGfaYZsoONwBbRCwqkNy1b3IR726jsWRycW5RKd1jGxU5NnFblQgC7q579vSQucuYxW8-0m3vzfh26BjRJmeleFX2yDhpnsAO4S7spqKc-5TMEe4Y2XaDk9C2I9PX5xWiKu7fLbVbYLhvHN0_WtX0on-ArZc6ZvAmlMGFEJjTRIWtiAIIZaIiUhTimUhlEGoSbEwlYqqSGhgkxyR_0ioYVEe6A5eZuYfeCpSJM0CSWzXYUJCniCuOI8xUQzGXLVBufV7AlV8oo7eYtXUTAiI-HGL9z42-C0Np0WZBo_GXWqJRBlPGUCUWyhTUQotq_LJ_v3DsRz_Ihc4-DvpidgbdCNRe-uf38I1pErccjzzDqgOZ-9myOwqj7m42x2XLrYFyO-010 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+artificial+intelligence+for+digital+forensics&rft.jtitle=WIREs.+Forensic+science&rft.au=Hall%2C+Stuart+W&rft.au=Amin+Sakzad&rft.au=Kim%E2%80%90Kwang+Raymond+Choo&rft.date=2022-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2573-9468&rft.eissn=2573-9468&rft.volume=4&rft.issue=2&rft.spage=e1434&rft_id=info:doi/10.1002%2Fwfs2.1434&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2573-9468&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2573-9468&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2573-9468&client=summon |