Two new mixed‐integer programming models for the integrated train formation and shipment path optimization problem

Railcars are known as the heart of the freight rail transportation industry. Hence, any improvements in their operations can lead to sharp reductions in various operating costs. One of the most critical operations on railcars is blocking and routing their transportation. Railway companies face conti...

Full description

Saved in:
Bibliographic Details
Published in:Networks Vol. 81; no. 3; pp. 359 - 377
Main Authors: Arsalani, Pouria, Reisi‐Nafchi, Mohammad, Dardashti, Vahid, Moslehi, Ghasem
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.04.2023
Wiley Subscription Services, Inc
Subjects:
ISSN:0028-3045, 1097-0037
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Railcars are known as the heart of the freight rail transportation industry. Hence, any improvements in their operations can lead to sharp reductions in various operating costs. One of the most critical operations on railcars is blocking and routing their transportation. Railway companies face continuous challenged about what blocks should be formed to carry shipments across different origin–destination pairs (O–D pairs) and reclassify them in intermediate yards to minimize transportation reclassification costs. In addition, it is necessary to determine train service between O–D pairs and the number of trains. Along with the shipment routing plans, this problem is called train formation and shipment path optimization (TFSP). In TFSP, some substructure and rail network operational constraints should be considered, including link capacity, classification capacity, the number of sorting tracks, and path length. This paper presents two arc‐based mixed‐integer linear programming (MILP) models to formulate the TFSP problem. To the best of the authors' knowledge, no MILP arc‐based model has been published for the problem that does not need any preprocess before solving. Computational results of solving models on the datasets showed that the first model could obtain a feasible solution with a maximum 0.05% gap up to 48 yards instance. The second model also could find a solution with a small gap compared to the optimal solution in a reasonable time for instances up to 128 yards. Also, the proposed models were compared to the best methods in the literature, and their superiority was shown.
AbstractList Railcars are known as the heart of the freight rail transportation industry. Hence, any improvements in their operations can lead to sharp reductions in various operating costs. One of the most critical operations on railcars is blocking and routing their transportation. Railway companies face continuous challenged about what blocks should be formed to carry shipments across different origin–destination pairs (O–D pairs) and reclassify them in intermediate yards to minimize transportation reclassification costs. In addition, it is necessary to determine train service between O–D pairs and the number of trains. Along with the shipment routing plans, this problem is called train formation and shipment path optimization (TFSP). In TFSP, some substructure and rail network operational constraints should be considered, including link capacity, classification capacity, the number of sorting tracks, and path length. This paper presents two arc‐based mixed‐integer linear programming (MILP) models to formulate the TFSP problem. To the best of the authors' knowledge, no MILP arc‐based model has been published for the problem that does not need any preprocess before solving. Computational results of solving models on the datasets showed that the first model could obtain a feasible solution with a maximum 0.05% gap up to 48 yards instance. The second model also could find a solution with a small gap compared to the optimal solution in a reasonable time for instances up to 128 yards. Also, the proposed models were compared to the best methods in the literature, and their superiority was shown.
Author Moslehi, Ghasem
Dardashti, Vahid
Reisi‐Nafchi, Mohammad
Arsalani, Pouria
Author_xml – sequence: 1
  givenname: Pouria
  surname: Arsalani
  fullname: Arsalani, Pouria
  organization: Isfahan University of Technology
– sequence: 2
  givenname: Mohammad
  orcidid: 0000-0003-1680-3644
  surname: Reisi‐Nafchi
  fullname: Reisi‐Nafchi, Mohammad
  email: reisi.m@iut.ac.ir
  organization: Isfahan University of Technology
– sequence: 3
  givenname: Vahid
  surname: Dardashti
  fullname: Dardashti, Vahid
  organization: CIRRELT
– sequence: 4
  givenname: Ghasem
  surname: Moslehi
  fullname: Moslehi, Ghasem
  organization: Isfahan University of Technology
BookMark eNp1kL1OwzAUhS1UJNrCwBtYYmJI65-kSUZUlR-pgqXMkRtft65iOziuSpl4BJ6RJyFpOyGYLPl859x7zwD1rLOA0DUlI0oIG1sII8Yo52eoT0meRoTwtIf6rZZFnMTJBRo0zYYQShOa9VFY7By2sMNGv4P8_vzSNsAKPK69W3lhjLYrbJyEqsHKeRzWgA-IFwEkDl5o2wlGBO0sFlbiZq1rAzbgWoQ1dnXQRn8c5TZ0WYG5ROdKVA1cnd4her2fLaaP0fzl4Wl6N49KxlIeMUJllgvKU5XnEx4nKi5zFkMsZCa6v5xNJkLJmIKSmSwFI8tSJpNcqTKhlPIhujnmtnPfttCEYuO23rYjC5Zm7f0xz0hLjY9U6V3TeFBFqcNh3-66qqCk6Kot2mqLQ7Wt4_aXo_baCL__kz2l73QF-__B4nm2ODp-AERWjew
CitedBy_id crossref_primary_10_3390_machines12070482
crossref_primary_10_1016_j_jrtpm_2024_100495
crossref_primary_10_1007_s12351_024_00845_6
crossref_primary_10_1515_comp_2025_0037
crossref_primary_10_1016_j_jobe_2024_110579
Cites_doi 10.1016/j.apm.2012.05.016
10.1016/0968-090X(95)00019-F
10.1016/0191-2615(80)90037-5
10.1007/978-1-4899-7571-3
10.1016/j.apm.2017.11.006
10.1287/trsc.26.4.263
10.1016/j.jrtpm.2016.09.002
10.1016/j.trb.2011.12.003
10.1016/0191-2615(89)90042-8
10.1023/A:1018906301828
10.1016/j.apm.2020.12.031
10.1016/j.trb.2018.10.003
10.1002/net.22029
10.1002/atr.1183
10.1061/(ASCE)TE.1943-5436.0000447
10.1016/j.trc.2017.10.006
10.1287/trsc.2013.0486
10.1016/j.cie.2010.09.014
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/net.22133
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-0037
EndPage 377
ExternalDocumentID 10_1002_net_22133
NET22133
Genre researchArticle
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
6TU
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RXW
SAMSI
SUPJJ
TAE
TN5
TUS
TWZ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZCA
ZY4
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2273-201d89a137f996345f4c924e4ad8a7f999266afd41efd8dca20bcd569ffc51113
IEDL.DBID DRFUL
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000896862700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-3045
IngestDate Fri Jul 25 12:11:03 EDT 2025
Sat Nov 29 04:29:58 EST 2025
Tue Nov 18 22:08:45 EST 2025
Wed Jan 22 16:23:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2273-201d89a137f996345f4c924e4ad8a7f999266afd41efd8dca20bcd569ffc51113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1680-3644
PQID 2785184380
PQPubID 1016413
PageCount 18
ParticipantIDs proquest_journals_2785184380
crossref_citationtrail_10_1002_net_22133
crossref_primary_10_1002_net_22133
wiley_primary_10_1002_net_22133_NET22133
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle Networks
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2016; 6
1980; 14
2013; 37
1989; 23
2021; 78
2013; 49
2018; 118
2011; 60
2013; 139
1998
2014; 48
2015
1992; 26
2014
1996; 4
2018; 56
2021; 93
2012; 46
2018; 86
1998; 78
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_21_1
e_1_2_9_13_1
e_1_2_9_12_1
Ahuja R. K. (e_1_2_9_22_1) 2014
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
Jin H. (e_1_2_9_2_1) 1998
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
References_xml – volume: 4
  start-page: 33
  year: 1996
  end-page: 49
  article-title: Optimization of railway operations using neural networks
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 48
  start-page: 402
  year: 2014
  end-page: 416
  article-title: Solving train formation problem using simulated annealing algorithm in a simplex framework
  publication-title: J. Adv. Transp.
– volume: 23
  start-page: 415
  year: 1989
  end-page: 431
  article-title: Designing optimal railroad operating plans: Lagrangian relaxation and heuristic approaches
  publication-title: Transp. Res. B Methodol.
– volume: 86
  start-page: 124
  year: 2018
  end-page: 146
  article-title: Solving the train formation plan network problem of the single block train and two‐block train using a hybrid algorithm of genetic algorithm and tabu se
  publication-title: Transp. Res. C
– volume: 14
  start-page: 115
  year: 1980
  end-page: 120
  article-title: A model for the blocking of trains
  publication-title: Transp. Res. B Methodol.
– volume: 78
  start-page: 523
  year: 2021
  end-page: 542
  article-title: A mathematical formulation and an LP‐based neighborhood search matheuristic solution method for the integrated train blocking and shipment path problem
  publication-title: Networks
– volume: 139
  start-page: 216
  year: 2013
  end-page: 222
  article-title: Tabu search algorithm for the railroad blocking problem
  publication-title: J. Transp. Eng.
– volume: 93
  start-page: 811
  year: 2021
  end-page: 830
  article-title: Integrating traffic routing optimization and train formation plan using simulated annealing algorithm
  publication-title: Appl. Math. Model.
– volume: 60
  start-page: 34
  year: 2011
  end-page: 42
  article-title: Multi‐route railroad blocking problem by improved model and ant colony algorithm in real world
  publication-title: Comput. Ind. Eng.
– volume: 118
  start-page: 1
  year: 2018
  end-page: 30
  article-title: One‐block train formation in large‐scale railway networks: An exact model and a tree‐based decomposition algorithm
  publication-title: Transp. Res. B Methodol.
– volume: 6
  start-page: 218
  year: 2016
  end-page: 236
  article-title: Comprehensive optimization of the one‐block and two‐block train formation plan
  publication-title: J. Rail Transp. Plan. Manag.
– start-page: 54
  year: 2014
  end-page: 101
  article-title: Network models in railroad planning and scheduling
  publication-title: INFORMS TutORials in Operations Research
– volume: 46
  start-page: 649
  year: 2012
  end-page: 667
  article-title: Optimizing the freight train connection service network of a large‐scale rail system
  publication-title: Transp. Res. B Methodol.
– volume: 49
  start-page: 130
  year: 2013
  end-page: 148
  article-title: Single‐car routing in rail freight transport
  publication-title: Transp. Sci.
– volume: 78
  start-page: 51
  year: 1998
  end-page: 69
  article-title: An application of genetic and tabu searches to the freight railroad operating plan problem
  publication-title: Ann. Oper. Res.
– volume: 37
  start-page: 2300
  year: 2013
  end-page: 2307
  article-title: An improved local branching approach for train formation planning
  publication-title: Appl. Math. Model.
– volume: 56
  start-page: 304
  year: 2018
  end-page: 324
  article-title: Modeling formulation and a new heuristic for the railroad blocking problem
  publication-title: Appl. Math. Model.
– year: 2015
– year: 1998
– volume: 26
  start-page: 263
  year: 1992
  end-page: 279
  article-title: Designing railroad operating plans: A dual adjustment method for implementing Lagrangian relaxation
  publication-title: Transp. Sci.
– ident: e_1_2_9_16_1
  doi: 10.1016/j.apm.2012.05.016
– ident: e_1_2_9_14_1
  doi: 10.1016/0968-090X(95)00019-F
– ident: e_1_2_9_11_1
  doi: 10.1016/0191-2615(80)90037-5
– start-page: 54
  year: 2014
  ident: e_1_2_9_22_1
  article-title: Network models in railroad planning and scheduling
  publication-title: INFORMS TutORials in Operations Research
– ident: e_1_2_9_4_1
  doi: 10.1007/978-1-4899-7571-3
– ident: e_1_2_9_20_1
  doi: 10.1016/j.apm.2017.11.006
– ident: e_1_2_9_12_1
  doi: 10.1287/trsc.26.4.263
– ident: e_1_2_9_5_1
  doi: 10.1016/j.jrtpm.2016.09.002
– ident: e_1_2_9_8_1
– ident: e_1_2_9_10_1
  doi: 10.1016/j.trb.2011.12.003
– ident: e_1_2_9_6_1
  doi: 10.1016/0191-2615(89)90042-8
– ident: e_1_2_9_13_1
  doi: 10.1023/A:1018906301828
– ident: e_1_2_9_9_1
  doi: 10.1016/j.apm.2020.12.031
– ident: e_1_2_9_18_1
  doi: 10.1016/j.trb.2018.10.003
– ident: e_1_2_9_7_1
  doi: 10.1002/net.22029
– volume-title: Designing robust railroad blocking plans
  year: 1998
  ident: e_1_2_9_2_1
– ident: e_1_2_9_17_1
  doi: 10.1002/atr.1183
– ident: e_1_2_9_3_1
  doi: 10.1061/(ASCE)TE.1943-5436.0000447
– ident: e_1_2_9_19_1
  doi: 10.1016/j.trc.2017.10.006
– ident: e_1_2_9_21_1
  doi: 10.1287/trsc.2013.0486
– ident: e_1_2_9_15_1
  doi: 10.1016/j.cie.2010.09.014
SSID ssj0011518
Score 2.3542337
Snippet Railcars are known as the heart of the freight rail transportation industry. Hence, any improvements in their operations can lead to sharp reductions in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 359
SubjectTerms Freight railways
Integer programming
Linear programming
mixed‐integer linear programming
Operating costs
Optimization
Rail transportation
railcar blocking
Railcars
Railroad cars
Railway tracks
railway transportation
Route planning
shipment path routing
Shipments
single‐block train
train formation
Trains
Transportation industry
Title Two new mixed‐integer programming models for the integrated train formation and shipment path optimization problem
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnet.22133
https://www.proquest.com/docview/2785184380
Volume 81
WOSCitedRecordID wos000896862700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0037
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011518
  issn: 0028-3045
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqlUU8eIlNNq8NnkRbPJQi0kJvYbO7gYJNpYmPoz_B3-gvcTYvKygI3kKYvHZnMt_s4_sAzmyLR640uaGU6xkOi10j4L6HcUX9mFuRKQoS14E_HLLJJLhrwGW1F6bgh6gH3HRk5P9rHeA8SrtLpKEqu6AUS6wVaFH0W6cJrZv7_nhQTyJgMmMVCbOeEKyIhUzarS_-no6-MOYyUs1TTX_zXy-5BRslwiRXhUtsQ0MlO7C-xDu4C9noZU4QT5PZ9FXJj7f3nDRCLUi5WmuGViTXyEkJglqCIJHUvBKS5LISpN72SHgiiV70pQcaiZY4JnP8Ec3KHZ6k1KzZg3G_N7q-NUr5BUNQBDUYP5ZkAbdsP8aiyHbc2BFYrSmHS8b1uQCTO4-lY6lYMik4NSMhXS-IY-FqBft9aCbzRB0A4QjyqDBdKiRzqOlFypKuwloSHYTbgd2G86oXQlFyk-tveQgLVmUaYkOGeUO24bQ2fSwIOX4y6lRdGZYxmYbUR3TJNMM-Pi7vtN9vEA57o_zg8O-mR7CmteiLZT0daGaLJ3UMq-I5m6aLk9I5PwH8YuqZ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6gH32K16iIevMQmm2we4EW0pWIsIi30Fra7GyjYVtr6OPoT_I3-EmfzsoKC4C2EyWt3JvPNPr4P4MS2eJ9JkxtKMddw_JgZAfdcjCvqxdzqmyIlcQ29dtvv9YK7Epzne2FSfohiwE1HRvK_1gGuB6Trc6yhanZGKdZYC1Bx0I1YGSpX981uWMwiYDbzcxZmPSOYMwuZtF5c_D0ffYHMeaia5Jrm2v_ech1WM4xJLlKn2ICSGm3Cyhzz4BbMOi9jgoiaDAevSn68vSe0EWpCsvVaQ7QiiUrOlCCsJQgTScEsIUkiLEGKjY-EjyTRy770UCPRIsdkjL-iYbbHk2SqNdvQbTY6ly0jE2AwBEVYgxFkST_glu3FWBbZDosdgfWacrj0uT4XYHrnsXQsFUtfCk7NvpDMDeJYMK1hvwPl0XikdoFwhHlUmIwK6TvUdPvKkkxhNYkuwu3ArsJp3g2RyNjJ9bc8RCmvMo2wIaOkIatwXJg-ppQcPxnV8r6MsqicRtRDfOlrjn18XNJrv98gajc6ycHe302PYKnVuQ2j8Lp9sw_LWpk-XeRTg_Js8qQOYFE8zwbTyWHmqZ8CeO6J
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH7UKqIHd3F3EA9eYpNJJgt4EbUoliBSwVuYzgIFm0obl6M_wd_oL_FNNisoCN5CeFlmefO-N8v3ARy6Du8xaXNLKeZbXqiZFfHAR7-igeZOzxYFiWsniOPw_j66acBJdRam4IeoJ9yMZ-TjtXFw9Sh1a4I1VGXHlGKONQXTHot8dMvp89v2XadeRcBoFlYszGZFsGIWsmmrfvh7PPoCmZNQNY817cX__eUSLJQYk5wWnWIZGipdgfkJ5sFVyLovQ4KImgz6r0p-vL3ntBFqRMr9WgO0IrlKzpggrCUIE0nNLCFJLixB6oOPhKeSmG1fZqqRGJFjMsShaFCe8SSlas0a3LUvumeXVinAYAmKsAY9yJFhxB030JgWuR7TnsB8TXlchtzcizC8cy09R2kZSsGp3ROS-ZHWghkN-3VopsNUbQDhCPOosBkVMvSo7feUI5nCbBK7CHcjdxOOqmZIRMlObsrykBS8yjTBikzyityEg9r0saDk-Mlop2rLpPTKcUIDxJeh4djHz-Wt9vsLkviim19s_d10H2ZvzttJ5yq-3oY5I0xf7PHZgWY2elK7MCOes_54tFd21E-ob-4E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+new+mixed%E2%80%90integer+programming+models+for+the+integrated+train+formation+and+shipment+path+optimization+problem&rft.jtitle=Networks&rft.au=Arsalani%2C+Pouria&rft.au=Reisi%E2%80%90Nafchi%2C+Mohammad&rft.au=Dardashti%2C+Vahid&rft.au=Moslehi%2C+Ghasem&rft.date=2023-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0028-3045&rft.eissn=1097-0037&rft.volume=81&rft.issue=3&rft.spage=359&rft.epage=377&rft_id=info:doi/10.1002%2Fnet.22133&rft.externalDBID=10.1002%252Fnet.22133&rft.externalDocID=NET22133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3045&client=summon