Two new mixed‐integer programming models for the integrated train formation and shipment path optimization problem
Railcars are known as the heart of the freight rail transportation industry. Hence, any improvements in their operations can lead to sharp reductions in various operating costs. One of the most critical operations on railcars is blocking and routing their transportation. Railway companies face conti...
Saved in:
| Published in: | Networks Vol. 81; no. 3; pp. 359 - 377 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2023
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0028-3045, 1097-0037 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Railcars are known as the heart of the freight rail transportation industry. Hence, any improvements in their operations can lead to sharp reductions in various operating costs. One of the most critical operations on railcars is blocking and routing their transportation. Railway companies face continuous challenged about what blocks should be formed to carry shipments across different origin–destination pairs (O–D pairs) and reclassify them in intermediate yards to minimize transportation reclassification costs. In addition, it is necessary to determine train service between O–D pairs and the number of trains. Along with the shipment routing plans, this problem is called train formation and shipment path optimization (TFSP). In TFSP, some substructure and rail network operational constraints should be considered, including link capacity, classification capacity, the number of sorting tracks, and path length. This paper presents two arc‐based mixed‐integer linear programming (MILP) models to formulate the TFSP problem. To the best of the authors' knowledge, no MILP arc‐based model has been published for the problem that does not need any preprocess before solving. Computational results of solving models on the datasets showed that the first model could obtain a feasible solution with a maximum 0.05% gap up to 48 yards instance. The second model also could find a solution with a small gap compared to the optimal solution in a reasonable time for instances up to 128 yards. Also, the proposed models were compared to the best methods in the literature, and their superiority was shown. |
|---|---|
| AbstractList | Railcars are known as the heart of the freight rail transportation industry. Hence, any improvements in their operations can lead to sharp reductions in various operating costs. One of the most critical operations on railcars is blocking and routing their transportation. Railway companies face continuous challenged about what blocks should be formed to carry shipments across different origin–destination pairs (O–D pairs) and reclassify them in intermediate yards to minimize transportation reclassification costs. In addition, it is necessary to determine train service between O–D pairs and the number of trains. Along with the shipment routing plans, this problem is called train formation and shipment path optimization (TFSP). In TFSP, some substructure and rail network operational constraints should be considered, including link capacity, classification capacity, the number of sorting tracks, and path length. This paper presents two arc‐based mixed‐integer linear programming (MILP) models to formulate the TFSP problem. To the best of the authors' knowledge, no MILP arc‐based model has been published for the problem that does not need any preprocess before solving. Computational results of solving models on the datasets showed that the first model could obtain a feasible solution with a maximum 0.05% gap up to 48 yards instance. The second model also could find a solution with a small gap compared to the optimal solution in a reasonable time for instances up to 128 yards. Also, the proposed models were compared to the best methods in the literature, and their superiority was shown. |
| Author | Moslehi, Ghasem Dardashti, Vahid Reisi‐Nafchi, Mohammad Arsalani, Pouria |
| Author_xml | – sequence: 1 givenname: Pouria surname: Arsalani fullname: Arsalani, Pouria organization: Isfahan University of Technology – sequence: 2 givenname: Mohammad orcidid: 0000-0003-1680-3644 surname: Reisi‐Nafchi fullname: Reisi‐Nafchi, Mohammad email: reisi.m@iut.ac.ir organization: Isfahan University of Technology – sequence: 3 givenname: Vahid surname: Dardashti fullname: Dardashti, Vahid organization: CIRRELT – sequence: 4 givenname: Ghasem surname: Moslehi fullname: Moslehi, Ghasem organization: Isfahan University of Technology |
| BookMark | eNp1kL1OwzAUhS1UJNrCwBtYYmJI65-kSUZUlR-pgqXMkRtft65iOziuSpl4BJ6RJyFpOyGYLPl859x7zwD1rLOA0DUlI0oIG1sII8Yo52eoT0meRoTwtIf6rZZFnMTJBRo0zYYQShOa9VFY7By2sMNGv4P8_vzSNsAKPK69W3lhjLYrbJyEqsHKeRzWgA-IFwEkDl5o2wlGBO0sFlbiZq1rAzbgWoQ1dnXQRn8c5TZ0WYG5ROdKVA1cnd4her2fLaaP0fzl4Wl6N49KxlIeMUJllgvKU5XnEx4nKi5zFkMsZCa6v5xNJkLJmIKSmSwFI8tSJpNcqTKhlPIhujnmtnPfttCEYuO23rYjC5Zm7f0xz0hLjY9U6V3TeFBFqcNh3-66qqCk6Kot2mqLQ7Wt4_aXo_baCL__kz2l73QF-__B4nm2ODp-AERWjew |
| CitedBy_id | crossref_primary_10_3390_machines12070482 crossref_primary_10_1016_j_jrtpm_2024_100495 crossref_primary_10_1007_s12351_024_00845_6 crossref_primary_10_1515_comp_2025_0037 crossref_primary_10_1016_j_jobe_2024_110579 |
| Cites_doi | 10.1016/j.apm.2012.05.016 10.1016/0968-090X(95)00019-F 10.1016/0191-2615(80)90037-5 10.1007/978-1-4899-7571-3 10.1016/j.apm.2017.11.006 10.1287/trsc.26.4.263 10.1016/j.jrtpm.2016.09.002 10.1016/j.trb.2011.12.003 10.1016/0191-2615(89)90042-8 10.1023/A:1018906301828 10.1016/j.apm.2020.12.031 10.1016/j.trb.2018.10.003 10.1002/net.22029 10.1002/atr.1183 10.1061/(ASCE)TE.1943-5436.0000447 10.1016/j.trc.2017.10.006 10.1287/trsc.2013.0486 10.1016/j.cie.2010.09.014 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley Periodicals LLC. 2023 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2022 Wiley Periodicals LLC. – notice: 2023 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/net.22133 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1097-0037 |
| EndPage | 377 |
| ExternalDocumentID | 10_1002_net_22133 NET22133 |
| Genre | researchArticle |
| GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 6TU 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RXW SAMSI SUPJJ TAE TN5 TUS TWZ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 ZCA ZY4 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2273-201d89a137f996345f4c924e4ad8a7f999266afd41efd8dca20bcd569ffc51113 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000896862700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-3045 |
| IngestDate | Fri Jul 25 12:11:03 EDT 2025 Sat Nov 29 04:29:58 EST 2025 Tue Nov 18 22:08:45 EST 2025 Wed Jan 22 16:23:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2273-201d89a137f996345f4c924e4ad8a7f999266afd41efd8dca20bcd569ffc51113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1680-3644 |
| PQID | 2785184380 |
| PQPubID | 1016413 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2785184380 crossref_citationtrail_10_1002_net_22133 crossref_primary_10_1002_net_22133 wiley_primary_10_1002_net_22133_NET22133 |
| PublicationCentury | 2000 |
| PublicationDate | April 2023 2023-04-00 20230401 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: New York |
| PublicationTitle | Networks |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2016; 6 1980; 14 2013; 37 1989; 23 2021; 78 2013; 49 2018; 118 2011; 60 2013; 139 1998 2014; 48 2015 1992; 26 2014 1996; 4 2018; 56 2021; 93 2012; 46 2018; 86 1998; 78 e_1_2_9_20_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_21_1 e_1_2_9_13_1 e_1_2_9_12_1 Ahuja R. K. (e_1_2_9_22_1) 2014 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 Jin H. (e_1_2_9_2_1) 1998 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 |
| References_xml | – volume: 4 start-page: 33 year: 1996 end-page: 49 article-title: Optimization of railway operations using neural networks publication-title: Transp. Res. Part C Emerg. Technol. – volume: 48 start-page: 402 year: 2014 end-page: 416 article-title: Solving train formation problem using simulated annealing algorithm in a simplex framework publication-title: J. Adv. Transp. – volume: 23 start-page: 415 year: 1989 end-page: 431 article-title: Designing optimal railroad operating plans: Lagrangian relaxation and heuristic approaches publication-title: Transp. Res. B Methodol. – volume: 86 start-page: 124 year: 2018 end-page: 146 article-title: Solving the train formation plan network problem of the single block train and two‐block train using a hybrid algorithm of genetic algorithm and tabu se publication-title: Transp. Res. C – volume: 14 start-page: 115 year: 1980 end-page: 120 article-title: A model for the blocking of trains publication-title: Transp. Res. B Methodol. – volume: 78 start-page: 523 year: 2021 end-page: 542 article-title: A mathematical formulation and an LP‐based neighborhood search matheuristic solution method for the integrated train blocking and shipment path problem publication-title: Networks – volume: 139 start-page: 216 year: 2013 end-page: 222 article-title: Tabu search algorithm for the railroad blocking problem publication-title: J. Transp. Eng. – volume: 93 start-page: 811 year: 2021 end-page: 830 article-title: Integrating traffic routing optimization and train formation plan using simulated annealing algorithm publication-title: Appl. Math. Model. – volume: 60 start-page: 34 year: 2011 end-page: 42 article-title: Multi‐route railroad blocking problem by improved model and ant colony algorithm in real world publication-title: Comput. Ind. Eng. – volume: 118 start-page: 1 year: 2018 end-page: 30 article-title: One‐block train formation in large‐scale railway networks: An exact model and a tree‐based decomposition algorithm publication-title: Transp. Res. B Methodol. – volume: 6 start-page: 218 year: 2016 end-page: 236 article-title: Comprehensive optimization of the one‐block and two‐block train formation plan publication-title: J. Rail Transp. Plan. Manag. – start-page: 54 year: 2014 end-page: 101 article-title: Network models in railroad planning and scheduling publication-title: INFORMS TutORials in Operations Research – volume: 46 start-page: 649 year: 2012 end-page: 667 article-title: Optimizing the freight train connection service network of a large‐scale rail system publication-title: Transp. Res. B Methodol. – volume: 49 start-page: 130 year: 2013 end-page: 148 article-title: Single‐car routing in rail freight transport publication-title: Transp. Sci. – volume: 78 start-page: 51 year: 1998 end-page: 69 article-title: An application of genetic and tabu searches to the freight railroad operating plan problem publication-title: Ann. Oper. Res. – volume: 37 start-page: 2300 year: 2013 end-page: 2307 article-title: An improved local branching approach for train formation planning publication-title: Appl. Math. Model. – volume: 56 start-page: 304 year: 2018 end-page: 324 article-title: Modeling formulation and a new heuristic for the railroad blocking problem publication-title: Appl. Math. Model. – year: 2015 – year: 1998 – volume: 26 start-page: 263 year: 1992 end-page: 279 article-title: Designing railroad operating plans: A dual adjustment method for implementing Lagrangian relaxation publication-title: Transp. Sci. – ident: e_1_2_9_16_1 doi: 10.1016/j.apm.2012.05.016 – ident: e_1_2_9_14_1 doi: 10.1016/0968-090X(95)00019-F – ident: e_1_2_9_11_1 doi: 10.1016/0191-2615(80)90037-5 – start-page: 54 year: 2014 ident: e_1_2_9_22_1 article-title: Network models in railroad planning and scheduling publication-title: INFORMS TutORials in Operations Research – ident: e_1_2_9_4_1 doi: 10.1007/978-1-4899-7571-3 – ident: e_1_2_9_20_1 doi: 10.1016/j.apm.2017.11.006 – ident: e_1_2_9_12_1 doi: 10.1287/trsc.26.4.263 – ident: e_1_2_9_5_1 doi: 10.1016/j.jrtpm.2016.09.002 – ident: e_1_2_9_8_1 – ident: e_1_2_9_10_1 doi: 10.1016/j.trb.2011.12.003 – ident: e_1_2_9_6_1 doi: 10.1016/0191-2615(89)90042-8 – ident: e_1_2_9_13_1 doi: 10.1023/A:1018906301828 – ident: e_1_2_9_9_1 doi: 10.1016/j.apm.2020.12.031 – ident: e_1_2_9_18_1 doi: 10.1016/j.trb.2018.10.003 – ident: e_1_2_9_7_1 doi: 10.1002/net.22029 – volume-title: Designing robust railroad blocking plans year: 1998 ident: e_1_2_9_2_1 – ident: e_1_2_9_17_1 doi: 10.1002/atr.1183 – ident: e_1_2_9_3_1 doi: 10.1061/(ASCE)TE.1943-5436.0000447 – ident: e_1_2_9_19_1 doi: 10.1016/j.trc.2017.10.006 – ident: e_1_2_9_21_1 doi: 10.1287/trsc.2013.0486 – ident: e_1_2_9_15_1 doi: 10.1016/j.cie.2010.09.014 |
| SSID | ssj0011518 |
| Score | 2.3542337 |
| Snippet | Railcars are known as the heart of the freight rail transportation industry. Hence, any improvements in their operations can lead to sharp reductions in... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 359 |
| SubjectTerms | Freight railways Integer programming Linear programming mixed‐integer linear programming Operating costs Optimization Rail transportation railcar blocking Railcars Railroad cars Railway tracks railway transportation Route planning shipment path routing Shipments single‐block train train formation Trains Transportation industry |
| Title | Two new mixed‐integer programming models for the integrated train formation and shipment path optimization problem |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnet.22133 https://www.proquest.com/docview/2785184380 |
| Volume | 81 |
| WOSCitedRecordID | wos000896862700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0037 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011518 issn: 0028-3045 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqlUU8eIlNNq8NnkRbPJQi0kJvYbO7gYJNpYmPoz_B3-gvcTYvKygI3kKYvHZnMt_s4_sAzmyLR640uaGU6xkOi10j4L6HcUX9mFuRKQoS14E_HLLJJLhrwGW1F6bgh6gH3HRk5P9rHeA8SrtLpKEqu6AUS6wVaFH0W6cJrZv7_nhQTyJgMmMVCbOeEKyIhUzarS_-no6-MOYyUs1TTX_zXy-5BRslwiRXhUtsQ0MlO7C-xDu4C9noZU4QT5PZ9FXJj7f3nDRCLUi5WmuGViTXyEkJglqCIJHUvBKS5LISpN72SHgiiV70pQcaiZY4JnP8Ec3KHZ6k1KzZg3G_N7q-NUr5BUNQBDUYP5ZkAbdsP8aiyHbc2BFYrSmHS8b1uQCTO4-lY6lYMik4NSMhXS-IY-FqBft9aCbzRB0A4QjyqDBdKiRzqOlFypKuwloSHYTbgd2G86oXQlFyk-tveQgLVmUaYkOGeUO24bQ2fSwIOX4y6lRdGZYxmYbUR3TJNMM-Pi7vtN9vEA57o_zg8O-mR7CmteiLZT0daGaLJ3UMq-I5m6aLk9I5PwH8YuqZ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6gH32K16iIevMQmm2we4EW0pWIsIi30Fra7GyjYVtr6OPoT_I3-EmfzsoKC4C2EyWt3JvPNPr4P4MS2eJ9JkxtKMddw_JgZAfdcjCvqxdzqmyIlcQ29dtvv9YK7Epzne2FSfohiwE1HRvK_1gGuB6Trc6yhanZGKdZYC1Bx0I1YGSpX981uWMwiYDbzcxZmPSOYMwuZtF5c_D0ffYHMeaia5Jrm2v_ech1WM4xJLlKn2ICSGm3Cyhzz4BbMOi9jgoiaDAevSn68vSe0EWpCsvVaQ7QiiUrOlCCsJQgTScEsIUkiLEGKjY-EjyTRy770UCPRIsdkjL-iYbbHk2SqNdvQbTY6ly0jE2AwBEVYgxFkST_glu3FWBbZDosdgfWacrj0uT4XYHrnsXQsFUtfCk7NvpDMDeJYMK1hvwPl0XikdoFwhHlUmIwK6TvUdPvKkkxhNYkuwu3ArsJp3g2RyNjJ9bc8RCmvMo2wIaOkIatwXJg-ppQcPxnV8r6MsqicRtRDfOlrjn18XNJrv98gajc6ycHe302PYKnVuQ2j8Lp9sw_LWpk-XeRTg_Js8qQOYFE8zwbTyWHmqZ8CeO6J |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH7UKqIHd3F3EA9eYpNJJgt4EbUoliBSwVuYzgIFm0obl6M_wd_oL_FNNisoCN5CeFlmefO-N8v3ARy6Du8xaXNLKeZbXqiZFfHAR7-igeZOzxYFiWsniOPw_j66acBJdRam4IeoJ9yMZ-TjtXFw9Sh1a4I1VGXHlGKONQXTHot8dMvp89v2XadeRcBoFlYszGZFsGIWsmmrfvh7PPoCmZNQNY817cX__eUSLJQYk5wWnWIZGipdgfkJ5sFVyLovQ4KImgz6r0p-vL3ntBFqRMr9WgO0IrlKzpggrCUIE0nNLCFJLixB6oOPhKeSmG1fZqqRGJFjMsShaFCe8SSlas0a3LUvumeXVinAYAmKsAY9yJFhxB030JgWuR7TnsB8TXlchtzcizC8cy09R2kZSsGp3ROS-ZHWghkN-3VopsNUbQDhCPOosBkVMvSo7feUI5nCbBK7CHcjdxOOqmZIRMlObsrykBS8yjTBikzyityEg9r0saDk-Mlop2rLpPTKcUIDxJeh4djHz-Wt9vsLkviim19s_d10H2ZvzttJ5yq-3oY5I0xf7PHZgWY2elK7MCOes_54tFd21E-ob-4E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+new+mixed%E2%80%90integer+programming+models+for+the+integrated+train+formation+and+shipment+path+optimization+problem&rft.jtitle=Networks&rft.au=Arsalani%2C+Pouria&rft.au=Reisi%E2%80%90Nafchi%2C+Mohammad&rft.au=Dardashti%2C+Vahid&rft.au=Moslehi%2C+Ghasem&rft.date=2023-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0028-3045&rft.eissn=1097-0037&rft.volume=81&rft.issue=3&rft.spage=359&rft.epage=377&rft_id=info:doi/10.1002%2Fnet.22133&rft.externalDBID=10.1002%252Fnet.22133&rft.externalDocID=NET22133 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3045&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3045&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3045&client=summon |