Quadric Conformal Geometric Algebra of $${\mathbb {R}}^{9,6}$$ R 9 , 6
Geometric Algebra can be understood as a set of tools to represent, construct and transform geometric objects. Some Geometric Algebras like the well-studied Conformal Geometric Algebra constructs lines, circles, planes, and spheres from control points just by using the outer product. There exist som...
Gespeichert in:
| Veröffentlicht in: | Advances in applied Clifford algebras Jg. 28; H. 2; S. 1 - 16 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Heidelberg
Springer Nature B.V
01.05.2018
|
| Schlagworte: | |
| ISSN: | 0188-7009, 1661-4909 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Geometric Algebra can be understood as a set of tools to represent, construct and transform geometric objects. Some Geometric Algebras like the well-studied Conformal Geometric Algebra constructs lines, circles, planes, and spheres from control points just by using the outer product. There exist some Geometric Algebras to handle more complex objects such as quadric surfaces; however in this case, none of them is known to build quadric surfaces from control points. This paper presents a novel Geometric Algebra framework, the Geometric Algebra of R9,6, to deal with quadric surfaces where an arbitrary quadric surface is constructed by the mere wedge of nine points. The proposed framework enables us not only to intuitively represent quadric surfaces but also to construct objects using Conformal Geometric Algebra. Our proposed framework also provides the computation of the intersection of quadric surfaces, the normal vector, and the tangent plane of a quadric surface. |
|---|---|
| AbstractList | Geometric Algebra can be understood as a set of tools to represent, construct and transform geometric objects. Some Geometric Algebras like the well-studied Conformal Geometric Algebra constructs lines, circles, planes, and spheres from control points just by using the outer product. There exist some Geometric Algebras to handle more complex objects such as quadric surfaces; however in this case, none of them is known to build quadric surfaces from control points. This paper presents a novel Geometric Algebra framework, the Geometric Algebra of R9,6, to deal with quadric surfaces where an arbitrary quadric surface is constructed by the mere wedge of nine points. The proposed framework enables us not only to intuitively represent quadric surfaces but also to construct objects using Conformal Geometric Algebra. Our proposed framework also provides the computation of the intersection of quadric surfaces, the normal vector, and the tangent plane of a quadric surface. |
| ArticleNumber | 35 |
| Author | Breuils, Stéphane Sugimoto, Akihiro Nozick, Vincent Hitzer, Eckhard |
| Author_xml | – sequence: 1 givenname: Stéphane orcidid: 0000-0002-8636-4977 surname: Breuils fullname: Breuils, Stéphane – sequence: 2 givenname: Vincent surname: Nozick fullname: Nozick, Vincent – sequence: 3 givenname: Akihiro surname: Sugimoto fullname: Sugimoto, Akihiro – sequence: 4 givenname: Eckhard surname: Hitzer fullname: Hitzer, Eckhard |
| BookMark | eNp9kMFKAzEQhoNUsK0-gLeAe2x0kt3NJsdSbBUKYtGbGJJtolt2NzXZHqT03d1STx6cy8DM98_AN0KD1rcWoWsKtxSguIvQFydABQGRU0LP0JByTkkmQQ7QsF8IUgDICzSKcQOQ8TQVQzR_3ul1qEo8863zodE1Xljf2O44m9Yf1gSNvcNJsn9rdPdpDN6vDof3vZzwQ5LgFZZ4gvklOne6jvbqt4_R6_z-ZfZAlk-Lx9l0SUrGCkpYYUpNweVZalNpbcmELWQmc2EMt7ywLnPaMe1AWFP2qExdthYCMpZLrU06Rjenu9vgv3Y2dmrjd6HtXyoGVOYspynvqeJElcHHGKxTZdXprvJtF3RVKwrqKE2dpKnejTpKU7RP0j_JbagaHb7_yfwADIpt8A |
| CitedBy_id | crossref_primary_10_1007_s00006_019_0987_7 crossref_primary_10_1007_s00006_019_0974_z crossref_primary_10_3390_math12142272 crossref_primary_10_1007_s00006_021_01196_7 crossref_primary_10_1007_s00006_024_01356_5 crossref_primary_10_1007_s00006_019_0964_1 crossref_primary_10_1007_s00006_021_01117_8 crossref_primary_10_1109_TRO_2023_3277282 crossref_primary_10_1007_s00006_022_01249_5 crossref_primary_10_1007_s00006_019_1016_6 |
| Cites_doi | 10.1007/s00006-015-0625-y 10.1201/b18273 10.1007/s00006-014-0442-8 10.1063/1.4972658 10.1007/s00006-017-0784-0 10.1007/978-1-84628-997-2 10.1007/s00006-017-0770-6 10.1007/s00006-017-0798-7 10.1007/s00006-016-0697-3 10.1145/3095140.3097284 10.1002/mma.4560 10.1017/CBO9780511807497 10.1002/mma.4597 10.1007/s00006-014-0459-z 10.1007/s00006-009-0160-9 |
| ContentType | Journal Article |
| Copyright | Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00006-018-0851-1 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1661-4909 |
| EndPage | 16 |
| ExternalDocumentID | 10_1007_s00006_018_0851_1 |
| GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6J9 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K7- KDC KOV KWQ LAS LLZTM M2P M4Y M7S MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J P2P P9T PF0 PHGZM PHGZT PQGLB PT4 PTHSS QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYZH AESKC JQ2 |
| ID | FETCH-LOGICAL-c2271-27bca10f543e39eec28e794958bb6e67ef4faf2af08ebcca193f4d8804259aab3 |
| IEDL.DBID | RSV |
| ISSN | 0188-7009 |
| IngestDate | Wed Sep 17 23:55:37 EDT 2025 Sat Nov 29 04:37:42 EST 2025 Tue Nov 18 22:12:02 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2271-27bca10f543e39eec28e794958bb6e67ef4faf2af08ebcca193f4d8804259aab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8636-4977 |
| OpenAccessLink | https://hal.science/hal-01767230 |
| PQID | 2019525136 |
| PQPubID | 2043796 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2019525136 crossref_citationtrail_10_1007_s00006_018_0851_1 crossref_primary_10_1007_s00006_018_0851_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-5-00 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-5-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationTitle | Advances in applied Clifford algebras |
| PublicationYear | 2018 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | L Dorst (851_CR4) 2016; 26 E Hitzer (851_CR9) 2009; 19 L Dorst (851_CR5) 2007 K Kanatani (851_CR11) 2015 J Vince (851_CR17) 2008 851_CR6 D Juan (851_CR10) 2017; 27 851_CR7 W Luo (851_CR13) 2017; 27 C Perwass (851_CR16) 2009 S Breuils (851_CR2) 2017; 27 C Doran (851_CR3) 2003 J Zamora-Esquivel (851_CR18) 2014; 24 RB Easter (851_CR8) 2017; 27 851_CR1 D Klawitter (851_CR12) 2014; 24 851_CR15 851_CR14 |
| References_xml | – volume: 26 start-page: 1137 issue: 4 year: 2016 ident: 851_CR4 publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-015-0625-y – volume-title: Understanding geometric algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics year: 2015 ident: 851_CR11 doi: 10.1201/b18273 – volume: 24 start-page: 493 issue: 2 year: 2014 ident: 851_CR18 publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-014-0442-8 – ident: 851_CR6 doi: 10.1063/1.4972658 – volume: 27 start-page: 2175 issue: 3 year: 2017 ident: 851_CR8 publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-017-0784-0 – volume-title: Geometric algebra for computer graphics year: 2008 ident: 851_CR17 doi: 10.1007/978-1-84628-997-2 – volume: 27 start-page: 2133 issue: 3 year: 2017 ident: 851_CR2 publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-017-0770-6 – ident: 851_CR15 – volume: 27 start-page: 3039 issue: 4 year: 2017 ident: 851_CR10 publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-017-0798-7 – volume: 27 start-page: 1977 issue: 3 year: 2017 ident: 851_CR13 publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-016-0697-3 – ident: 851_CR1 doi: 10.1145/3095140.3097284 – ident: 851_CR14 doi: 10.1002/mma.4560 – volume-title: Geometric algebra for physicists year: 2003 ident: 851_CR3 doi: 10.1017/CBO9780511807497 – ident: 851_CR7 doi: 10.1002/mma.4597 – volume: 24 start-page: 713 issue: 3 year: 2014 ident: 851_CR12 publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-014-0459-z – volume: 19 start-page: 339 issue: 2 year: 2009 ident: 851_CR9 publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/s00006-009-0160-9 – volume-title: Geometric algebra for computer science, an object-oriented approach to geometry year: 2007 ident: 851_CR5 – volume-title: Geometric algebra with applications in engineering, Geometry and Computing year: 2009 ident: 851_CR16 |
| SSID | ssj0046338 |
| Score | 2.0686429 |
| Snippet | Geometric Algebra can be understood as a set of tools to represent, construct and transform geometric objects. Some Geometric Algebras like the well-studied... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1 |
| SubjectTerms | Algebra Circles (geometry) Construction planning |
| Title | Quadric Conformal Geometric Algebra of $${\mathbb {R}}^{9,6}$$ R 9 , 6 |
| URI | https://www.proquest.com/docview/2019525136 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary Collection customDbUrl: eissn: 1661-4909 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0046338 issn: 0188-7009 databaseCode: RSV dateStart: 19970601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4iHvTgW3xUyWFP0mD2lc0ei1g9aNH6oAdxSXYnKtRW-vBS-t-d7KNSFKH3TAgzOzPfMDvfEOKEmEY1j1ImAAIWCMiYzpTHFHelSIELXlDmX0etlux04tsfnu3fHfyznOjIVr2WSTl0mS11XFHMat0_VVE3EH6-tRqPSRYhcKg6mH_dMJ-D5kNwnleaGwu9aJOsl_CRNgp7b5El6G2TtZsZ9-pwhzTvxirD6EbtMJ9FpF16Cf0PuzkrpY3uq-0U076hjjN5Rpk3remkPZ2-TOK6mDoObdOY1qnYJY_Ni4fzK1ZuS2Cp50Uu8yKdKpebMPDBjwFSTwI6WxxKrQWICExglPGU4RI02g2RmwkydF_02lgp7e-R5V6_B_uEChNKABTSASZ8I3UcG4lAB7AaVNy4B4RX-kvSkkrcbrToJjMS5FxFCaoosSpKUOR0JvJZ8Gj8d7hWGSUpXWqYeHa0EdGYLw4XueuIrHq5pew_ijWyPBqM4ZispF-j9-HgJP-GvgGBiLlt |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quadric+Conformal+Geometric+Algebra+of+%24%24%7B%5Cmathbb+%7BR%7D%7D%5E%7B9%2C6%7D%24%24+R+9+%2C+6&rft.jtitle=Advances+in+applied+Clifford+algebras&rft.au=Breuils%2C+St%C3%A9phane&rft.au=Nozick%2C+Vincent&rft.au=Sugimoto%2C+Akihiro&rft.au=Hitzer%2C+Eckhard&rft.date=2018-05-01&rft.issn=0188-7009&rft.eissn=1661-4909&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs00006-018-0851-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00006_018_0851_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0188-7009&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0188-7009&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0188-7009&client=summon |