Quadric Conformal Geometric Algebra of $${\mathbb {R}}^{9,6}$$ R 9 , 6

Geometric Algebra can be understood as a set of tools to represent, construct and transform geometric objects. Some Geometric Algebras like the well-studied Conformal Geometric Algebra constructs lines, circles, planes, and spheres from control points just by using the outer product. There exist som...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras Jg. 28; H. 2; S. 1 - 16
Hauptverfasser: Breuils, Stéphane, Nozick, Vincent, Sugimoto, Akihiro, Hitzer, Eckhard
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Heidelberg Springer Nature B.V 01.05.2018
Schlagworte:
ISSN:0188-7009, 1661-4909
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Geometric Algebra can be understood as a set of tools to represent, construct and transform geometric objects. Some Geometric Algebras like the well-studied Conformal Geometric Algebra constructs lines, circles, planes, and spheres from control points just by using the outer product. There exist some Geometric Algebras to handle more complex objects such as quadric surfaces; however in this case, none of them is known to build quadric surfaces from control points. This paper presents a novel Geometric Algebra framework, the Geometric Algebra of R9,6, to deal with quadric surfaces where an arbitrary quadric surface is constructed by the mere wedge of nine points. The proposed framework enables us not only to intuitively represent quadric surfaces but also to construct objects using Conformal Geometric Algebra. Our proposed framework also provides the computation of the intersection of quadric surfaces, the normal vector, and the tangent plane of a quadric surface.
AbstractList Geometric Algebra can be understood as a set of tools to represent, construct and transform geometric objects. Some Geometric Algebras like the well-studied Conformal Geometric Algebra constructs lines, circles, planes, and spheres from control points just by using the outer product. There exist some Geometric Algebras to handle more complex objects such as quadric surfaces; however in this case, none of them is known to build quadric surfaces from control points. This paper presents a novel Geometric Algebra framework, the Geometric Algebra of R9,6, to deal with quadric surfaces where an arbitrary quadric surface is constructed by the mere wedge of nine points. The proposed framework enables us not only to intuitively represent quadric surfaces but also to construct objects using Conformal Geometric Algebra. Our proposed framework also provides the computation of the intersection of quadric surfaces, the normal vector, and the tangent plane of a quadric surface.
ArticleNumber 35
Author Breuils, Stéphane
Sugimoto, Akihiro
Nozick, Vincent
Hitzer, Eckhard
Author_xml – sequence: 1
  givenname: Stéphane
  orcidid: 0000-0002-8636-4977
  surname: Breuils
  fullname: Breuils, Stéphane
– sequence: 2
  givenname: Vincent
  surname: Nozick
  fullname: Nozick, Vincent
– sequence: 3
  givenname: Akihiro
  surname: Sugimoto
  fullname: Sugimoto, Akihiro
– sequence: 4
  givenname: Eckhard
  surname: Hitzer
  fullname: Hitzer, Eckhard
BookMark eNp9kMFKAzEQhoNUsK0-gLeAe2x0kt3NJsdSbBUKYtGbGJJtolt2NzXZHqT03d1STx6cy8DM98_AN0KD1rcWoWsKtxSguIvQFydABQGRU0LP0JByTkkmQQ7QsF8IUgDICzSKcQOQ8TQVQzR_3ul1qEo8863zodE1Xljf2O44m9Yf1gSNvcNJsn9rdPdpDN6vDof3vZzwQ5LgFZZ4gvklOne6jvbqt4_R6_z-ZfZAlk-Lx9l0SUrGCkpYYUpNweVZalNpbcmELWQmc2EMt7ywLnPaMe1AWFP2qExdthYCMpZLrU06Rjenu9vgv3Y2dmrjd6HtXyoGVOYspynvqeJElcHHGKxTZdXprvJtF3RVKwrqKE2dpKnejTpKU7RP0j_JbagaHb7_yfwADIpt8A
CitedBy_id crossref_primary_10_1007_s00006_019_0987_7
crossref_primary_10_1007_s00006_019_0974_z
crossref_primary_10_3390_math12142272
crossref_primary_10_1007_s00006_021_01196_7
crossref_primary_10_1007_s00006_024_01356_5
crossref_primary_10_1007_s00006_019_0964_1
crossref_primary_10_1007_s00006_021_01117_8
crossref_primary_10_1109_TRO_2023_3277282
crossref_primary_10_1007_s00006_022_01249_5
crossref_primary_10_1007_s00006_019_1016_6
Cites_doi 10.1007/s00006-015-0625-y
10.1201/b18273
10.1007/s00006-014-0442-8
10.1063/1.4972658
10.1007/s00006-017-0784-0
10.1007/978-1-84628-997-2
10.1007/s00006-017-0770-6
10.1007/s00006-017-0798-7
10.1007/s00006-016-0697-3
10.1145/3095140.3097284
10.1002/mma.4560
10.1017/CBO9780511807497
10.1002/mma.4597
10.1007/s00006-014-0459-z
10.1007/s00006-009-0160-9
ContentType Journal Article
Copyright Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00006-018-0851-1
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1661-4909
EndPage 16
ExternalDocumentID 10_1007_s00006_018_0851_1
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6J9
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K7-
KDC
KOV
KWQ
LAS
LLZTM
M2P
M4Y
M7S
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9T
PF0
PHGZM
PHGZT
PQGLB
PT4
PTHSS
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYZH
AESKC
JQ2
ID FETCH-LOGICAL-c2271-27bca10f543e39eec28e794958bb6e67ef4faf2af08ebcca193f4d8804259aab3
IEDL.DBID RSV
ISSN 0188-7009
IngestDate Wed Sep 17 23:55:37 EDT 2025
Sat Nov 29 04:37:42 EST 2025
Tue Nov 18 22:12:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2271-27bca10f543e39eec28e794958bb6e67ef4faf2af08ebcca193f4d8804259aab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8636-4977
OpenAccessLink https://hal.science/hal-01767230
PQID 2019525136
PQPubID 2043796
PageCount 16
ParticipantIDs proquest_journals_2019525136
crossref_citationtrail_10_1007_s00006_018_0851_1
crossref_primary_10_1007_s00006_018_0851_1
PublicationCentury 2000
PublicationDate 2018-5-00
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-5-00
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Advances in applied Clifford algebras
PublicationYear 2018
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References L Dorst (851_CR4) 2016; 26
E Hitzer (851_CR9) 2009; 19
L Dorst (851_CR5) 2007
K Kanatani (851_CR11) 2015
J Vince (851_CR17) 2008
851_CR6
D Juan (851_CR10) 2017; 27
851_CR7
W Luo (851_CR13) 2017; 27
C Perwass (851_CR16) 2009
S Breuils (851_CR2) 2017; 27
C Doran (851_CR3) 2003
J Zamora-Esquivel (851_CR18) 2014; 24
RB Easter (851_CR8) 2017; 27
851_CR1
D Klawitter (851_CR12) 2014; 24
851_CR15
851_CR14
References_xml – volume: 26
  start-page: 1137
  issue: 4
  year: 2016
  ident: 851_CR4
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/s00006-015-0625-y
– volume-title: Understanding geometric algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics
  year: 2015
  ident: 851_CR11
  doi: 10.1201/b18273
– volume: 24
  start-page: 493
  issue: 2
  year: 2014
  ident: 851_CR18
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/s00006-014-0442-8
– ident: 851_CR6
  doi: 10.1063/1.4972658
– volume: 27
  start-page: 2175
  issue: 3
  year: 2017
  ident: 851_CR8
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/s00006-017-0784-0
– volume-title: Geometric algebra for computer graphics
  year: 2008
  ident: 851_CR17
  doi: 10.1007/978-1-84628-997-2
– volume: 27
  start-page: 2133
  issue: 3
  year: 2017
  ident: 851_CR2
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/s00006-017-0770-6
– ident: 851_CR15
– volume: 27
  start-page: 3039
  issue: 4
  year: 2017
  ident: 851_CR10
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/s00006-017-0798-7
– volume: 27
  start-page: 1977
  issue: 3
  year: 2017
  ident: 851_CR13
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/s00006-016-0697-3
– ident: 851_CR1
  doi: 10.1145/3095140.3097284
– ident: 851_CR14
  doi: 10.1002/mma.4560
– volume-title: Geometric algebra for physicists
  year: 2003
  ident: 851_CR3
  doi: 10.1017/CBO9780511807497
– ident: 851_CR7
  doi: 10.1002/mma.4597
– volume: 24
  start-page: 713
  issue: 3
  year: 2014
  ident: 851_CR12
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/s00006-014-0459-z
– volume: 19
  start-page: 339
  issue: 2
  year: 2009
  ident: 851_CR9
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/s00006-009-0160-9
– volume-title: Geometric algebra for computer science, an object-oriented approach to geometry
  year: 2007
  ident: 851_CR5
– volume-title: Geometric algebra with applications in engineering, Geometry and Computing
  year: 2009
  ident: 851_CR16
SSID ssj0046338
Score 2.0686429
Snippet Geometric Algebra can be understood as a set of tools to represent, construct and transform geometric objects. Some Geometric Algebras like the well-studied...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Algebra
Circles (geometry)
Construction planning
Title Quadric Conformal Geometric Algebra of $${\mathbb {R}}^{9,6}$$ R 9 , 6
URI https://www.proquest.com/docview/2019525136
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary Collection
  customDbUrl:
  eissn: 1661-4909
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046338
  issn: 0188-7009
  databaseCode: RSV
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4iHvTgW3xUyWFP0mD2lc0ei1g9aNH6oAdxSXYnKtRW-vBS-t-d7KNSFKH3TAgzOzPfMDvfEOKEmEY1j1ImAAIWCMiYzpTHFHelSIELXlDmX0etlux04tsfnu3fHfyznOjIVr2WSTl0mS11XFHMat0_VVE3EH6-tRqPSRYhcKg6mH_dMJ-D5kNwnleaGwu9aJOsl_CRNgp7b5El6G2TtZsZ9-pwhzTvxirD6EbtMJ9FpF16Cf0PuzkrpY3uq-0U076hjjN5Rpk3remkPZ2-TOK6mDoObdOY1qnYJY_Ni4fzK1ZuS2Cp50Uu8yKdKpebMPDBjwFSTwI6WxxKrQWICExglPGU4RI02g2RmwkydF_02lgp7e-R5V6_B_uEChNKABTSASZ8I3UcG4lAB7AaVNy4B4RX-kvSkkrcbrToJjMS5FxFCaoosSpKUOR0JvJZ8Gj8d7hWGSUpXWqYeHa0EdGYLw4XueuIrHq5pew_ijWyPBqM4ZispF-j9-HgJP-GvgGBiLlt
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quadric+Conformal+Geometric+Algebra+of+%24%24%7B%5Cmathbb+%7BR%7D%7D%5E%7B9%2C6%7D%24%24+R+9+%2C+6&rft.jtitle=Advances+in+applied+Clifford+algebras&rft.au=Breuils%2C+St%C3%A9phane&rft.au=Nozick%2C+Vincent&rft.au=Sugimoto%2C+Akihiro&rft.au=Hitzer%2C+Eckhard&rft.date=2018-05-01&rft.issn=0188-7009&rft.eissn=1661-4909&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs00006-018-0851-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00006_018_0851_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0188-7009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0188-7009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0188-7009&client=summon