PSHead: 3D Head Reconstruction from a Single Image with Diffusion Prior and Self‐Enhancement

Text‐to‐3D avatar generation has shown that diffusion models trained on general objects can capture head structure. However, image‐to‐3D avatar that creates a high‐fidelity 3D avatar from a single image remains challenging due to additional constraints. It requires recovering a detailed 3D represent...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum
Hlavní autoři: Yang, Jing, Wu, Tianhan, Fogarty, Kyle, Zhong, Fangcheng, Oztireli, Cengiz
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.10.2025
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Text‐to‐3D avatar generation has shown that diffusion models trained on general objects can capture head structure. However, image‐to‐3D avatar that creates a high‐fidelity 3D avatar from a single image remains challenging due to additional constraints. It requires recovering a detailed 3D representation from limited cues while capturing complex facial features like wrinkles and hair. To address these challenges, we introduce PSHead, a coarse‐to‐fine framework guided by both object and face priors, to produce a Gaussian‐based 3D avatar for a single frontal‐view reference image. In the coarse stage, we create an initial 3D representation by applying diffusion models trained for general object generation, using Score Distillation Sampling losses over novel views. This approach marks the first integration of text‐to‐image, image‐to‐image, and text‐to‐video diffusion priors, with insights into each module's contribution to learning a 3D representation. In the fine stage, we refine this representation with pretrained face generation models, which denoise rendered images and use these refined outputs as supervision to further improve 3D detail fidelity. Leveraging the versatility of 2D objects prior, PSHead is robust across various different face framings. Our method outperforms existing approaches on in‐the‐wild images, proving its robustness and ability to capture intricate details without the need for extensive 3D supervision.
AbstractList Text‐to‐3D avatar generation has shown that diffusion models trained on general objects can capture head structure. However, image‐to‐3D avatar that creates a high‐fidelity 3D avatar from a single image remains challenging due to additional constraints. It requires recovering a detailed 3D representation from limited cues while capturing complex facial features like wrinkles and hair. To address these challenges, we introduce PSHead, a coarse‐to‐fine framework guided by both object and face priors, to produce a Gaussian‐based 3D avatar for a single frontal‐view reference image. In the coarse stage, we create an initial 3D representation by applying diffusion models trained for general object generation, using Score Distillation Sampling losses over novel views. This approach marks the first integration of text‐to‐image, image‐to‐image, and text‐to‐video diffusion priors, with insights into each module's contribution to learning a 3D representation. In the fine stage, we refine this representation with pretrained face generation models, which denoise rendered images and use these refined outputs as supervision to further improve 3D detail fidelity. Leveraging the versatility of 2D objects prior, PSHead is robust across various different face framings. Our method outperforms existing approaches on in‐the‐wild images, proving its robustness and ability to capture intricate details without the need for extensive 3D supervision.
Author Yang, Jing
Zhong, Fangcheng
Wu, Tianhan
Fogarty, Kyle
Oztireli, Cengiz
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-8794-4842
  surname: Yang
  fullname: Yang, Jing
  organization: Department of Computer Science and Technology University of Cambridge Cambridge UK
– sequence: 2
  givenname: Tianhan
  orcidid: 0000-0002-3807-5839
  surname: Wu
  fullname: Wu, Tianhan
  organization: Department of Computer Science and Technology University of Cambridge Cambridge UK
– sequence: 3
  givenname: Kyle
  orcidid: 0000-0002-1888-4006
  surname: Fogarty
  fullname: Fogarty, Kyle
  organization: Department of Computer Science and Technology University of Cambridge Cambridge UK
– sequence: 4
  givenname: Fangcheng
  orcidid: 0000-0001-5964-5282
  surname: Zhong
  fullname: Zhong, Fangcheng
  organization: Department of Computer Science and Technology University of Cambridge Cambridge UK
– sequence: 5
  givenname: Cengiz
  orcidid: 0000-0002-4700-2236
  surname: Oztireli
  fullname: Oztireli, Cengiz
  organization: Department of Computer Science and Technology University of Cambridge Cambridge UK
BookMark eNotkL9OwzAYxC1UJNLCwBt4ZUj5nNhJzIb6h1aqREVgJXLtz21Q4iA7FWLjEXhGnoSWcsPdDacbfkMycJ1DQq4ZjNlBt3prxzkkuTwjEeNZHheZkAMSATv0HIS4IMMQ3gCA55mIyOu6XKAydzSd0mOhT6g7F3q_133dOWp911JFy9ptG6TLVm2RftT9jk5ra_fhOFn7uvNUOUNLbOzP1_fM7ZTT2KLrL8m5VU3Aq_8ckZf57HmyiFePD8vJ_SrWSZL1sS1QciOSDaJQzECSKuAZF9pyDrlm2mwkbmQhCwHSSjCJLLhlaFV68hG5Of1q34Xg0Vbvvm6V_6wYVEcw1QFM9Qcm_QVeI1kN
Cites_doi 10.1109/CVPR.2019.00482
10.1109/CVPR52688.2022.01042
10.1109/CVPR52729.2023.00816
10.1145/3641519.3657512
10.1109/CVPR52688.2022.01565
10.1007/978-3-031-73226-3_19
10.1109/CVPR.2017.19
10.1109/3DV66043.2025.00092
10.1109/CVPR52733.2024.00097
10.1109/CVPR52733.2024.02022
10.1109/CVPR52729.2023.00041
10.1109/CVPR42600.2020.00525
10.1109/CVPR52733.2024.00437
10.1145/3592433
10.1109/ICCV51070.2023.02086
10.1109/CVPR52733.2024.00058
10.1109/CVPR52733.2024.00647
10.1109/WACV45572.2020.9093363
10.1145/3610548.3618153
10.1109/CVPR52729.2023.02155
10.1109/ICCV51070.2023.00853
10.1145/3641519.3657499
10.1109/3DV62453.2024.00150
10.1109/CVPR52729.2023.02007
10.1109/3DV62453.2024.00152
10.1007/978-3-030-01264-9_47
10.1145/3588432.3591503
10.1109/ICCV51070.2023.02033
10.1145/3658162
10.1109/CVPR52729.2023.00443
10.1109/CVPR52733.2024.00635
10.1007/978-3-031-72992-8_15
10.1109/CVPR.2018.00068
10.1109/CVPR52729.2023.01211
10.1007/978-3-319-46454-1_34
10.1109/CVPR52729.2023.02017
10.1145/3592460
10.1109/ICCV.2015.425
10.1109/3DV62453.2024.00151
10.1609/aaai.v39i3.32350
10.1145/3641519.3657428
10.1109/CVPR52733.2024.00986
10.1145/3687937
10.1007/978-3-030-58452-8_24
10.1007/978-3-031-73411-3_9
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1111/cgf.70279
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
ExternalDocumentID 10_1111_cgf_70279
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CITATION
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O8X
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
ID FETCH-LOGICAL-c226t-f8e94d52bee5a1d023a04645cf4407c1cdb9eb9898509f90d2984f1efa3f1efa3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001584839800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sat Nov 29 07:22:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c226t-f8e94d52bee5a1d023a04645cf4407c1cdb9eb9898509f90d2984f1efa3f1efa3
ORCID 0000-0001-5964-5282
0000-0002-3807-5839
0000-0002-4700-2236
0000-0002-8794-4842
0000-0002-1888-4006
OpenAccessLink https://doi.org/10.1111/cgf.70279
ParticipantIDs crossref_primary_10_1111_cgf_70279
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer graphics forum
PublicationYear 2025
References e_1_2_10_23_2
e_1_2_10_44_2
e_1_2_10_21_2
e_1_2_10_42_2
e_1_2_10_40_2
Bhattarai A. R. (e_1_2_10_5_2) 2024
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_53_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_6_2
e_1_2_10_14_2
Li P. (e_1_2_10_29_2) 2024; 37
e_1_2_10_35_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
Kolotouros N. (e_1_2_10_24_2) 2024
e_1_2_10_32_2
e_1_2_10_30_2
Yariv L. (e_1_2_10_58_2) 2020; 33
Yu Z. (e_1_2_10_59_2) 2024; 43
Saharia C. (e_1_2_10_49_2) 2022
e_1_2_10_61_2
e_1_2_10_63_2
e_1_2_10_48_2
e_1_2_10_65_2
e_1_2_10_25_2
e_1_2_10_46_2
e_1_2_10_67_2
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_68_2
e_1_2_10_20_2
e_1_2_10_43_2
e_1_2_10_41_2
Han X. (e_1_2_10_17_2) 2024
Trevithick A. (e_1_2_10_51_2) 2023
e_1_2_10_19_2
e_1_2_10_3_2
e_1_2_10_52_2
e_1_2_10_15_2
e_1_2_10_54_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_56_2
e_1_2_10_9_2
e_1_2_10_57_2
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_50_2
Müller T. (e_1_2_10_38_2) 2022
Wu Y. (e_1_2_10_55_2) 2024; 43
Li T. (e_1_2_10_27_2) 2017; 36
e_1_2_10_60_2
e_1_2_10_28_2
e_1_2_10_62_2
e_1_2_10_26_2
e_1_2_10_64_2
e_1_2_10_47_2
e_1_2_10_66_2
References_xml – ident: e_1_2_10_15_2
  doi: 10.1109/CVPR.2019.00482
– ident: e_1_2_10_44_2
  doi: 10.1109/CVPR52688.2022.01042
– ident: e_1_2_10_39_2
  doi: 10.1109/CVPR52729.2023.00816
– year: 2024
  ident: e_1_2_10_24_2
  article-title: Dreamhuman: Animatable 3 D avatars from text
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_9_2
– ident: e_1_2_10_35_2
  doi: 10.1145/3641519.3657512
– ident: e_1_2_10_8_2
  doi: 10.1109/CVPR52688.2022.01565
– year: 2024
  ident: e_1_2_10_17_2
  article-title: Headsculpt: Crafting 3D head avatars with text
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_28_2
  doi: 10.1007/978-3-031-73226-3_19
– ident: e_1_2_10_11_2
– year: 2022
  ident: e_1_2_10_38_2
  article-title: Instant neural graphics primitives with a multiresolution hash encoding
  publication-title: ACM Transactions on Graphics
– ident: e_1_2_10_32_2
  doi: 10.1109/CVPR.2017.19
– ident: e_1_2_10_42_2
– ident: e_1_2_10_66_2
  doi: 10.1109/3DV66043.2025.00092
– ident: e_1_2_10_6_2
  doi: 10.1109/CVPR52733.2024.00097
– ident: e_1_2_10_13_2
  doi: 10.1109/CVPR52733.2024.02022
– ident: e_1_2_10_50_2
– volume: 33
  start-page: 2492
  year: 2020
  ident: e_1_2_10_58_2
  article-title: Multiview neural surface reconstruction by disentangling geometry and appearance
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_60_2
  doi: 10.1109/CVPR52729.2023.00041
– ident: e_1_2_10_14_2
  doi: 10.1109/CVPR42600.2020.00525
– ident: e_1_2_10_19_2
  doi: 10.1109/CVPR52733.2024.00437
– ident: e_1_2_10_26_2
  doi: 10.1145/3592433
– ident: e_1_2_10_53_2
  doi: 10.1109/ICCV51070.2023.02086
– ident: e_1_2_10_56_2
– year: 2022
  ident: e_1_2_10_49_2
  article-title: Photorealistic text‐to‐image diffusion models with deep language understanding
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_18_2
  doi: 10.1109/CVPR52733.2024.00058
– ident: e_1_2_10_25_2
  doi: 10.1109/CVPR52733.2024.00647
– ident: e_1_2_10_33_2
– ident: e_1_2_10_52_2
– volume: 37
  start-page: 55975
  year: 2024
  ident: e_1_2_10_29_2
  article-title: Era3d: High‐resolution multiview diffusion using efficient row‐wise attention
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_48_2
  doi: 10.1109/WACV45572.2020.9093363
– ident: e_1_2_10_2_2
  doi: 10.1145/3610548.3618153
– ident: e_1_2_10_46_2
  doi: 10.1109/CVPR52729.2023.02155
– ident: e_1_2_10_34_2
  doi: 10.1109/ICCV51070.2023.00853
– ident: e_1_2_10_12_2
  doi: 10.1145/3641519.3657499
– ident: e_1_2_10_36_2
  doi: 10.1109/3DV62453.2024.00150
– ident: e_1_2_10_3_2
  doi: 10.1109/CVPR52729.2023.02007
– ident: e_1_2_10_22_2
  doi: 10.1109/3DV62453.2024.00152
– ident: e_1_2_10_41_2
  doi: 10.1007/978-3-030-01264-9_47
– ident: e_1_2_10_47_2
  doi: 10.1145/3588432.3591503
– ident: e_1_2_10_54_2
– ident: e_1_2_10_7_2
  doi: 10.1109/ICCV51070.2023.02033
– volume: 43
  start-page: 1
  issue: 4
  year: 2024
  ident: e_1_2_10_55_2
  article-title: Portrait3D: Text‐guided high‐quality 3D portrait generation using pyramid representation and GANs prior
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/3658162
– ident: e_1_2_10_57_2
  doi: 10.1109/CVPR52729.2023.00443
– ident: e_1_2_10_31_2
– ident: e_1_2_10_37_2
  doi: 10.1109/CVPR52733.2024.00635
– ident: e_1_2_10_23_2
  doi: 10.1007/978-3-031-72992-8_15
– ident: e_1_2_10_68_2
– ident: e_1_2_10_63_2
  doi: 10.1109/CVPR.2018.00068
– ident: e_1_2_10_65_2
  doi: 10.1109/CVPR52729.2023.01211
– volume: 36
  start-page: 194
  issue: 6
  year: 2017
  ident: e_1_2_10_27_2
  article-title: Learning a model of facial shape and expression from 4D scans
  publication-title: ACM Transactions on Graphics
– ident: e_1_2_10_61_2
– ident: e_1_2_10_45_2
– ident: e_1_2_10_4_2
  doi: 10.1007/978-3-319-46454-1_34
– ident: e_1_2_10_67_2
  doi: 10.1109/CVPR52729.2023.02017
– year: 2023
  ident: e_1_2_10_51_2
  article-title: Real‐time radiance fields for single‐image portrait view synthesis
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/3592460
– ident: e_1_2_10_30_2
  doi: 10.1109/ICCV.2015.425
– ident: e_1_2_10_62_2
  doi: 10.1109/3DV62453.2024.00151
– ident: e_1_2_10_20_2
  doi: 10.1609/aaai.v39i3.32350
– volume-title: WACV
  year: 2024
  ident: e_1_2_10_5_2
– ident: e_1_2_10_21_2
  doi: 10.1145/3641519.3657428
– ident: e_1_2_10_10_2
  doi: 10.1109/CVPR52733.2024.00986
– volume: 43
  start-page: 1
  issue: 6
  year: 2024
  ident: e_1_2_10_59_2
  article-title: Gaussian opacity fields: Efficient adaptive surface reconstruction in unbounded scenes
  publication-title: ACM Transactions on Graphics (ToG)
  doi: 10.1145/3687937
– ident: e_1_2_10_43_2
– ident: e_1_2_10_16_2
– ident: e_1_2_10_40_2
  doi: 10.1007/978-3-030-58452-8_24
– ident: e_1_2_10_64_2
  doi: 10.1007/978-3-031-73411-3_9
SSID ssj0004765
Score 2.446709
SecondaryResourceType online_first
Snippet Text‐to‐3D avatar generation has shown that diffusion models trained on general objects can capture head structure. However, image‐to‐3D avatar that creates a...
SourceID crossref
SourceType Index Database
Title PSHead: 3D Head Reconstruction from a Single Image with Diffusion Prior and Self‐Enhancement
WOSCitedRecordID wos001584839800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF4SO4f0UJqkJX2ylNyEgvWydnsrdYxbQjCxHUIOMavVrm1wZJNHSW_9Cf2N_SWd0a5WakMhPfSyCCGNZX3DzOzo228JOeBMhJIz6ausE_mxCrt-lnHh51GYqABKaFGyCc-O05MTdn7Oh5Zue1NuJ5AWBbu_5-v_CjWcA7Bx6ew_wO2Mwgk4BtBhBNhhfBTww9EAcYOZftTDVUa4_lCuaqFYs6JEeCNIWkvlfb5C1k7Zju0ttL7D7pk3vF5YcuVILbUjRBwVc3QSR5apFA7szhBeqX6Nss-1xAMGFNuS_lJlScwBd8ZRBFqsM-EM_o_hEXxbOo-7mFvacB8MgY9ZK7ZVESaO9Oa6lxCVUb7HJB8TcTFSs66RBf9LPJczfZjC_JnXSav6UP9HLnMMw2puA7dOy1s3STtME85apN077U-O68WzaTepBODx2az8FNK93O82ipZG9TF-Rp7aaQP9aODeIRuq2CVPGmKSe-TSAP-BRj2KB_R32CnCTgU1sNMSdoqwUwc7LWGnADtF2H9-_9EA_DmZ9I_Gnwa-3T3Dl1BS3_qaKR7nSZgplYggh9pMlJ-xpY5hEi8DmWdcZbh9KNSMmnfykLNYB0qLyIwvSKtYFWqf0DRUHSajWMB1cReCtuR5oEUqZAA2RfSSvK9ez3RtRFKmDwB49ZiLXpPt2nHekBa8I_WWbMmvt4ub63cWul_nG1wx
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSHead%3A+3D+Head+Reconstruction+from+a+Single+Image+with+Diffusion+Prior+and+Self%E2%80%90Enhancement&rft.jtitle=Computer+graphics+forum&rft.au=Yang%2C+Jing&rft.au=Wu%2C+Tianhan&rft.au=Fogarty%2C+Kyle&rft.au=Zhong%2C+Fangcheng&rft.date=2025-10-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111%2Fcgf.70279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_70279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon