An accelerated first-order regularized momentum descent ascent algorithm for stochastic nonconvex-concave minimax problems

Stochastic nonconvex minimax problems have attracted wide attention in machine learning, signal processing and many other fields in recent years. In this paper, we propose an accelerated first-order regularized momentum descent ascent algorithm (FORMDA) for solving stochastic nonconvex-concave minim...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 90; číslo 2; s. 557 - 582
Hlavní autoři: Zhang, Huiling, Xu, Zi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer Nature B.V 01.03.2025
Témata:
ISSN:0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Stochastic nonconvex minimax problems have attracted wide attention in machine learning, signal processing and many other fields in recent years. In this paper, we propose an accelerated first-order regularized momentum descent ascent algorithm (FORMDA) for solving stochastic nonconvex-concave minimax problems. The iteration complexity of the algorithm is proved to be O~(ε-6.5) to obtain an ε-stationary point, which achieves the best-known complexity bound for single-loop algorithms to solve the stochastic nonconvex-concave minimax problems under the stationarity of the objective function.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-024-00638-9