An accelerated first-order regularized momentum descent ascent algorithm for stochastic nonconvex-concave minimax problems

Stochastic nonconvex minimax problems have attracted wide attention in machine learning, signal processing and many other fields in recent years. In this paper, we propose an accelerated first-order regularized momentum descent ascent algorithm (FORMDA) for solving stochastic nonconvex-concave minim...

Full description

Saved in:
Bibliographic Details
Published in:Computational optimization and applications Vol. 90; no. 2; pp. 557 - 582
Main Authors: Zhang, Huiling, Xu, Zi
Format: Journal Article
Language:English
Published: New York Springer Nature B.V 01.03.2025
Subjects:
ISSN:0926-6003, 1573-2894
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Stochastic nonconvex minimax problems have attracted wide attention in machine learning, signal processing and many other fields in recent years. In this paper, we propose an accelerated first-order regularized momentum descent ascent algorithm (FORMDA) for solving stochastic nonconvex-concave minimax problems. The iteration complexity of the algorithm is proved to be O~(ε-6.5) to obtain an ε-stationary point, which achieves the best-known complexity bound for single-loop algorithms to solve the stochastic nonconvex-concave minimax problems under the stationarity of the objective function.
AbstractList Stochastic nonconvex minimax problems have attracted wide attention in machine learning, signal processing and many other fields in recent years. In this paper, we propose an accelerated first-order regularized momentum descent ascent algorithm (FORMDA) for solving stochastic nonconvex-concave minimax problems. The iteration complexity of the algorithm is proved to be O~(ε-6.5) to obtain an ε-stationary point, which achieves the best-known complexity bound for single-loop algorithms to solve the stochastic nonconvex-concave minimax problems under the stationarity of the objective function.
Author Zhang, Huiling
Xu, Zi
Author_xml – sequence: 1
  givenname: Huiling
  surname: Zhang
  fullname: Zhang, Huiling
– sequence: 2
  givenname: Zi
  orcidid: 0000-0003-0968-8027
  surname: Xu
  fullname: Xu, Zi
BookMark eNotkE9rAyEUxKWk0CTtF-hJ6NnWVXddjyH0HwR6ac_i6ttkw-6aqglpPn1tk9M8HsPM8JuhyehHQOi-oI8FpfIpFrSsFaFMEEorXhN1haZFKTlhtRITNKWKVaSilN-gWYxbSqmSnE3RaTFiYy30EEwCh9suxER8cBBwgPW-N6E75f_gBxjTfsAOos0XNhfp1z50aTPg1gcck7cbE1NncR5o_XiAI8lizQHw0I3dYI54F3zTwxBv0XVr-gh3F52jr5fnz-UbWX28vi8XK2IZqxIBKTijJSjRVLXiDmzNTSkb5UQluHKl407IRkgF1Ina2rYpRLY1oGRrpeNz9HDOzcXfe4hJb_0-jLlS80IyLlVZiuxiZ5cNPsYArd6FPDf86ILqP8b6zFhnxvqfsVb8F0y4dJc
Cites_doi 10.1007/s10898-022-01169-5
10.23919/ACC55779.2023.10156371
10.1109/ICASSP.2015.7178500
10.1137/S1052623403425629
10.1057/palgrave.jors.2600425
10.1137/22M1482238
10.1007/978-3-319-41589-5_14
10.1007/s10107-019-01420-0
10.1137/18M1213488
10.1007/s10107-017-1161-4
10.1137/20M1313222
10.1007/s10107-006-0034-z
10.1137/20M1337600
10.1080/10556788.2021.1895152
10.1287/ijoo.2022.0004
10.1007/s10107-022-01919-z
10.1137/21M1465470
10.1007/s10107-015-0861-x
10.1007/s10589-020-00237-4
10.1109/TSP.2020.2986363
10.1137/23M1568168
10.1109/TSP.2010.2055862
10.1007/s10107-004-0552-5
10.1109/TSP.2011.2169407
10.1137/14095697X
10.1609/aaai.v33i01.33014739
10.1007/s10107-022-01910-8
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Mar 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10589-024-00638-9
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-2894
EndPage 582
ExternalDocumentID 10_1007_s10589_024_00638_9
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
~8M
~EX
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c226t-e743205e94b6893dec83a57b9d46439d5d3d47b479e0d48ccfb143debe97fc7d3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001386528600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Wed Nov 26 14:52:55 EST 2025
Sat Nov 29 08:15:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c226t-e743205e94b6893dec83a57b9d46439d5d3d47b479e0d48ccfb143debe97fc7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0968-8027
PQID 3172379554
PQPubID 30811
PageCount 26
ParticipantIDs proquest_journals_3172379554
crossref_primary_10_1007_s10589_024_00638_9
PublicationCentury 2000
PublicationDate 2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computational optimization and applications
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References J Zhang (638_CR56) 2020; 33
T Tieleman (638_CR48) 2012; 4
S Lee (638_CR30) 2021; 34
V Tominin (638_CR47) 2023; 15
L Luo (638_CR26) 2020; 33
638_CR46
D Ostrovskii (638_CR39) 2021; 31
638_CR43
638_CR41
W Pan (638_CR40) 2021; 78
A Nemirovski (638_CR34) 2004; 15
638_CR49
638_CR2
638_CR1
638_CR51
J Yang (638_CR54) 2020; 33
RI Bot (638_CR5) 2023; 33
638_CR13
G Lan (638_CR22) 2016; 155
Y Nesterov (638_CR35) 2005; 103
H Rafique (638_CR42) 2022; 37
638_CR57
638_CR11
638_CR55
Y Chen (638_CR7) 2017; 165
638_CR10
Y Ouyang (638_CR38) 2021; 185
Z Xu (638_CR52) 2024; 34
638_CR19
638_CR18
638_CR16
Z Xu (638_CR53) 2023; 24
X Zhang (638_CR58) 2022; 35
H Lin (638_CR24) 2018; 18
638_CR25
638_CR23
S Lu (638_CR29) 2020; 68
638_CR21
C Song (638_CR44) 2020; 33
638_CR4
638_CR6
638_CR8
Z Xu (638_CR50) 2023; 201
B Grimmer (638_CR12) 2023; 201
638_CR28
638_CR9
638_CR27
W Kong (638_CR20) 2021; 31
R Giordano (638_CR14) 2018; 19
J Shen (638_CR45) 2022
G Mateos (638_CR32) 2010; 58
DP Bertsekas (638_CR3) 1997; 48
Y Ouyang (638_CR37) 2015; 8
EY Hamedani (638_CR17) 2021; 31
638_CR33
F Huang (638_CR15) 2022; 23
638_CR31
Y Nesterov (638_CR36) 2007; 109
References_xml – year: 2022
  ident: 638_CR45
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-022-01169-5
– ident: 638_CR49
– ident: 638_CR1
– ident: 638_CR4
  doi: 10.23919/ACC55779.2023.10156371
– ident: 638_CR25
  doi: 10.1109/ICASSP.2015.7178500
– volume: 15
  start-page: 433
  issue: 2
  year: 2023
  ident: 638_CR47
  publication-title: Computer
– volume: 15
  start-page: 229
  issue: 1
  year: 2004
  ident: 638_CR34
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403425629
– ident: 638_CR16
– ident: 638_CR31
– volume: 48
  start-page: 334
  issue: 3
  year: 1997
  ident: 638_CR3
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2600425
– ident: 638_CR19
  doi: 10.1137/22M1482238
– ident: 638_CR23
– ident: 638_CR13
  doi: 10.1007/978-3-319-41589-5_14
– volume: 34
  start-page: 22588
  year: 2021
  ident: 638_CR30
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 185
  start-page: 1
  issue: 1
  year: 2021
  ident: 638_CR38
  publication-title: Math. Progr.
  doi: 10.1007/s10107-019-01420-0
– volume: 31
  start-page: 1299
  issue: 2
  year: 2021
  ident: 638_CR17
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1213488
– volume: 165
  start-page: 113
  issue: 1
  year: 2017
  ident: 638_CR7
  publication-title: Math. Progr.
  doi: 10.1007/s10107-017-1161-4
– volume: 31
  start-page: 2558
  issue: 4
  year: 2021
  ident: 638_CR20
  publication-title: SIAM J. Optim.
  doi: 10.1137/20M1313222
– volume: 18
  start-page: 1
  issue: 212
  year: 2018
  ident: 638_CR24
  publication-title: J. Mach. Learn. Res.
– ident: 638_CR27
– ident: 638_CR2
– volume: 19
  start-page: 1
  issue: 51
  year: 2018
  ident: 638_CR14
  publication-title: J. Mach. Learn. Res.
– volume: 109
  start-page: 319
  issue: 2
  year: 2007
  ident: 638_CR36
  publication-title: Math. Progr.
  doi: 10.1007/s10107-006-0034-z
– volume: 31
  start-page: 2508
  issue: 4
  year: 2021
  ident: 638_CR39
  publication-title: SIAM J. Optim.
  doi: 10.1137/20M1337600
– volume: 37
  start-page: 1087
  issue: 3
  year: 2022
  ident: 638_CR42
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2021.1895152
– ident: 638_CR6
– ident: 638_CR51
– volume: 24
  start-page: 1
  issue: 313
  year: 2023
  ident: 638_CR53
  publication-title: J. Mach. Learn. Res.
– volume: 35
  start-page: 21668
  year: 2022
  ident: 638_CR58
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 638_CR18
  doi: 10.1287/ijoo.2022.0004
– ident: 638_CR55
– volume: 201
  start-page: 635
  year: 2023
  ident: 638_CR50
  publication-title: Math. Progr.
  doi: 10.1007/s10107-022-01919-z
– ident: 638_CR43
– ident: 638_CR28
– volume: 33
  start-page: 1884
  issue: 3
  year: 2023
  ident: 638_CR5
  publication-title: SIAM J. Optim.
  doi: 10.1137/21M1465470
– volume: 155
  start-page: 511
  issue: 1–2
  year: 2016
  ident: 638_CR22
  publication-title: Math. Progr.
  doi: 10.1007/s10107-015-0861-x
– volume: 78
  start-page: 287
  issue: 1
  year: 2021
  ident: 638_CR40
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00237-4
– ident: 638_CR10
– ident: 638_CR33
– volume: 33
  start-page: 20566
  year: 2020
  ident: 638_CR26
  publication-title: NeurIPS
– volume: 33
  start-page: 14303
  year: 2020
  ident: 638_CR44
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 33
  start-page: 1153
  year: 2020
  ident: 638_CR54
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 68
  start-page: 3676
  year: 2020
  ident: 638_CR29
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2986363
– volume: 34
  start-page: 1879
  issue: 2
  year: 2024
  ident: 638_CR52
  publication-title: SIAM J. Optim.
  doi: 10.1137/23M1568168
– ident: 638_CR21
– ident: 638_CR46
– volume: 4
  start-page: 26
  issue: 2
  year: 2012
  ident: 638_CR48
  publication-title: COURSERA Neural Netw. Mach. Learn.
– volume: 58
  start-page: 5262
  issue: 10
  year: 2010
  ident: 638_CR32
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2055862
– volume: 103
  start-page: 127
  year: 2005
  ident: 638_CR35
  publication-title: Math. Progr.
  doi: 10.1007/s10107-004-0552-5
– ident: 638_CR11
– volume: 23
  start-page: 1
  year: 2022
  ident: 638_CR15
  publication-title: J. Mach. Learn. Res.
– ident: 638_CR9
  doi: 10.1109/TSP.2011.2169407
– ident: 638_CR8
– volume: 8
  start-page: 644
  issue: 1
  year: 2015
  ident: 638_CR37
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/14095697X
– ident: 638_CR41
  doi: 10.1609/aaai.v33i01.33014739
– ident: 638_CR57
– volume: 33
  start-page: 7377
  year: 2020
  ident: 638_CR56
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 201
  start-page: 373
  issue: 1–2
  year: 2023
  ident: 638_CR12
  publication-title: Math. Progr.
  doi: 10.1007/s10107-022-01910-8
SSID ssj0009732
Score 2.398695
Snippet Stochastic nonconvex minimax problems have attracted wide attention in machine learning, signal processing and many other fields in recent years. In this...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 557
SubjectTerms Algorithms
Complexity
Machine learning
Methods
Minimax technique
Momentum
Optimization
Random variables
Signal processing
Title An accelerated first-order regularized momentum descent ascent algorithm for stochastic nonconvex-concave minimax problems
URI https://www.proquest.com/docview/3172379554
Volume 90
WOSCitedRecordID wos001386528600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDGB704G9xOiUHbxro0rRpjkMcHmSIv9it5FddwW7SdWPsr_cl65gDPewU6CEt77V9n5C87xehG6psSIOMk5jxCBYomXA2L4Ykyu0acqZC5TP9xPv9ZDAQzw109-8Ovmtyi9yxHsqIr6_Edet1YursCl5eP9YKu9y7kQWCxgSqeFh3yPw9xWYV2vwJ-8rSO9jumQ7Rfk2QuLtM-RFq2NEx2vulK3iCFt0RllpDRXFCEAZnOTAe8SqbuPTm82W-gOuFk1-opgU2S1EnLOvh63Nc5tWwwIC0GPBQD6XTc8aj8cgfU58TGLScWeykSQo5x7UxzeQUvfce3u4fSW2yQDSQV0UsIAQNIiuYioFdjNVJKCOuhGEOVkxkQsO4YlzYwLBE60wBYhnIveCZ5iY8Q024uT1HmFsuOlpmNJGGGQZ5hrWUUUmgIqeBSFvodhX09HuppZGuVZNdRFOIaOojmooWaq_yktbf1SQF2qEhF8BAF1tNdol2qTPu9YfH2qhZlVN7hXb0rMon5bV_kX4AMEXCCQ
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accelerated+first-order+regularized+momentum+descent+ascent+algorithm+for+stochastic+nonconvex-concave+minimax+problems&rft.jtitle=Computational+optimization+and+applications&rft.au=Zhang%2C+Huiling&rft.au=Xu%2C+Zi&rft.date=2025-03-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=90&rft.issue=2&rft.spage=557&rft.epage=582&rft_id=info:doi/10.1007%2Fs10589-024-00638-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_024_00638_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon