Efficient parallel algorithm for finding strongly connected components based on granulation strategy
Strongly connected components (SCCs) are a significant subgraph structure in digraphs. In the previous work, an algorithm based on rough set theory (RST) called KGRSCC was proposed, which can compute SCCs with high efficiency. Notably, KGRSCC utilized a granulation strategy, which was designed based...
Gespeichert in:
| Veröffentlicht in: | Knowledge and information systems Jg. 67; H. 3; S. 2855 - 2879 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer Nature B.V
01.03.2025
|
| Schlagworte: | |
| ISSN: | 0219-1377, 0219-3116 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Strongly connected components (SCCs) are a significant subgraph structure in digraphs. In the previous work, an algorithm based on rough set theory (RST) called KGRSCC was proposed, which can compute SCCs with high efficiency. Notably, KGRSCC utilized a granulation strategy, which was designed based on SCC correlations between vertices. These SCC correlations are confined to the situations that R-related set or upper approximation set only contains one vertex. However, the situations of ’only one’ cannot fully deduce SCCs correlations, which may limit the computation efficiency of SCCs. In this paper, firstly, the graph concept of SCCs is further analyzed in the framework of RST, and then, four ’not only one’ SCC correlations between vertices can be concluded. Secondly, the four SCC correlations can be divided two classes: trivial and nontrivial. Then, two new granulation strategies are proposed based on the two classes of SCC correlations. They can granulate the vertex set to construct two types of vertex granules. Thirdly, with combination of two types of vertex granules, a parallel algorithm named P@KGS is proposed based on KGRSCC. Finally, experimental results show that the P@KGS algorithm performs higher computational efficiency than compared algorithms. |
|---|---|
| AbstractList | Strongly connected components (SCCs) are a significant subgraph structure in digraphs. In the previous work, an algorithm based on rough set theory (RST) called KGRSCC was proposed, which can compute SCCs with high efficiency. Notably, KGRSCC utilized a granulation strategy, which was designed based on SCC correlations between vertices. These SCC correlations are confined to the situations that R-related set or upper approximation set only contains one vertex. However, the situations of ’only one’ cannot fully deduce SCCs correlations, which may limit the computation efficiency of SCCs. In this paper, firstly, the graph concept of SCCs is further analyzed in the framework of RST, and then, four ’not only one’ SCC correlations between vertices can be concluded. Secondly, the four SCC correlations can be divided two classes: trivial and nontrivial. Then, two new granulation strategies are proposed based on the two classes of SCC correlations. They can granulate the vertex set to construct two types of vertex granules. Thirdly, with combination of two types of vertex granules, a parallel algorithm named P@KGS is proposed based on KGRSCC. Finally, experimental results show that the P@KGS algorithm performs higher computational efficiency than compared algorithms. |
| Author | Xu, Taihua He, Huixing Yang, Jie Yang, Xibei Cui, Yun Song, Jingjing |
| Author_xml | – sequence: 1 givenname: Taihua surname: Xu fullname: Xu, Taihua – sequence: 2 givenname: Huixing surname: He fullname: He, Huixing – sequence: 3 givenname: Xibei surname: Yang fullname: Yang, Xibei – sequence: 4 givenname: Jie surname: Yang fullname: Yang, Jie – sequence: 5 givenname: Jingjing surname: Song fullname: Song, Jingjing – sequence: 6 givenname: Yun surname: Cui fullname: Cui, Yun |
| BookMark | eNotkEtLAzEQgINUsK3-AU8Bz6uZbDdhj1LqAwpe9ByyyWTdsk3WJKX03xttD8N8DPPiW5CZDx4JuQf2CIzJpwQMoKkYX5XgbVsdr8iccWirGkDMLgy1lDdkkdKOMZACYE7sxrnBDOgznXTU44gj1WMf4pC_99SFSN3g7eB7mnIMvh9P1ATv0WS0hfZT-cPnRDudSiF42kftD6POQ-EyojP2p1ty7fSY8O6Sl-TrZfO5fqu2H6_v6-dtZTgXuULmCrS8ESiMBY0dk6ZFgWCF09yaFXPYGWTorOyktZ11tjaN6VbgrBD1kjyc904x_BwwZbULh-jLSVWDaFoJEurSxc9dJoaUIjo1xWGv40kBU3821dmmKjbVv011rH8BDmVuSA |
| Cites_doi | 10.1109/TCYB.2020.2964011 10.1016/S0020-0190(00)00051-X 10.1016/j.knosys.2012.07.013 10.1145/2049662.2049663 10.1016/0898-1221(81)90008-0 10.1016/j.eswa.2023.121062 10.1016/j.ijar.2022.09.007 10.1016/j.ijar.2021.06.005 10.1016/j.inffus.2023.101954 10.1016/S0020-0255(02)00197-4 10.1137/0201010 10.1007/978-3-642-24372-1_27 10.1016/j.neucom.2015.06.090 10.1109/TFUZZ.2019.2955047 10.1016/j.ijar.2018.11.010 10.1016/j.asoc.2022.109928 10.1109/TKDE.2023.3237833 10.1109/TFUZZ.2024.3397697 10.1016/j.ins.2013.12.043 10.1016/S0888-613X(96)00071-0 10.1007/BF01001956 10.1016/j.knosys.2018.02.038 10.1007/s10489-023-05123-0 10.1007/978-1-84800-998-1 10.4018/IJISP.2020070106 10.1145/2851141.2851161 10.1109/TFUZZ.2020.3001670 10.1016/j.ijar.2023.109024 10.1016/j.ins.2014.02.070 10.1007/s41066-019-00204-3 10.2139/ssrn.4503454 10.1016/j.ijar.2019.12.001 10.1016/j.asoc.2021.107679 10.1016/j.ijar.2018.09.005 10.3934/mbe.2024116 10.1109/TSMCC.2012.2236648 10.1007/s10009-015-0382-1 10.1016/j.ipl.2015.08.010 10.1016/j.ins.2019.01.033 10.1007/s12559-022-10022-6 10.1093/logcom/exp003 10.1016/j.knosys.2018.11.034 10.1016/j.jocs.2023.101942 10.1016/S0020-0255(98)10006-3 |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. Mar 2025 |
| Copyright_xml | – notice: Copyright Springer Nature B.V. Mar 2025 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10115-024-02299-w |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 0219-3116 |
| EndPage | 2879 |
| ExternalDocumentID | 10_1007_s10115_024_02299_w |
| GroupedDBID | -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BENPR BGNMA BSONS CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAS LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I ROL RPX RSV S16 S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 7SC 8FD AESKC JQ2 L7M L~C L~D S1Z |
| ID | FETCH-LOGICAL-c226t-e0fc229256e6cd1aeb07c9e6e1d6fa2dc40febce0efd7b7ddbdfd3c5cb41fd663 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001383467500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0219-1377 |
| IngestDate | Sat Nov 08 14:44:19 EST 2025 Sat Nov 29 02:29:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c226t-e0fc229256e6cd1aeb07c9e6e1d6fa2dc40febce0efd7b7ddbdfd3c5cb41fd663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3165971713 |
| PQPubID | 43394 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_3165971713 crossref_primary_10_1007_s10115_024_02299_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Knowledge and information systems |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | 2299_CR4 W Du (2299_CR15) 2014; 271 T Xu (2299_CR7) 2018; 149 J Yao (2299_CR14) 2023; 162 Y Yao (2299_CR33) 1998; 111 Y Yao (2299_CR38) 2018; 103 Z Han (2299_CR41) 2022; 52 C Zhang (2299_CR28) 2020; 507 R Penmatsa (2299_CR34) 2020; 14 2299_CR9 Y Kang (2299_CR16) 2023; 133 J Yang (2299_CR23) 2024; 32 Timothy A. Davis (2299_CR46) 2011; 38 Q Zhang (2299_CR17) 2023; 100 K Zhang (2299_CR32) 2020; 29 H Fujita (2299_CR27) 2020; 28 2299_CR42 Q Zhang (2299_CR40) 2023; 35 2299_CR43 X Luan (2299_CR20) 2016; 174 C Gao (2299_CR21) 2022; 151 X Yang (2299_CR35) 2019; 105 Z Pawlak (2299_CR26) 2002; 147 R Guha (2299_CR29) 2023; 67 K Liu (2299_CR19) 2019; 165 F Cheng (2299_CR6) 2022; 49 S Zhang (2299_CR24) 2023; 53 Jinkun Chen (2299_CR44) 2013; 37 M Hua (2299_CR13) 2024; 21 X Yang (2299_CR18) 2019; 105 J Yao (2299_CR37) 2013; 43 R Tarjan (2299_CR2) 1972; 1 Y Cheng (2299_CR39) 2021; 6 2299_CR36 H Mao (2299_CR22) 2023; 234 J Barnat (2299_CR10) 2011; 21 A Campagner (2299_CR25) 2021; 136 Y Zhang (2299_CR31) 2014; 281 Z Pawlak (2299_CR12) 1982; 11 M Sharir (2299_CR3) 1981; 7 2299_CR30 T Xu (2299_CR5) 2020; 118 2299_CR11 G Lowe (2299_CR8) 2016; 18 Y.Y. Yao (2299_CR45) 1996; 15 D Pearce (2299_CR1) 2016; 116 |
| References_xml | – volume: 52 start-page: 666 issue: 1 year: 2022 ident: 2299_CR41 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.2964011 – ident: 2299_CR4 doi: 10.1016/S0020-0190(00)00051-X – volume: 37 start-page: 80 year: 2013 ident: 2299_CR44 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2012.07.013 – volume: 38 start-page: 1 issue: 1 year: 2011 ident: 2299_CR46 publication-title: ACM Trans Math Softw doi: 10.1145/2049662.2049663 – volume: 7 start-page: 67 issue: 1 year: 1981 ident: 2299_CR3 publication-title: Comput Math Appl doi: 10.1016/0898-1221(81)90008-0 – volume: 234 start-page: 121062 year: 2023 ident: 2299_CR22 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121062 – volume: 151 start-page: 85 year: 2022 ident: 2299_CR21 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2022.09.007 – volume: 136 start-page: 150 year: 2021 ident: 2299_CR25 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2021.06.005 – volume: 100 start-page: 101954 year: 2023 ident: 2299_CR17 publication-title: Inf Fusion doi: 10.1016/j.inffus.2023.101954 – volume: 147 start-page: 1 issue: 1 year: 2002 ident: 2299_CR26 publication-title: Inf Sci doi: 10.1016/S0020-0255(02)00197-4 – volume: 1 start-page: 146 issue: 2 year: 1972 ident: 2299_CR2 publication-title: SIAM J Comput doi: 10.1137/0201010 – ident: 2299_CR11 doi: 10.1007/978-3-642-24372-1_27 – volume: 174 start-page: 522 year: 2016 ident: 2299_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.090 – volume: 28 start-page: 831 issue: 5 year: 2020 ident: 2299_CR27 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2019.2955047 – volume: 105 start-page: 112 year: 2019 ident: 2299_CR18 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2018.11.010 – volume: 133 start-page: 109928 year: 2023 ident: 2299_CR16 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109928 – volume: 35 start-page: 9319 issue: 9 year: 2023 ident: 2299_CR40 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2023.3237833 – volume: 32 start-page: 4376 issue: 8 year: 2024 ident: 2299_CR23 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2024.3397697 – volume: 281 start-page: 586 year: 2014 ident: 2299_CR31 publication-title: Inf Sci doi: 10.1016/j.ins.2013.12.043 – volume: 15 start-page: 291 issue: 4 year: 1996 ident: 2299_CR45 publication-title: International Journal of Approximate Reasoning doi: 10.1016/S0888-613X(96)00071-0 – volume: 11 start-page: 341 issue: 5 year: 1982 ident: 2299_CR12 publication-title: Int J Comput Inf Sci doi: 10.1007/BF01001956 – volume: 49 start-page: 97 issue: 8 year: 2022 ident: 2299_CR6 publication-title: Comput Sci – volume: 105 start-page: 112 year: 2019 ident: 2299_CR35 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2018.11.010 – volume: 149 start-page: 88 year: 2018 ident: 2299_CR7 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.02.038 – volume: 53 start-page: 29781 issue: 24 year: 2023 ident: 2299_CR24 publication-title: Appl Intell doi: 10.1007/s10489-023-05123-0 – ident: 2299_CR43 doi: 10.1007/978-1-84800-998-1 – volume: 14 start-page: 95 year: 2020 ident: 2299_CR34 publication-title: Int J Inf Secur Priv doi: 10.4018/IJISP.2020070106 – ident: 2299_CR9 doi: 10.1145/2851141.2851161 – volume: 29 start-page: 2491 year: 2020 ident: 2299_CR32 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2020.3001670 – volume: 162 start-page: 109024 year: 2023 ident: 2299_CR14 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2023.109024 – volume: 271 start-page: 93 year: 2014 ident: 2299_CR15 publication-title: Inf Sci doi: 10.1016/j.ins.2014.02.070 – volume: 6 start-page: 3 issue: 1 year: 2021 ident: 2299_CR39 publication-title: Granular Comput doi: 10.1007/s41066-019-00204-3 – ident: 2299_CR42 doi: 10.2139/ssrn.4503454 – volume: 118 start-page: 64 year: 2020 ident: 2299_CR5 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2019.12.001 – ident: 2299_CR36 doi: 10.1016/j.asoc.2021.107679 – volume: 103 start-page: 107 year: 2018 ident: 2299_CR38 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2018.09.005 – volume: 21 start-page: 2626 issue: 2 year: 2024 ident: 2299_CR13 publication-title: Math Biosci Eng doi: 10.3934/mbe.2024116 – volume: 43 start-page: 1977 issue: 6 year: 2013 ident: 2299_CR37 publication-title: IEEE Trans Cybern doi: 10.1109/TSMCC.2012.2236648 – volume: 18 start-page: 129 issue: 2 year: 2016 ident: 2299_CR8 publication-title: Int J Softw Tools Technol Transfer doi: 10.1007/s10009-015-0382-1 – volume: 116 start-page: 47 issue: 1 year: 2016 ident: 2299_CR1 publication-title: Inf Process Lett doi: 10.1016/j.ipl.2015.08.010 – volume: 507 start-page: 665 year: 2020 ident: 2299_CR28 publication-title: Inf Sci doi: 10.1016/j.ins.2019.01.033 – ident: 2299_CR30 doi: 10.1007/s12559-022-10022-6 – volume: 21 start-page: 23 issue: 1 year: 2011 ident: 2299_CR10 publication-title: J Log Comput doi: 10.1093/logcom/exp003 – volume: 165 start-page: 282 year: 2019 ident: 2299_CR19 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.11.034 – volume: 67 start-page: 101942 year: 2023 ident: 2299_CR29 publication-title: J Comput Sci doi: 10.1016/j.jocs.2023.101942 – volume: 111 start-page: 239 issue: 1 year: 1998 ident: 2299_CR33 publication-title: Inf Sci doi: 10.1016/S0020-0255(98)10006-3 |
| SSID | ssj0017611 |
| Score | 2.3933425 |
| Snippet | Strongly connected components (SCCs) are a significant subgraph structure in digraphs. In the previous work, an algorithm based on rough set theory (RST)... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 2855 |
| SubjectTerms | Algorithms Apexes Computing time Correlation Efficiency Granular materials Granulation Graph theory Set theory Vertex sets |
| Title | Efficient parallel algorithm for finding strongly connected components based on granulation strategy |
| URI | https://www.proquest.com/docview/3165971713 |
| Volume | 67 |
| WOSCitedRecordID | wos001383467500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 0219-3116 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017611 issn: 0219-1377 databaseCode: RSV dateStart: 19990201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5VFQML5SkKBXlgA0txHk47ItSKqUK81C2K7XOoFFLUBqr-e85JCqoEQ4dImezo7Lv7Lj5_H8AV0h7QvkCuA2V4mEY-V1SIcBlqiUGsoj7WYhPxeNyfTAYPLbj59wTfXXIj1MIpl9BDwZMvKeAK6Tu5gsen158jA6rHK3k8ckHuaPSaGzJ_D7GZhTaDcJVZRp3tvmkf9hoEyW7rJT-AFhaH0FmrM7DGWY_ADCt2CEoqzPF75znmLM2z2Xxavr0zwqqsOq8uMrZwv8OzfMW063rRhEGZ6zSfFa7Jgrk8Z9isYBmltUbsiy1qUtvVMbyMhs9397zRVOCagFbJ0bP0MiCgg1IbkaLyYj1AicJIm_pGh55FpdFDa2IVG6OMNYGOtAqFNQRPTqBd0PynwJwrK4upRCqzfAz7VFkqQYgDUy_S0nbhem3j5KOmzkh-SZKdARMyYFIZMFl2obdehqRxo0USCEkFj6BC-myrwc5h13c6vVWvWA_a5fwTL2BHf5XTxfyy2jfftvS-uQ |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+parallel+algorithm+for+finding+strongly+connected+components+based+on+granulation+strategy&rft.jtitle=Knowledge+and+information+systems&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=67&rft.issue=3&rft.spage=2855&rft.epage=2879&rft_id=info:doi/10.1007%2Fs10115-024-02299-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon |