Inertial accelerated stochastic mirror descent for large-scale generalized tensor CP decomposition

The majority of classic tensor CP decomposition models are designed for squared loss, utilizing Euclidean distance as a local proximal term. However, the Euclidean distance is unsuitable for the generalized loss function applicable to diverse types of real-world data, such as integer and binary data...

Full description

Saved in:
Bibliographic Details
Published in:Computational optimization and applications Vol. 91; no. 1; pp. 201 - 233
Main Authors: Liu, Zehui, Wang, Qingsong, Cui, Chunfeng, Xia, Yong
Format: Journal Article
Language:English
Published: New York Springer Nature B.V 01.05.2025
Subjects:
ISSN:0926-6003, 1573-2894
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The majority of classic tensor CP decomposition models are designed for squared loss, utilizing Euclidean distance as a local proximal term. However, the Euclidean distance is unsuitable for the generalized loss function applicable to diverse types of real-world data, such as integer and binary data. Consequently, algorithms developed under the squared loss are not easily adaptable to handle these generalized losses, partially due to the absence of the gradient Lipschitz continuity. This paper explores generalized tensor CP decomposition, employing the Bregman distance as the proximal term and introducing an inertial accelerated block randomized stochastic mirror descent algorithm (iTableSMD). Within a broader multi-block variance reduction and inertial acceleration framework, we demonstrate the sublinear convergence rate for the subsequential sequence produced by the iTableSMD algorithm. We further show that iTableSMD requires at most O(ε-2) iterations in expectation to attain an ε-stationary point and establish the global convergence of the sequence. Numerical experiments on real datasets demonstrate that our proposed algorithm is efficient and achieves better performance than the existing state-of-the-art methods.
AbstractList The majority of classic tensor CP decomposition models are designed for squared loss, utilizing Euclidean distance as a local proximal term. However, the Euclidean distance is unsuitable for the generalized loss function applicable to diverse types of real-world data, such as integer and binary data. Consequently, algorithms developed under the squared loss are not easily adaptable to handle these generalized losses, partially due to the absence of the gradient Lipschitz continuity. This paper explores generalized tensor CP decomposition, employing the Bregman distance as the proximal term and introducing an inertial accelerated block randomized stochastic mirror descent algorithm (iTableSMD). Within a broader multi-block variance reduction and inertial acceleration framework, we demonstrate the sublinear convergence rate for the subsequential sequence produced by the iTableSMD algorithm. We further show that iTableSMD requires at most O(ε-2) iterations in expectation to attain an ε-stationary point and establish the global convergence of the sequence. Numerical experiments on real datasets demonstrate that our proposed algorithm is efficient and achieves better performance than the existing state-of-the-art methods.
Author Cui, Chunfeng
Wang, Qingsong
Xia, Yong
Liu, Zehui
Author_xml – sequence: 1
  givenname: Zehui
  surname: Liu
  fullname: Liu, Zehui
– sequence: 2
  givenname: Qingsong
  surname: Wang
  fullname: Wang, Qingsong
– sequence: 3
  givenname: Chunfeng
  orcidid: 0000-0002-6815-4060
  surname: Cui
  fullname: Cui, Chunfeng
– sequence: 4
  givenname: Yong
  surname: Xia
  fullname: Xia, Yong
BookMark eNotkE1LAzEQhoNUsK3-AU8LnqOTZD-yRylqCwU96DnkY7ambDc1SaH6691aT_PCPO8MPDMyGcKAhNwyuGcAzUNiUMmWAq8oQF1LerwgU1Y1gnLZlhMyhZbXtAYQV2SW0hYA2kbwKTGrAWP2ui-0tdhj1BldkXKwnzplb4udjzHEwmGyOOSiG3Ov4wZpsrrHYoNjX_f-Z2xlHNK4XryNtA27fUg--zBck8tO9wlv_uecfDw_vS-WdP36slo8rqnlvM7UoeQNdMJZjqZmxpamdVULQjhTApfcMeu6incaXVVWJYCVpimFka11GkHMyd357j6GrwOmrLbhEIfxpRJMQlMzYCeKnykbQ0oRO7WPfqfjt2KgTi7V2aUaXao_l-oofgEIEGtt
Cites_doi 10.1016/j.cam.2022.114948
10.1016/S0167-6377(02)00231-6
10.1137/07070111X
10.1137/19M1266265
10.1137/070704277
10.1137/20M1387213
10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
10.1037/h0054245
10.1007/s10618-013-0341-y
10.1007/BF02288739
10.1137/100808034
10.1287/ijoo.2018.0008
10.1007/s43670-022-00021-x
10.1109/TSP.2020.2982321
10.1109/TSP.2022.3163896
10.1002/sapm19287139
10.1137/18M1203626
10.1137/17M1138558
10.1007/s11336-008-9056-1
10.1137/17M1112303
10.1007/s40305-021-00368-3
10.1109/TSP.2013.2269903
10.1016/j.apnum.2023.03.014
10.1109/TSP.2020.2975353
10.1002/sapm192761164
10.1137/19M1298007
10.1609/aaai.v38i14.29485
10.1109/TSP.2016.2576427
10.1137/19M1271750
10.1137/130936361
10.1109/LSP.2019.2938663
10.1007/s10107-013-0701-9
10.1016/0041-5553(64)90137-5
10.1137/16M1099546
10.1007/978-3-030-39568-1
10.1080/10556788.2023.2189717
10.1137/18M1178244
10.1587/transfun.E92.A.708
10.1007/BF02310791
10.1109/TSP.2020.3010719
10.1109/TKDE.2019.2962031
10.1137/16M1064064
10.1002/cem.1236
10.1002/cem.1244
10.1137/120868323
10.1109/ACSSC.2017.8335432
10.1023/A:1017501703105
10.1137/120887795
10.1137/110859063
10.1287/moor.2016.0817
10.1137/21M140376X
ContentType Journal Article
Copyright Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: Copyright Springer Nature B.V. May 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10589-025-00668-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-2894
EndPage 233
ExternalDocumentID 10_1007_s10589_025_00668_x
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
~8M
~EX
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c226t-de8270f3dc2eb61bc4b9d59033db40282d1cdf52faed545400c8b743b89cdae03
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001423026400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Wed Nov 26 14:41:30 EST 2025
Sat Nov 29 08:04:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c226t-de8270f3dc2eb61bc4b9d59033db40282d1cdf52faed545400c8b743b89cdae03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6815-4060
PQID 3180761010
PQPubID 30811
PageCount 33
ParticipantIDs proquest_journals_3180761010
crossref_primary_10_1007_s10589_025_00668_x
PublicationCentury 2000
PublicationDate 2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computational optimization and applications
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 668_CR36
668_CR38
L-H Lim (668_CR4) 2009; 23
668_CR37
Q Wang (668_CR43) 2021; 17
BT Polyak (668_CR45) 1964; 4
L Sorber (668_CR14) 2013; 23
P Latafat (668_CR57) 2022; 32
A Defazio (668_CR58) 2014; 27
JD Carroll (668_CR6) 1970; 35
D Hong (668_CR16) 2020; 62
G Lan (668_CR55) 2020
B Ermiş (668_CR24) 2015; 29
X Fu (668_CR48) 2020; 68
TG Kolda (668_CR32) 2009; 51
T Pock (668_CR10) 2016; 9
YE Nesterov (668_CR60) 1983; 27
J Bolte (668_CR9) 2014; 146
Y Xu (668_CR7) 2013; 6
A-H Phan (668_CR12) 2013; 61
FL Hitchcock (668_CR27) 1927; 6
J Bolte (668_CR35) 2018; 28
H Lu (668_CR39) 2019; 1
668_CR5
668_CR61
668_CR3
668_CR63
668_CR62
668_CR21
668_CR20
M Vandecappelle (668_CR19) 2020; 68
M Teboulle (668_CR26) 2020; 13
Q Wang (668_CR64) 2023; 189
P Comon (668_CR13) 2009; 23
A Yeredor (668_CR51) 2019; 26
J Hertrich (668_CR50) 2022; 20
WP Krijnen (668_CR1) 2008; 73
Q Wang (668_CR44) 2023; 423
P Paatero (668_CR2) 2000; 14
EC Chi (668_CR25) 2012; 33
668_CR59
Q Wang (668_CR46) 2023; 38
H Lu (668_CR54) 2018; 28
K Huang (668_CR11) 2016; 64
A Beck (668_CR42) 2003; 31
W Pu (668_CR40) 2022; 70
D Han (668_CR8) 2022; 10
HH Bauschke (668_CR52) 2017; 42
A Nemirovski (668_CR56) 2009; 19
FL Hitchcock (668_CR28) 1928; 7
D Driggs (668_CR49) 2021; 14
TG Kolda (668_CR17) 2019; 2
C Battaglino (668_CR34) 2018; 39
RB Cattell (668_CR30) 1952; 49
A Cichocki (668_CR33) 2009; 92
668_CR47
A-H Phan (668_CR15) 2013; 34
CD Dang (668_CR41) 2015; 25
R Cattell (668_CR29) 1944; 9
M Wang (668_CR18) 2020; 21
L Cheng (668_CR23) 2020; 68
X Fu (668_CR22) 2021; 33
P Tseng (668_CR31) 2001; 109
MC Mukkamala (668_CR53) 2020; 2
References_xml – volume: 423
  year: 2023
  ident: 668_CR44
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2022.114948
– volume: 31
  start-page: 167
  issue: 3
  year: 2003
  ident: 668_CR42
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(02)00231-6
– ident: 668_CR3
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 668_CR32
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 2
  start-page: 1066
  year: 2019
  ident: 668_CR17
  publication-title: SIAM J. Math. Data Sci
  doi: 10.1137/19M1266265
– volume: 27
  start-page: 372
  issue: 2
  year: 1983
  ident: 668_CR60
  publication-title: Soviet Math. Dokl.
– volume: 19
  start-page: 1574
  issue: 4
  year: 2009
  ident: 668_CR56
  publication-title: SIAM J. Optim.
  doi: 10.1137/070704277
– volume: 27
  start-page: 1646
  year: 2014
  ident: 668_CR58
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: 1932
  issue: 4
  year: 2021
  ident: 668_CR49
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/20M1387213
– volume: 14
  start-page: 285
  issue: 3
  year: 2000
  ident: 668_CR2
  publication-title: J. Chemom.
  doi: 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
– volume: 49
  start-page: 499
  issue: 5
  year: 1952
  ident: 668_CR30
  publication-title: Psychol. Bull.
  doi: 10.1037/h0054245
– volume: 29
  start-page: 203
  issue: 1
  year: 2015
  ident: 668_CR24
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-013-0341-y
– volume: 9
  start-page: 267
  issue: 4
  year: 1944
  ident: 668_CR29
  publication-title: Psychometrika
  doi: 10.1007/BF02288739
– volume: 34
  start-page: 126
  issue: 1
  year: 2013
  ident: 668_CR15
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/100808034
– volume: 17
  start-page: 433
  issue: 3
  year: 2021
  ident: 668_CR43
  publication-title: Pac. J. Optim.
– volume: 1
  start-page: 288
  issue: 4
  year: 2019
  ident: 668_CR39
  publication-title: INFORMS J. Optim.
  doi: 10.1287/ijoo.2018.0008
– volume: 20
  start-page: 4
  issue: 1
  year: 2022
  ident: 668_CR50
  publication-title: Sampl. Theory Signal Process. Data Anal.
  doi: 10.1007/s43670-022-00021-x
– volume: 68
  start-page: 2170
  year: 2020
  ident: 668_CR48
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2982321
– volume: 70
  start-page: 1803
  year: 2022
  ident: 668_CR40
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2022.3163896
– volume: 7
  start-page: 39
  issue: 1–4
  year: 1928
  ident: 668_CR28
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm19287139
– ident: 668_CR21
– volume: 62
  start-page: 133
  issue: 1
  year: 2020
  ident: 668_CR16
  publication-title: SIAM Rev.
  doi: 10.1137/18M1203626
– volume: 28
  start-page: 2131
  issue: 3
  year: 2018
  ident: 668_CR35
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1138558
– ident: 668_CR36
– volume: 73
  start-page: 431
  issue: 3
  year: 2008
  ident: 668_CR1
  publication-title: Psychometrika
  doi: 10.1007/s11336-008-9056-1
– volume: 39
  start-page: 876
  issue: 2
  year: 2018
  ident: 668_CR34
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/17M1112303
– ident: 668_CR63
– volume: 10
  start-page: 1
  year: 2022
  ident: 668_CR8
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-021-00368-3
– volume: 61
  start-page: 4834
  issue: 19
  year: 2013
  ident: 668_CR12
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2269903
– volume: 189
  start-page: 66
  year: 2023
  ident: 668_CR64
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2023.03.014
– ident: 668_CR5
– volume: 68
  start-page: 1792
  year: 2020
  ident: 668_CR23
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2975353
– volume: 6
  start-page: 164
  issue: 1–4
  year: 1927
  ident: 668_CR27
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm192761164
– volume: 21
  start-page: 38
  issue: 1
  year: 2020
  ident: 668_CR18
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 658
  issue: 3
  year: 2020
  ident: 668_CR53
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/19M1298007
– ident: 668_CR47
  doi: 10.1609/aaai.v38i14.29485
– volume: 64
  start-page: 5052
  issue: 19
  year: 2016
  ident: 668_CR11
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2576427
– volume: 13
  start-page: 381
  issue: 1
  year: 2020
  ident: 668_CR26
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/19M1271750
– volume: 25
  start-page: 856
  issue: 2
  year: 2015
  ident: 668_CR41
  publication-title: SIAM J. Optim.
  doi: 10.1137/130936361
– ident: 668_CR62
– volume: 26
  start-page: 1551
  issue: 10
  year: 2019
  ident: 668_CR51
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2938663
– volume: 146
  start-page: 459
  issue: 1–2
  year: 2014
  ident: 668_CR9
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0701-9
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  ident: 668_CR45
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 28
  start-page: 333
  issue: 1
  year: 2018
  ident: 668_CR54
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1099546
– volume-title: First-Order and Stochastic Optimization Methods for Machine Learning
  year: 2020
  ident: 668_CR55
  doi: 10.1007/978-3-030-39568-1
– volume: 38
  start-page: 914
  issue: 5
  year: 2023
  ident: 668_CR46
  publication-title: Optim. Methods. Softw.
  doi: 10.1080/10556788.2023.2189717
– ident: 668_CR37
  doi: 10.1137/18M1178244
– volume: 92
  start-page: 708
  year: 2009
  ident: 668_CR33
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
  doi: 10.1587/transfun.E92.A.708
– volume: 35
  start-page: 283
  issue: 3
  year: 1970
  ident: 668_CR6
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– volume: 68
  start-page: 4454
  year: 2020
  ident: 668_CR19
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.3010719
– volume: 33
  start-page: 3117
  issue: 8
  year: 2021
  ident: 668_CR22
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2962031
– volume: 9
  start-page: 1756
  issue: 4
  year: 2016
  ident: 668_CR10
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/16M1064064
– ident: 668_CR61
– ident: 668_CR59
– volume: 23
  start-page: 393
  year: 2009
  ident: 668_CR13
  publication-title: J. Chemom.
  doi: 10.1002/cem.1236
– volume: 23
  start-page: 432
  year: 2009
  ident: 668_CR4
  publication-title: J. Chemom.
  doi: 10.1002/cem.1244
– volume: 23
  start-page: 695
  issue: 2
  year: 2013
  ident: 668_CR14
  publication-title: SIAM J. Optim.
  doi: 10.1137/120868323
– ident: 668_CR20
  doi: 10.1109/ACSSC.2017.8335432
– volume: 109
  start-page: 475
  year: 2001
  ident: 668_CR31
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1017501703105
– ident: 668_CR38
– volume: 6
  start-page: 1758
  issue: 3
  year: 2013
  ident: 668_CR7
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/120887795
– volume: 33
  start-page: 1272
  issue: 4
  year: 2012
  ident: 668_CR25
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/110859063
– volume: 42
  start-page: 330
  issue: 2
  year: 2017
  ident: 668_CR52
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2016.0817
– volume: 32
  start-page: 2230
  issue: 3
  year: 2022
  ident: 668_CR57
  publication-title: SIAM J. Optim.
  doi: 10.1137/21M140376X
SSID ssj0009732
Score 2.4038339
Snippet The majority of classic tensor CP decomposition models are designed for squared loss, utilizing Euclidean distance as a local proximal term. However, the...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 201
SubjectTerms Algorithms
Binary data
Convergence
Decomposition
Euclidean geometry
Lipschitz condition
Tensors
Title Inertial accelerated stochastic mirror descent for large-scale generalized tensor CP decomposition
URI https://www.proquest.com/docview/3180761010
Volume 91
WOSCitedRecordID wos001423026400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFL2U4kIXvsVqlVm404F0Hk2ylGJRkFLwQXdhnlrQtKRVxK93bpJSC7roOpMhnDuZe2bm3DMAF0x4KZyOqUiMp8LFjmplFLVee4c1PqoqFL6PB4NkNEqHDbj69wQfi9wkynqYpJgfE4qMsdOtirUenpcOu3F5G1mUsi4NWZzXFTJ_d7GahVYn4TKz9HfW-6Zd2K4ZJLmuQr4HDZfvw9YvX8ED0Hc5yqVDK2VMyCtoB2FJoHnmVaEvM3kfF8WkILbyciKBuJI3lITTWQiZIy-VF_X4O7yFCvfwuDcMrVF_Xou8DuGpf_PYu6X1ZQrUBIY1p9YlLI48t4Y53e1oI3RqZRpxbrXAhZftGOsl88pZibZ8kUl0oBc6SY1VLuJH0MwnuTsGYiW3sVFx6ngiuOcqQKKF9F4Yw7S3LbhcgJtNK8-MbOmOjMhlAbmsRC77akF7gX9W_z-zLMw0uMESFosna3V2CpusjAoqEtvQnBcf7gw2zOd8PCvOywHzA5_cvBw
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inertial+accelerated+stochastic+mirror+descent+for+large-scale+generalized+tensor+CP+decomposition&rft.jtitle=Computational+optimization+and+applications&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=91&rft.issue=1&rft.spage=201&rft.epage=233&rft_id=info:doi/10.1007%2Fs10589-025-00668-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon