A fast iterative regularization method for ill-posed problems

Ill-posed problems manifest in a wide range of scientific and engineering disciplines. The solutions to these problems exhibit a high degree of sensitivity to data perturbations. Regularization methods strive to alleviate the sensitivity exhibited by these solutions. This paper presents a fast itera...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Calcolo Ročník 62; číslo 1; s. 1
Hlavní autor: Bechouat, Tahar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Milano Springer Nature B.V 01.03.2025
Témata:
ISSN:0008-0624, 1126-5434
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Ill-posed problems manifest in a wide range of scientific and engineering disciplines. The solutions to these problems exhibit a high degree of sensitivity to data perturbations. Regularization methods strive to alleviate the sensitivity exhibited by these solutions. This paper presents a fast iterative scheme for addressing linear ill-posed problems, similar to nonstationary iterated Tikhonov regularization. Both the a-priori and a-posteriori choice rules for regularization parameters are provided, and both rules yield error estimates that are order optimal. In comparison to the nonstationary iterated Tikhonov method, the newly introduced method significantly reduces the required number of iterations to achieve convergence based on an appropriate stopping criterion. The numerical computations provide compelling evidence regarding the efficacy of our new iterative regularization method. Furthermore, the versatility of this method extends to image restorations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0008-0624
1126-5434
DOI:10.1007/s10092-024-00626-9