On complete lattices of radical submodules and $$ z $$-submodules

Let M be a module over a commutative ring R, and R(RM) denote the complete lattice of radical submodules of M. It is shown that if M is a multiplication R-module, then R(RM) is a frame. In particular, if M is a finitely generated multiplication R-module, then R(RM) is a coherent frame and if, in add...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algebra universalis Ročník 86; číslo 1; s. 3
Hlavní autori: Moghimi, Hosein Fazaeli, Mohebian, Seyedeh Fatemeh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Heidelberg Springer Nature B.V 01.02.2025
Predmet:
ISSN:0002-5240, 1420-8911
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Let M be a module over a commutative ring R, and R(RM) denote the complete lattice of radical submodules of M. It is shown that if M is a multiplication R-module, then R(RM) is a frame. In particular, if M is a finitely generated multiplication R-module, then R(RM) is a coherent frame and if, in addition, M is faithful, then the assignment N↦(N:M)z defines a coherent map from R(RM) to the coherent frame Z(RR) of z-ideals of R. As a generalization of z-ideals, a proper submodule N of M is called a z-submodule of M if for any x∈M and y∈N such that every maximal submodule of M containing y also contains x, then x∈N. The set of z-submodules of M, denoted Z(RM), forms a complete lattice with respect to the order of inclusion. It is shown that if M is a finitely generated faithful multiplication R-module, then Z(RM) is a coherent frame and the assignment N↦Nz (where Nz is the intersection of all z-submodules of M containing N) is a surjective coherent map from R(RM) to Z(RM). In particular, in this case, R(RM) is a normal frame if and only if Z(RM) is a normal frame.
AbstractList Let M be a module over a commutative ring R, and R(RM) denote the complete lattice of radical submodules of M. It is shown that if M is a multiplication R-module, then R(RM) is a frame. In particular, if M is a finitely generated multiplication R-module, then R(RM) is a coherent frame and if, in addition, M is faithful, then the assignment N↦(N:M)z defines a coherent map from R(RM) to the coherent frame Z(RR) of z-ideals of R. As a generalization of z-ideals, a proper submodule N of M is called a z-submodule of M if for any x∈M and y∈N such that every maximal submodule of M containing y also contains x, then x∈N. The set of z-submodules of M, denoted Z(RM), forms a complete lattice with respect to the order of inclusion. It is shown that if M is a finitely generated faithful multiplication R-module, then Z(RM) is a coherent frame and the assignment N↦Nz (where Nz is the intersection of all z-submodules of M containing N) is a surjective coherent map from R(RM) to Z(RM). In particular, in this case, R(RM) is a normal frame if and only if Z(RM) is a normal frame.
ArticleNumber 3
Author Mohebian, Seyedeh Fatemeh
Moghimi, Hosein Fazaeli
Author_xml – sequence: 1
  givenname: Hosein Fazaeli
  surname: Moghimi
  fullname: Moghimi, Hosein Fazaeli
– sequence: 2
  givenname: Seyedeh Fatemeh
  surname: Mohebian
  fullname: Mohebian, Seyedeh Fatemeh
BookMark eNpFkE1LAzEQhoNUsK3-AU8Be41OPnY3OZaiVSj0oueQ5gO27G7WZPegv96tK3iZgfd9mIFnhRZd7DxC9xQeKUD1lAGAMgJMEAApgZRXaEkFAyIVpQu0nHpGCibgBq1yPl_oShVLtD122Ma2b_zgcWOGobY-4xhwMq62psF5PLXRjc2Ums7hzQZ_T4P8x7foOpgm-7u_vUYfL8_vu1dyOO7fdtsDsYyVA3HcWCOCYwpkUN7ZSngmpCykq1QpaOmdMMpKYzgHVXBhuRdKBq8snCoX-Bo9zHf7FD9Hnwd9jmPqppeas0LQQlSSTRSbKZtizskH3ae6NelLU9AXVXpWpSdV-leVLvkPd0NcMQ
Cites_doi 10.24330/ieja.266224
10.1016/j.jpaa.2005.05.010
10.4064/fm-45-1-28-50
10.1007/s00025-020-01252-x
10.1080/00927878808823601
10.1081/AGB-120014684
10.1080/00927870802578050
10.1515/ms-2017-0099
10.1016/0021-8693(73)90024-0
10.24330/ieja.266246
10.15672/hujms.455030
10.1007/978-94-015-9588-9
10.1016/0021-8693(81)90313-6
10.1007/978-1-4615-7819-2
10.1016/j.topol.2019.106969
10.24330/ieja.266191
10.24330/ieja.1555106
10.1216/rmjm/1181072540
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
DBID AAYXX
CITATION
DOI 10.1007/s00012-024-00880-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-8911
ExternalDocumentID 10_1007_s00012_024_00880_6
GroupedDBID -Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
186
1N0
1SB
2.D
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M2P
M4Y
M7S
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
YLTOR
Z45
ZWQNP
ZY4
~A9
~EX
AAYZH
AESKC
ID FETCH-LOGICAL-c226t-d3aca4fd2908f9edc74e248858d796416ed4a9c8aa3309534c3e498fe9c0b7df3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001378120600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0002-5240
IngestDate Fri Sep 26 03:11:55 EDT 2025
Sat Nov 29 08:10:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c226t-d3aca4fd2908f9edc74e248858d796416ed4a9c8aa3309534c3e498fe9c0b7df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3254154782
PQPubID 2043785
ParticipantIDs proquest_journals_3254154782
crossref_primary_10_1007_s00012_024_00880_6
PublicationCentury 2000
PublicationDate 2025-02-00
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-00
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Algebra universalis
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References J Martínez (880_CR20) 2006; 204
T Dube (880_CR5) 2016; 22
PF Smith (880_CR26) 2014; 16
G Mason (880_CR18) 1973; 26
ZA El-Bast (880_CR8) 1988; 16
PF Smith (880_CR27) 2015; 7
CP Lu (880_CR15) 1984; 33
JB Harehdashtir (880_CR10) 2018; 20
HF Moghimi (880_CR22) 2024; 13
C Kohls (880_CR14) 1957; 45
PF Smith (880_CR25) 2014; 15
RL McCasland (880_CR19) 1993; 23
880_CR12
880_CR13
AR Aliabad (880_CR1) 2020; 49
T Dube (880_CR7) 2018; 68
ME Moor (880_CR24) 2002; 30
M Aghajani (880_CR2) 2020; 75
L Gillman (880_CR9) 1960
B Banaschewski (880_CR3) 2000; 25
W Heinzer (880_CR11) 1981; 70
SF Mohebian (880_CR23) 2024
CP Lu (880_CR16) 1999; 25
CP Lu (880_CR17) 2010; 38
G Calugareanu (880_CR4) 2000
T Dube (880_CR6) 2018; 79
HF Moghimi (880_CR21) 2016; 19
References_xml – volume: 79
  start-page: 18
  issue: 7
  year: 2018
  ident: 880_CR6
  publication-title: Algebra Univ.
– volume: 16
  start-page: 16
  year: 2014
  ident: 880_CR26
  publication-title: Int. Electron. J. Algebra
  doi: 10.24330/ieja.266224
– volume: 33
  start-page: 61
  issue: 1
  year: 1984
  ident: 880_CR15
  publication-title: Comment. Math. Univ. St. Paul.
– volume: 204
  start-page: 472
  year: 2006
  ident: 880_CR20
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2005.05.010
– volume: 45
  start-page: 28
  year: 1957
  ident: 880_CR14
  publication-title: Fund. Math.
  doi: 10.4064/fm-45-1-28-50
– volume: 25
  start-page: 417
  issue: 3
  year: 1999
  ident: 880_CR16
  publication-title: Comment. Houst. J. Math.
– volume: 75
  start-page: 75
  year: 2020
  ident: 880_CR2
  publication-title: Results Math.
  doi: 10.1007/s00025-020-01252-x
– volume: 16
  start-page: 755
  issue: 4
  year: 1988
  ident: 880_CR8
  publication-title: Commun. Algebra
  doi: 10.1080/00927878808823601
– volume: 30
  start-page: 5037
  year: 2002
  ident: 880_CR24
  publication-title: Commun. Algebra
  doi: 10.1081/AGB-120014684
– volume: 38
  start-page: 807
  year: 2010
  ident: 880_CR17
  publication-title: Commun. Algebra
  doi: 10.1080/00927870802578050
– volume: 68
  start-page: 271
  issue: 2
  year: 2018
  ident: 880_CR7
  publication-title: Math. Slovaka
  doi: 10.1515/ms-2017-0099
– volume: 26
  start-page: 280
  year: 1973
  ident: 880_CR18
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(73)90024-0
– volume: 13
  start-page: 349
  issue: 1
  year: 2024
  ident: 880_CR22
  publication-title: J. Mahani Math. Res.
– volume: 15
  start-page: 173
  year: 2014
  ident: 880_CR25
  publication-title: Int. Electron. J. Algebra
  doi: 10.24330/ieja.266246
– volume: 49
  start-page: 254
  issue: 1
  year: 2020
  ident: 880_CR1
  publication-title: Hacet. J. Math. Stat.
  doi: 10.15672/hujms.455030
– volume-title: Lattice concepts of module theory
  year: 2000
  ident: 880_CR4
  doi: 10.1007/978-94-015-9588-9
– volume: 70
  start-page: 101
  year: 1981
  ident: 880_CR11
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(81)90313-6
– volume: 20
  start-page: 187
  issue: 2
  year: 2018
  ident: 880_CR10
  publication-title: Math. Rep.
– volume-title: Rings of Continuous Functions
  year: 1960
  ident: 880_CR9
  doi: 10.1007/978-1-4615-7819-2
– ident: 880_CR13
  doi: 10.1016/j.topol.2019.106969
– volume: 22
  start-page: 351
  year: 2016
  ident: 880_CR5
  publication-title: New York J. Math.
– ident: 880_CR12
– volume: 19
  start-page: 35
  year: 2016
  ident: 880_CR21
  publication-title: Int. Electron. J. Algebra
  doi: 10.24330/ieja.266191
– year: 2024
  ident: 880_CR23
  publication-title: Int. Electron. J. Algebra (Published Online)
  doi: 10.24330/ieja.1555106
– volume: 25
  start-page: 3
  year: 2000
  ident: 880_CR3
  publication-title: Arab. J. Sci. Engin.
– volume: 23
  start-page: 1041
  year: 1993
  ident: 880_CR19
  publication-title: Rocky Mt. J. Math.
  doi: 10.1216/rmjm/1181072540
– volume: 7
  start-page: 567
  year: 2015
  ident: 880_CR27
  publication-title: J. Commun. Algebra
SSID ssj0012795
Score 2.3330548
Snippet Let M be a module over a commutative ring R, and R(RM) denote the complete lattice of radical submodules of M. It is shown that if M is a multiplication...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 3
SubjectTerms Commutativity
Mapping
Mathematical functions
Modules
Multiplication
Rings (mathematics)
Title On complete lattices of radical submodules and $$ z $$-submodules
URI https://www.proquest.com/docview/3254154782
Volume 86
WOSCitedRecordID wos001378120600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-8911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012795
  issn: 0002-5240
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5K8aAH32K1Sg69aSDdZJvkWMTiQauglt6WbB4glK10tx789c4-WinooZc95BDCtzvzzezMfAHopcrzNEYDtFYLKmLOqBI-pcxwFqyVpv6hP3mU47GaTvVLC27_reCXcp-sbB-IBEW-UpjsoMPtD-phrdfJumQQSR2vYt0YeaqZkPl7i00W2nTCFbOMDrY70yHsNxEkGdav_AhaPjuGvae1_Gp-AsPnjFS94hgRk5kpyga3nMwDWZiqLENyZMG5W85w1WSO9HrkGx_0d_kU3kf3b3cPtLkrgVoMoArquLFGBBdppoL2zkrhIzTOWLly2LQ_8E4YbZUxnJcSc8JyL7QKXluWShf4GbSzeebPgcQsBMlYQF-I4QWmJ0oGLaOAts_TtC86cLPCLvmsJTGStfhxBUyCwCQVMMmgA90VvEljHnnCMS3tl0pi0cVWm13CblTev1t1TXehXSyW_gp27FfxkS-uq-_hBy03qTs
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+complete+lattices+of+radical+submodules+and+%24%24+z+%24%24-submodules&rft.jtitle=Algebra+universalis&rft.au=Moghimi%2C+Hosein+Fazaeli&rft.au=Mohebian%2C+Seyedeh+Fatemeh&rft.date=2025-02-01&rft.issn=0002-5240&rft.eissn=1420-8911&rft.volume=86&rft.issue=1&rft_id=info:doi/10.1007%2Fs00012-024-00880-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00012_024_00880_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-5240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-5240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-5240&client=summon