On complete lattices of radical submodules and $$ z $$-submodules
Let M be a module over a commutative ring R, and R(RM) denote the complete lattice of radical submodules of M. It is shown that if M is a multiplication R-module, then R(RM) is a frame. In particular, if M is a finitely generated multiplication R-module, then R(RM) is a coherent frame and if, in add...
Uložené v:
| Vydané v: | Algebra universalis Ročník 86; číslo 1; s. 3 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Heidelberg
Springer Nature B.V
01.02.2025
|
| Predmet: | |
| ISSN: | 0002-5240, 1420-8911 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Let M be a module over a commutative ring R, and R(RM) denote the complete lattice of radical submodules of M. It is shown that if M is a multiplication R-module, then R(RM) is a frame. In particular, if M is a finitely generated multiplication R-module, then R(RM) is a coherent frame and if, in addition, M is faithful, then the assignment N↦(N:M)z defines a coherent map from R(RM) to the coherent frame Z(RR) of z-ideals of R. As a generalization of z-ideals, a proper submodule N of M is called a z-submodule of M if for any x∈M and y∈N such that every maximal submodule of M containing y also contains x, then x∈N. The set of z-submodules of M, denoted Z(RM), forms a complete lattice with respect to the order of inclusion. It is shown that if M is a finitely generated faithful multiplication R-module, then Z(RM) is a coherent frame and the assignment N↦Nz (where Nz is the intersection of all z-submodules of M containing N) is a surjective coherent map from R(RM) to Z(RM). In particular, in this case, R(RM) is a normal frame if and only if Z(RM) is a normal frame. |
|---|---|
| AbstractList | Let M be a module over a commutative ring R, and R(RM) denote the complete lattice of radical submodules of M. It is shown that if M is a multiplication R-module, then R(RM) is a frame. In particular, if M is a finitely generated multiplication R-module, then R(RM) is a coherent frame and if, in addition, M is faithful, then the assignment N↦(N:M)z defines a coherent map from R(RM) to the coherent frame Z(RR) of z-ideals of R. As a generalization of z-ideals, a proper submodule N of M is called a z-submodule of M if for any x∈M and y∈N such that every maximal submodule of M containing y also contains x, then x∈N. The set of z-submodules of M, denoted Z(RM), forms a complete lattice with respect to the order of inclusion. It is shown that if M is a finitely generated faithful multiplication R-module, then Z(RM) is a coherent frame and the assignment N↦Nz (where Nz is the intersection of all z-submodules of M containing N) is a surjective coherent map from R(RM) to Z(RM). In particular, in this case, R(RM) is a normal frame if and only if Z(RM) is a normal frame. |
| ArticleNumber | 3 |
| Author | Mohebian, Seyedeh Fatemeh Moghimi, Hosein Fazaeli |
| Author_xml | – sequence: 1 givenname: Hosein Fazaeli surname: Moghimi fullname: Moghimi, Hosein Fazaeli – sequence: 2 givenname: Seyedeh Fatemeh surname: Mohebian fullname: Mohebian, Seyedeh Fatemeh |
| BookMark | eNpFkE1LAzEQhoNUsK3-AU8Be41OPnY3OZaiVSj0oueQ5gO27G7WZPegv96tK3iZgfd9mIFnhRZd7DxC9xQeKUD1lAGAMgJMEAApgZRXaEkFAyIVpQu0nHpGCibgBq1yPl_oShVLtD122Ma2b_zgcWOGobY-4xhwMq62psF5PLXRjc2Ums7hzQZ_T4P8x7foOpgm-7u_vUYfL8_vu1dyOO7fdtsDsYyVA3HcWCOCYwpkUN7ZSngmpCykq1QpaOmdMMpKYzgHVXBhuRdKBq8snCoX-Bo9zHf7FD9Hnwd9jmPqppeas0LQQlSSTRSbKZtizskH3ae6NelLU9AXVXpWpSdV-leVLvkPd0NcMQ |
| Cites_doi | 10.24330/ieja.266224 10.1016/j.jpaa.2005.05.010 10.4064/fm-45-1-28-50 10.1007/s00025-020-01252-x 10.1080/00927878808823601 10.1081/AGB-120014684 10.1080/00927870802578050 10.1515/ms-2017-0099 10.1016/0021-8693(73)90024-0 10.24330/ieja.266246 10.15672/hujms.455030 10.1007/978-94-015-9588-9 10.1016/0021-8693(81)90313-6 10.1007/978-1-4615-7819-2 10.1016/j.topol.2019.106969 10.24330/ieja.266191 10.24330/ieja.1555106 10.1216/rmjm/1181072540 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00012-024-00880-6 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1420-8911 |
| ExternalDocumentID | 10_1007_s00012_024_00880_6 |
| GroupedDBID | -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 186 1N0 1SB 2.D 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M2P M4Y M7S MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PHGZM PHGZT PQGLB PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 YLTOR Z45 ZWQNP ZY4 ~A9 ~EX AAYZH AESKC |
| ID | FETCH-LOGICAL-c226t-d3aca4fd2908f9edc74e248858d796416ed4a9c8aa3309534c3e498fe9c0b7df3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001378120600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0002-5240 |
| IngestDate | Fri Sep 26 03:11:55 EDT 2025 Sat Nov 29 08:10:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c226t-d3aca4fd2908f9edc74e248858d796416ed4a9c8aa3309534c3e498fe9c0b7df3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3254154782 |
| PQPubID | 2043785 |
| ParticipantIDs | proquest_journals_3254154782 crossref_primary_10_1007_s00012_024_00880_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-00 20250201 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationTitle | Algebra universalis |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | J Martínez (880_CR20) 2006; 204 T Dube (880_CR5) 2016; 22 PF Smith (880_CR26) 2014; 16 G Mason (880_CR18) 1973; 26 ZA El-Bast (880_CR8) 1988; 16 PF Smith (880_CR27) 2015; 7 CP Lu (880_CR15) 1984; 33 JB Harehdashtir (880_CR10) 2018; 20 HF Moghimi (880_CR22) 2024; 13 C Kohls (880_CR14) 1957; 45 PF Smith (880_CR25) 2014; 15 RL McCasland (880_CR19) 1993; 23 880_CR12 880_CR13 AR Aliabad (880_CR1) 2020; 49 T Dube (880_CR7) 2018; 68 ME Moor (880_CR24) 2002; 30 M Aghajani (880_CR2) 2020; 75 L Gillman (880_CR9) 1960 B Banaschewski (880_CR3) 2000; 25 W Heinzer (880_CR11) 1981; 70 SF Mohebian (880_CR23) 2024 CP Lu (880_CR16) 1999; 25 CP Lu (880_CR17) 2010; 38 G Calugareanu (880_CR4) 2000 T Dube (880_CR6) 2018; 79 HF Moghimi (880_CR21) 2016; 19 |
| References_xml | – volume: 79 start-page: 18 issue: 7 year: 2018 ident: 880_CR6 publication-title: Algebra Univ. – volume: 16 start-page: 16 year: 2014 ident: 880_CR26 publication-title: Int. Electron. J. Algebra doi: 10.24330/ieja.266224 – volume: 33 start-page: 61 issue: 1 year: 1984 ident: 880_CR15 publication-title: Comment. Math. Univ. St. Paul. – volume: 204 start-page: 472 year: 2006 ident: 880_CR20 publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2005.05.010 – volume: 45 start-page: 28 year: 1957 ident: 880_CR14 publication-title: Fund. Math. doi: 10.4064/fm-45-1-28-50 – volume: 25 start-page: 417 issue: 3 year: 1999 ident: 880_CR16 publication-title: Comment. Houst. J. Math. – volume: 75 start-page: 75 year: 2020 ident: 880_CR2 publication-title: Results Math. doi: 10.1007/s00025-020-01252-x – volume: 16 start-page: 755 issue: 4 year: 1988 ident: 880_CR8 publication-title: Commun. Algebra doi: 10.1080/00927878808823601 – volume: 30 start-page: 5037 year: 2002 ident: 880_CR24 publication-title: Commun. Algebra doi: 10.1081/AGB-120014684 – volume: 38 start-page: 807 year: 2010 ident: 880_CR17 publication-title: Commun. Algebra doi: 10.1080/00927870802578050 – volume: 68 start-page: 271 issue: 2 year: 2018 ident: 880_CR7 publication-title: Math. Slovaka doi: 10.1515/ms-2017-0099 – volume: 26 start-page: 280 year: 1973 ident: 880_CR18 publication-title: J. Algebra doi: 10.1016/0021-8693(73)90024-0 – volume: 13 start-page: 349 issue: 1 year: 2024 ident: 880_CR22 publication-title: J. Mahani Math. Res. – volume: 15 start-page: 173 year: 2014 ident: 880_CR25 publication-title: Int. Electron. J. Algebra doi: 10.24330/ieja.266246 – volume: 49 start-page: 254 issue: 1 year: 2020 ident: 880_CR1 publication-title: Hacet. J. Math. Stat. doi: 10.15672/hujms.455030 – volume-title: Lattice concepts of module theory year: 2000 ident: 880_CR4 doi: 10.1007/978-94-015-9588-9 – volume: 70 start-page: 101 year: 1981 ident: 880_CR11 publication-title: J. Algebra doi: 10.1016/0021-8693(81)90313-6 – volume: 20 start-page: 187 issue: 2 year: 2018 ident: 880_CR10 publication-title: Math. Rep. – volume-title: Rings of Continuous Functions year: 1960 ident: 880_CR9 doi: 10.1007/978-1-4615-7819-2 – ident: 880_CR13 doi: 10.1016/j.topol.2019.106969 – volume: 22 start-page: 351 year: 2016 ident: 880_CR5 publication-title: New York J. Math. – ident: 880_CR12 – volume: 19 start-page: 35 year: 2016 ident: 880_CR21 publication-title: Int. Electron. J. Algebra doi: 10.24330/ieja.266191 – year: 2024 ident: 880_CR23 publication-title: Int. Electron. J. Algebra (Published Online) doi: 10.24330/ieja.1555106 – volume: 25 start-page: 3 year: 2000 ident: 880_CR3 publication-title: Arab. J. Sci. Engin. – volume: 23 start-page: 1041 year: 1993 ident: 880_CR19 publication-title: Rocky Mt. J. Math. doi: 10.1216/rmjm/1181072540 – volume: 7 start-page: 567 year: 2015 ident: 880_CR27 publication-title: J. Commun. Algebra |
| SSID | ssj0012795 |
| Score | 2.3330548 |
| Snippet | Let M be a module over a commutative ring R, and R(RM) denote the complete lattice of radical submodules of M. It is shown that if M is a multiplication... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 3 |
| SubjectTerms | Commutativity Mapping Mathematical functions Modules Multiplication Rings (mathematics) |
| Title | On complete lattices of radical submodules and $$ z $$-submodules |
| URI | https://www.proquest.com/docview/3254154782 |
| Volume | 86 |
| WOSCitedRecordID | wos001378120600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1420-8911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012795 issn: 0002-5240 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5K8aAH32K1Sg69aSDdZJvkWMTiQauglt6WbB4glK10tx789c4-WinooZc95BDCtzvzzezMfAHopcrzNEYDtFYLKmLOqBI-pcxwFqyVpv6hP3mU47GaTvVLC27_reCXcp-sbB-IBEW-UpjsoMPtD-phrdfJumQQSR2vYt0YeaqZkPl7i00W2nTCFbOMDrY70yHsNxEkGdav_AhaPjuGvae1_Gp-AsPnjFS94hgRk5kpyga3nMwDWZiqLENyZMG5W85w1WSO9HrkGx_0d_kU3kf3b3cPtLkrgVoMoArquLFGBBdppoL2zkrhIzTOWLly2LQ_8E4YbZUxnJcSc8JyL7QKXluWShf4GbSzeebPgcQsBMlYQF-I4QWmJ0oGLaOAts_TtC86cLPCLvmsJTGStfhxBUyCwCQVMMmgA90VvEljHnnCMS3tl0pi0cVWm13CblTev1t1TXehXSyW_gp27FfxkS-uq-_hBy03qTs |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+complete+lattices+of+radical+submodules+and+%24%24+z+%24%24-submodules&rft.jtitle=Algebra+universalis&rft.au=Moghimi%2C+Hosein+Fazaeli&rft.au=Mohebian%2C+Seyedeh+Fatemeh&rft.date=2025-02-01&rft.issn=0002-5240&rft.eissn=1420-8911&rft.volume=86&rft.issue=1&rft_id=info:doi/10.1007%2Fs00012-024-00880-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00012_024_00880_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-5240&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-5240&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-5240&client=summon |