On complete lattices of radical submodules and $$ z $$-submodules

Let M be a module over a commutative ring R, and R(RM) denote the complete lattice of radical submodules of M. It is shown that if M is a multiplication R-module, then R(RM) is a frame. In particular, if M is a finitely generated multiplication R-module, then R(RM) is a coherent frame and if, in add...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algebra universalis Ročník 86; číslo 1; s. 3
Hlavní autoři: Moghimi, Hosein Fazaeli, Mohebian, Seyedeh Fatemeh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.02.2025
Témata:
ISSN:0002-5240, 1420-8911
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let M be a module over a commutative ring R, and R(RM) denote the complete lattice of radical submodules of M. It is shown that if M is a multiplication R-module, then R(RM) is a frame. In particular, if M is a finitely generated multiplication R-module, then R(RM) is a coherent frame and if, in addition, M is faithful, then the assignment N↦(N:M)z defines a coherent map from R(RM) to the coherent frame Z(RR) of z-ideals of R. As a generalization of z-ideals, a proper submodule N of M is called a z-submodule of M if for any x∈M and y∈N such that every maximal submodule of M containing y also contains x, then x∈N. The set of z-submodules of M, denoted Z(RM), forms a complete lattice with respect to the order of inclusion. It is shown that if M is a finitely generated faithful multiplication R-module, then Z(RM) is a coherent frame and the assignment N↦Nz (where Nz is the intersection of all z-submodules of M containing N) is a surjective coherent map from R(RM) to Z(RM). In particular, in this case, R(RM) is a normal frame if and only if Z(RM) is a normal frame.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0002-5240
1420-8911
DOI:10.1007/s00012-024-00880-6