Barrier methods based on Jordan–Hilbert algebras for stochastic optimization in spin factors

Infinite-dimensional stochastic second-order cone programming involves minimizing linear functions over intersections of affine linear manifolds with infinite-dimensional second-order cones. However, even though there is a legitimate necessity to explore these methods in general spaces, there is an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:R.A.I.R.O. Recherche opérationnelle Jg. 58; H. 1; S. 1011 - 1044
1. Verfasser: Alzalg, Baha
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.01.2024
ISSN:0399-0559, 2804-7303
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Infinite-dimensional stochastic second-order cone programming involves minimizing linear functions over intersections of affine linear manifolds with infinite-dimensional second-order cones. However, even though there is a legitimate necessity to explore these methods in general spaces, there is an absence of infinite-dimensional counterparts for these methods. In this paper, we present decomposition logarithmic-barrier interior-point methods based on unital Jordan–Hilbert algebras for this class of optimization problems in the infinite-dimensional setting. The results show that the iteration complexity of the proposed algorithms is independent on the choice of Hilbert spaces from which the underlying spin factors are formed, and so it coincides with the best-known complexity obtained by such methods for the finite-dimensional setting. We apply our results to an important problem in stochastic control, namely the two-stage stochastic multi-criteria design problem. We show that the corresponding infinite-dimensional system in this case is a matrix differential Ricatti equation plus a finite-dimensional system, and hence, it can be solved efficiently to find the search direction.
AbstractList Infinite-dimensional stochastic second-order cone programming involves minimizing linear functions over intersections of affine linear manifolds with infinite-dimensional second-order cones. However, even though there is a legitimate necessity to explore these methods in general spaces, there is an absence of infinite-dimensional counterparts for these methods. In this paper, we present decomposition logarithmic-barrier interior-point methods based on unital Jordan–Hilbert algebras for this class of optimization problems in the infinite-dimensional setting. The results show that the iteration complexity of the proposed algorithms is independent on the choice of Hilbert spaces from which the underlying spin factors are formed, and so it coincides with the best-known complexity obtained by such methods for the finite-dimensional setting. We apply our results to an important problem in stochastic control, namely the two-stage stochastic multi-criteria design problem. We show that the corresponding infinite-dimensional system in this case is a matrix differential Ricatti equation plus a finite-dimensional system, and hence, it can be solved efficiently to find the search direction.
Author Alzalg, Baha
Author_xml – sequence: 1
  givenname: Baha
  orcidid: 0000-0002-1839-8083
  surname: Alzalg
  fullname: Alzalg, Baha
BookMark eNotkDFOAzEURC0UJEJIwwlcIy35tte73hIiIKBINNCy-rb_EkvJOrLdQMUduCEnIYg0M828Kd45m4xxJMYuBVwL0GKR4kKCVKIzJ2wqDdRVq0BN2BRU11WgdXfG5jkHexibpulAT9nbLaYUKPEdlU30mVvM5Hkc-VNMHsefr-9V2FpKheP2nWzCzIeYeC7RbTCX4Hjcl7ALn1jCgQojz_tDDOhKTPmCnQ64zTQ_9oy93t-9LFfV-vnhcXmzrpyUTancIIwD1MoK15D3WlHryTvhpbOts42vJZqWtIcWZQPUCks4DNYarA2AmrGr_1-XYs6Jhn6fwg7TRy-g_5PTp9gf5ahf7x5c_w
Cites_doi 10.1007/s10957-022-02128-6
10.1137/0806020
10.1007/s10107-003-0380-z
10.1287/opre.1080.0659
10.1109/ACCESS.2019.2962840
10.1016/j.jmaa.2013.07.075
10.3934/dcds.1998.4.653
10.1007/s11356-022-20713-0
10.1007/s10479-022-05119-y
10.1016/j.jalgebra.2017.08.017
10.1016/j.amc.2004.04.095
10.1137/080742026
10.1007/s10107-002-0339-5
10.1007/s002459900054
10.1007/s40815-021-01209-4
10.1016/j.amc.2015.05.014
10.1137/050622067
10.1007/PL00011433
10.1007/s10107-003-0471-x
10.1007/s10479-022-04829-7
10.1007/s00500-019-04010-6
10.1007/BFb0089281
10.1007/s10107-003-0424-4
10.1007/s10957-013-0428-z
10.1080/02331934.2018.1533553
10.1016/j.amc.2014.10.015
10.1080/01630563.2019.1709499
10.1137/1.9781611970791
10.1137/S1052623495293056
10.1090/S0025-5718-2010-02449-4
10.1016/j.amc.2006.08.171
10.1137/S1052623494269035
10.1007/BF02108300
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1051/ro/2023198
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2804-7303
EndPage 1044
ExternalDocumentID 10_1051_ro_2023198
GroupedDBID --K
-E.
.FH
0E1
123
1B1
4.4
5VS
74X
74Y
7~V
8FE
8FG
AADXX
AAFWJ
AAOGA
AAOTM
AAYXX
ABGDZ
ABKKG
ABNSH
ABUBZ
ABZDU
ACACO
ACGFS
ACIMK
ACIWK
ACQPF
ACRPL
ACZPN
ADNMO
AEMTW
AFAYI
AFHSK
AFUTZ
AGQPQ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARABE
ASPBG
AVWKF
AZPVJ
BPHCQ
C0O
CITATION
CS3
DC4
EBS
EJD
FAM
HG-
HST
HZ~
I-F
I.6
IHE
IL9
I~P
J36
J38
J3A
K60
K6V
K6~
L6V
L98
LO0
M-V
M41
NIF
O9-
OAV
P62
PQQKQ
PROAC
RCA
ROL
RPZ
RR0
S6-
WQ3
WXU
ID FETCH-LOGICAL-c226t-cf18c0a53b1c6edd53e7dedc1d2cb7cb6d42a87e5d07a260e71beaffbb8a48003
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001177701100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0399-0559
IngestDate Sat Nov 29 04:47:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c226t-cf18c0a53b1c6edd53e7dedc1d2cb7cb6d42a87e5d07a260e71beaffbb8a48003
ORCID 0000-0002-1839-8083
OpenAccessLink https://doi.org/10.1051/ro/2023198
PageCount 34
ParticipantIDs crossref_primary_10_1051_ro_2023198
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle R.A.I.R.O. Recherche opérationnelle
PublicationYear 2024
References Schmieta (R30) 2003; 96
Zhao (R17) 2001; 90
Faybusovich (R2) 2003; 97
Goli (R5) 2023; 328
Alzalg (R14) 2014; 409
Chen (R27) 2011; 21
Lotfi (R10) 2022; 24
Alzalg (R25) 2022; 196
Alzalg (R8) 2014; 163
Chu (R13) 2017; 491
Alzalg (R16) 2018; 163
Ariyawansa (R24) 2011; 80
Lotfi (R11) 2022; 29
Kojima (R33) 1997; 7
R29
Zhao (R26) 2005; 102
Sangaiah (R6) 2020; 24
Renegar (R3) 1995; 70
Alzalg (R22) 2018; 67
Mehrotra (R23) 2007; 18
Helmberg (R31) 1996; 6
Lim (R1) 1998; 4
Alzalg (R28) 2020; 41
Alzalg (R7) 2014; 249
Alizadeh (R39) 2003; 95
Lotfi (R9) 2021; 1
R12
Alzalg (R21) 2020; 80
R34
R36
R35
Faybusovich (R4) 1997; 36
R37
Cho (R18) 2005; 164
Alzalg (R15) 2015; 256
Nomura (R38) 1994; 12
Mehrotra (R19) 2009; 57
Monteiro (R32) 1997; 7
Ariyawansa (R20) 2007; 186
References_xml – volume: 70
  start-page: 279
  year: 1995
  ident: R3
  publication-title: Math. Program
– volume: 196
  start-page: 490
  year: 2022
  ident: R25
  publication-title: J. Optim. Theory App
  doi: 10.1007/s10957-022-02128-6
– volume: 1
  start-page: 1367
  year: 2021
  ident: R9
  publication-title: Int. J. Logist. Res. Appl
– volume: 6
  start-page: 342
  year: 1996
  ident: R31
  publication-title: SIAM J. Optim
  doi: 10.1137/0806020
– volume: 96
  start-page: 409
  year: 2003
  ident: R30
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-003-0380-z
– volume: 57
  start-page: 964
  year: 2009
  ident: R19
  publication-title: Oper. Res
  doi: 10.1287/opre.1080.0659
– volume: 80
  start-page: 4995
  year: 2020
  ident: R21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962840
– volume: 409
  start-page: 973
  year: 2014
  ident: R14
  publication-title: J. Math. Anal. App
  doi: 10.1016/j.jmaa.2013.07.075
– volume: 4
  start-page: 653
  year: 1998
  ident: R1
  publication-title: Discrete Cont. Dyn. Syst
  doi: 10.3934/dcds.1998.4.653
– volume: 29
  start-page: 70285
  year: 2022
  ident: R11
  publication-title: Environ. Sci. Pollut. Res
  doi: 10.1007/s11356-022-20713-0
– ident: R12
  doi: 10.1007/s10479-022-05119-y
– volume: 491
  start-page: 357
  year: 2017
  ident: R13
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2017.08.017
– volume: 164
  start-page: 45
  year: 2005
  ident: R18
  publication-title: Appl. Math. Comput
  doi: 10.1016/j.amc.2004.04.095
– volume: 21
  start-page: 1667
  year: 2011
  ident: R27
  publication-title: SIAM J. Optim
  doi: 10.1137/080742026
– volume: 95
  start-page: 3
  year: 2003
  ident: R39
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-002-0339-5
– volume: 36
  start-page: 43
  year: 1997
  ident: R4
  publication-title: Appl. Math. Optim
  doi: 10.1007/s002459900054
– volume: 24
  start-page: 1216
  year: 2022
  ident: R10
  publication-title: Int. J. Fuzzy Syst
  doi: 10.1007/s40815-021-01209-4
– volume: 256
  start-page: 494
  year: 2015
  ident: R15
  publication-title: Appl. Math. Comput
  doi: 10.1016/j.amc.2015.05.014
– volume: 18
  start-page: 206
  year: 2007
  ident: R23
  publication-title: SIAM J. Optim
  doi: 10.1137/050622067
– volume: 90
  start-page: 507
  year: 2001
  ident: R17
  publication-title: Math. Program. Ser. A
  doi: 10.1007/PL00011433
– volume: 102
  start-page: 1
  year: 2005
  ident: R26
  publication-title: Math. Program
  doi: 10.1007/s10107-003-0471-x
– ident: R35
– volume: 328
  start-page: 493
  year: 2023
  ident: R5
  publication-title: Ann. Oper. Res
  doi: 10.1007/s10479-022-04829-7
– volume: 24
  start-page: 7885
  year: 2020
  ident: R6
  publication-title: Soft. Comput
  doi: 10.1007/s00500-019-04010-6
– ident: R37
  doi: 10.1007/BFb0089281
– volume: 97
  start-page: 471
  year: 2003
  ident: R2
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-003-0424-4
– volume: 163
  start-page: 148
  year: 2018
  ident: R16
  publication-title: J. Optim. Theory Appl
  doi: 10.1007/s10957-013-0428-z
– volume: 67
  start-page: 2291
  year: 2018
  ident: R22
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1533553
– volume: 163
  start-page: 148
  year: 2014
  ident: R8
  publication-title: J. Optim. Theory Appl
  doi: 10.1007/s10957-013-0428-z
– volume: 249
  start-page: 1
  year: 2014
  ident: R7
  publication-title: Appl. Math. Comput
  doi: 10.1016/j.amc.2014.10.015
– ident: R29
– volume: 41
  start-page: 901
  year: 2020
  ident: R28
  publication-title: Numer. Funct. Anal. Optim
  doi: 10.1080/01630563.2019.1709499
– ident: R34
  doi: 10.1137/1.9781611970791
– volume: 7
  start-page: 663
  year: 1997
  ident: R32
  publication-title: SIAM J. Optim
  doi: 10.1137/S1052623495293056
– volume: 80
  start-page: 1639
  year: 2011
  ident: R24
  publication-title: Math. Comput
  doi: 10.1090/S0025-5718-2010-02449-4
– volume: 186
  start-page: 1683
  year: 2007
  ident: R20
  publication-title: Appl. Math. Comput
  doi: 10.1016/j.amc.2006.08.171
– volume: 7
  start-page: 86
  year: 1997
  ident: R33
  publication-title: SIAM J. Optim
  doi: 10.1137/S1052623494269035
– ident: R36
– volume: 12
  start-page: 237
  year: 1994
  ident: R38
  publication-title: Ann. Global Anal. Geom
  doi: 10.1007/BF02108300
SSID ssib051866905
ssib051327486
ssj0003353
ssib050921426
Score 2.2918193
Snippet Infinite-dimensional stochastic second-order cone programming involves minimizing linear functions over intersections of affine linear manifolds with...
SourceID crossref
SourceType Index Database
StartPage 1011
Title Barrier methods based on Jordan–Hilbert algebras for stochastic optimization in spin factors
Volume 58
WOSCitedRecordID wos001177701100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2804-7303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051866905
  issn: 0399-0559
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagcIAD4inesgS3VdI4jmPnWFCrgqCgqqCeWPmVdiVwVtkFVT1U_Af-Ib-EcezsGsqhHDhstGttEsnzafzNjP0NQs8ppbUVRmbakiarrC4yCbQ0A_JhZOn1i4azVR_f8L09cXjYvI8J_cXQToA7J05Omvl_NTWMgbH90dl_MPfqoTAA38HocAWzw_VChn8h-6ELXegNvZj4dcr4msBriDOlG3c30N2Zl7fyGd8jXzwedBkmQAX1sfTazZMOnMmXeErTZ0UW85kb2_OklHY_38pf5fv5u9xzUIAAfODmUIEP-PJbadbQ-nwKrwy1jmOZZh3KKsk6xNNWXr2ARTVvO4yVoqgy8Bg09a5MnENRcJXgC0iy7EJYWP3VpYPXgCn3h352fKt3EppW_66c_ceKttpnOFTYGZn23TTeexldKTlrvP97e7Y9eh5gTV56bkXMGMTovBLJb1HXTbEOrCgN-qbjLIzCt4xs9t1mfFdCdRLOcnAT3YjBBt4KILmFLll3G11PJCjvoE8RLjjCBQ9wwZ3DAS4_v_-IQMEjUDAABa-BglOg4JnDHig4AuUu-rCzffByN4s9NzINRHyZ6ZYIXUhGFdG1NYZRy401mphSK65VbapSCm6ZKbiEWNhyoqxsW6WErCD4oPfQhuucvY8wa1oFbFQZ0ZBKSi6b1hpOgSEzpWlZPEDPxumZzoO0yvS8wR5e6F-P0LU1Sh-jjWX_1T5BV_W35WzRPx1s_QtvcGou
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Barrier+methods+based+on+Jordan%E2%80%93Hilbert+algebras+for+stochastic+optimization+in+spin+factors&rft.jtitle=R.A.I.R.O.+Recherche+op%C3%A9rationnelle&rft.au=Alzalg%2C+Baha&rft.date=2024-01-01&rft.issn=0399-0559&rft.eissn=2804-7303&rft.volume=58&rft.issue=1&rft.spage=1011&rft.epage=1044&rft_id=info:doi/10.1051%2Fro%2F2023198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_ro_2023198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0399-0559&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0399-0559&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0399-0559&client=summon