First and second order necessary optimality conditions for multiobjective programming with interval-valued objective functions on Riemannian manifolds

The growing dependence on optimization models in decision-making has created a demand for tools that can facilitate the formulation and resolution of a broader range of real-world processes and systems associated with human activity. These situations often involve assumptions that diverge from tradi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:R.A.I.R.O. Recherche opérationnelle Ročník 58; číslo 5; s. 4259 - 4276
Hlavní autoři: Bhat, Hilal Ahmad, Iqbal, Akhlad, Aftab, Mahwash
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.09.2024
ISSN:0399-0559, 2804-7303
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The growing dependence on optimization models in decision-making has created a demand for tools that can facilitate the formulation and resolution of a broader range of real-world processes and systems associated with human activity. These situations often involve assumptions that diverge from traditional optimization methodologies. One viable approach for addressing optimization problems in real-life scenarios with uncertainty is interval-valued optimization. Taking into account the significance of interval-valued optimization, in this paper, we derive first and second order necessary optimality conditions for a multi-objective programming problem with interval-valued objective functions defined on a Riemannian manifold. To establish these conditions, we consider the objective functions to be weakly differentiable and twice weakly differentiable for first and second order, respectively. Additionally, we assume that the constraints, both equality and inequality constraints, are differentiable and twice differentiable for first and second order conditions respectively. The first order as well as second order necessary conditions are derived under two types of constraint qualifications. Furthermore, we provide illustrative examples to demonstrate the application of the established results.
AbstractList The growing dependence on optimization models in decision-making has created a demand for tools that can facilitate the formulation and resolution of a broader range of real-world processes and systems associated with human activity. These situations often involve assumptions that diverge from traditional optimization methodologies. One viable approach for addressing optimization problems in real-life scenarios with uncertainty is interval-valued optimization. Taking into account the significance of interval-valued optimization, in this paper, we derive first and second order necessary optimality conditions for a multi-objective programming problem with interval-valued objective functions defined on a Riemannian manifold. To establish these conditions, we consider the objective functions to be weakly differentiable and twice weakly differentiable for first and second order, respectively. Additionally, we assume that the constraints, both equality and inequality constraints, are differentiable and twice differentiable for first and second order conditions respectively. The first order as well as second order necessary conditions are derived under two types of constraint qualifications. Furthermore, we provide illustrative examples to demonstrate the application of the established results.
Author Iqbal, Akhlad
Aftab, Mahwash
Bhat, Hilal Ahmad
Author_xml – sequence: 1
  givenname: Hilal Ahmad
  orcidid: 0000-0002-8712-3905
  surname: Bhat
  fullname: Bhat, Hilal Ahmad
– sequence: 2
  givenname: Akhlad
  orcidid: 0000-0003-1932-2782
  surname: Iqbal
  fullname: Iqbal, Akhlad
– sequence: 3
  givenname: Mahwash
  orcidid: 0009-0008-0561-9079
  surname: Aftab
  fullname: Aftab, Mahwash
BookMark eNo9kM1KAzEUhYNUsNZufIKshbHJJJmfpRRrhYIguh6SzE2NzCQlSSt9EZ_XlBYXl8PlHA585xZNnHeA0D0lj5QIugh-UZKSU1FfoWnZEF7UjLAJmhLWtgURor1B8xityuGmqloipuh3ZUNMWLoeR9A-iw89BOxAQ4wyHLHfJTvKwaYjPvk2We8iNj7gcT_kR32DTvYAeBf8NshxtG6Lf2z6wtYlCAc5FPn2kJv_o2bv9LnHO_xuYZTOWelwVmv80Mc7dG3kEGF-0Rn6XD1_LNfF5u3ldfm0KXRZVqloVV2ZzNGYuiLG9JJoIlTfcMWl0jJzaiVawxmnlZIUGmANMYqVuhGUm5rN0MO5VwcfYwDT7UKmDceOku40ahd8dxmV_QGKtXFu
Cites_doi 10.1023/A:1006579214413
10.1080/02331934.2020.1810248
10.1137/1.9781611970906
10.1007/BF00940467
10.1007/s10957-010-9688-z
10.1017/9781009166164
10.1016/0377-2217(90)90375-L
10.1007/978-1-4615-6357-0
10.1007/s10957-011-9921-4
10.1016/j.ejor.2016.03.042
10.1515/9781400830244
10.1080/01630569108816425
10.1007/s10898-003-3780-y
10.1287/moor.2021.1203
10.1016/j.cie.2020.106634
10.1016/j.jmaa.2007.05.023
10.1137/S0363012996311095
10.1080/02331934.2012.745531
10.1007/978-94-015-8390-9_3
10.1137/18M121040X
10.1051/ro:2000122
10.1137/23M1582382
10.1090/mmono/149
10.1080/00036811.2023.2232795
10.1007/s10700-013-9156-y
10.1137/0115056
10.1137/17M1147330
10.1137/09075367X
10.1016/j.ejor.2008.03.012
10.1016/j.ejor.2005.09.007
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1051/ro/2024157
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2804-7303
EndPage 4276
ExternalDocumentID 10_1051_ro_2024157
GroupedDBID --K
-E.
.FH
0E1
123
1B1
4.4
5VS
74X
74Y
7~V
8FE
8FG
AADXX
AAFWJ
AAOGA
AAOTM
AAYXX
ABGDZ
ABKKG
ABNSH
ABUBZ
ABZDU
ACACO
ACGFS
ACIMK
ACIWK
ACQPF
ACRPL
ACZPN
ADNMO
AEMTW
AFAYI
AFHSK
AFUTZ
AGQPQ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARABE
ASPBG
AVWKF
AZPVJ
BPHCQ
C0O
CITATION
CS3
DC4
EBS
EJD
FAM
HG-
HST
HZ~
I-F
I.6
IHE
IL9
I~P
J36
J38
J3A
K60
K6V
K6~
L6V
L98
LO0
M-V
M41
NIF
O9-
OAV
P62
PQQKQ
PROAC
RCA
ROL
RPZ
RR0
S6-
WQ3
WXU
ID FETCH-LOGICAL-c226t-9b76f9058f760ffda0c05bd84b4abca051cb59f43416ba1e8e380fb32c8514f73
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001335541500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0399-0559
IngestDate Sat Nov 29 04:47:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c226t-9b76f9058f760ffda0c05bd84b4abca051cb59f43416ba1e8e380fb32c8514f73
ORCID 0000-0003-1932-2782
0009-0008-0561-9079
0000-0002-8712-3905
OpenAccessLink https://doi.org/10.1051/ro/2024157
PageCount 18
ParticipantIDs crossref_primary_10_1051_ro_2024157
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle R.A.I.R.O. Recherche opérationnelle
PublicationYear 2024
References Wang (R35) 1991; 12
Andreani (R5) 2022; 3
Wu (R39) 2009; 196
Wu (R38) 2008; 338
Ishibuchi (R20) 1990; 48
Ferreira (R18) 2005; 31
Andreani (R4) 2019; 4
Rahman (R27) 2020; 147
R22
R25
R24
Wang (R36) 2010; 146
Chalco-Cano (R16) 2013; 12
McCormick (R23) 1967; 15
R29
Wu (R37) 2007; 176
Bento (R10) 2015; 64
R1
R2
Yang (R40) 2014; 10
Antczak (R7) 2022; 84
Singh (R32) 2016; 254
Rapcsak (R28) 1991; 69
Singh (R31) 2014; 5
Gabriel (R19) 2018; 22
Li (R21) 2011; 21
Penot (R26) 1998; 37
R30
Andreani (R6) 2024; 34
Bigi (R14) 2000; 34
R12
Chen (R17) 2020; 71
Szilagyi (R33) 1998; 81
R34
R11
Bento (R9) 2012; 152
R13
R15
Andreani (R3) 2019; 29
Antczak (R8) 2023; 103
References_xml – ident: R13
– volume: 81
  start-page: 125
  year: 1998
  ident: R33
  publication-title: Acta Math. Hungar.
  doi: 10.1023/A:1006579214413
– volume: 71
  start-page: 613
  year: 2020
  ident: R17
  publication-title: Optimization
  doi: 10.1080/02331934.2020.1810248
– ident: R25
  doi: 10.1137/1.9781611970906
– volume: 69
  start-page: 169
  year: 1991
  ident: R28
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940467
– volume: 146
  start-page: 691
  year: 2010
  ident: R36
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9688-z
– ident: R15
  doi: 10.1017/9781009166164
– volume: 48
  start-page: 219
  year: 1990
  ident: R20
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(90)90375-L
– ident: R29
  doi: 10.1007/978-1-4615-6357-0
– volume: 152
  start-page: 773
  year: 2012
  ident: R9
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-011-9921-4
– volume: 254
  start-page: 29
  year: 2016
  ident: R32
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.03.042
– ident: R1
  doi: 10.1515/9781400830244
– volume: 12
  start-page: 237
  year: 1991
  ident: R35
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630569108816425
– volume: 31
  start-page: 133
  year: 2005
  ident: R18
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-003-3780-y
– volume: 3
  start-page: 2160
  year: 2022
  ident: R5
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2021.1203
– volume: 147
  start-page: 106634
  year: 2020
  ident: R27
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106634
– ident: R12
– volume: 338
  start-page: 299
  year: 2008
  ident: R38
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.05.023
– volume: 37
  start-page: 303
  year: 1998
  ident: R26
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012996311095
– volume: 64
  start-page: 289
  year: 2015
  ident: R10
  publication-title: Optimization
  doi: 10.1080/02331934.2012.745531
– ident: R34
  doi: 10.1007/978-94-015-8390-9_3
– volume: 4
  start-page: 3201
  year: 2019
  ident: R4
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M121040X
– volume: 34
  start-page: 411
  year: 2000
  ident: R14
  publication-title: RAIRO:RO
  doi: 10.1051/ro:2000122
– volume: 34
  start-page: 1799
  year: 2024
  ident: R6
  publication-title: SIAM J. Optim.
  doi: 10.1137/23M1582382
– ident: R22
– ident: R30
  doi: 10.1090/mmono/149
– volume: 103
  start-page: 1098
  year: 2023
  ident: R8
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2023.2232795
– ident: R24
– volume: 12
  start-page: 305
  year: 2013
  ident: R16
  publication-title: Fuzzy Optim. Decis. Mak.
  doi: 10.1007/s10700-013-9156-y
– volume: 15
  start-page: 641
  year: 1967
  ident: R23
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0115056
– volume: 10
  start-page: 415
  year: 2014
  ident: R40
  publication-title: Pac. J. Optim.
– volume: 29
  start-page: 743
  year: 2019
  ident: R3
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1147330
– volume: 21
  start-page: 1523
  year: 2011
  ident: R21
  publication-title: SIAM J. Optim.
  doi: 10.1137/09075367X
– volume: 84
  start-page: 155
  year: 2022
  ident: R7
  publication-title: U.P.B. Sci. Bull. Ser. A
– volume: 22
  start-page: 1245
  year: 2018
  ident: R19
  publication-title: Taiwan. J. Math. Math. Soc. Republic China
– volume: 196
  start-page: 49
  year: 2009
  ident: R39
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2008.03.012
– ident: R2
– volume: 5
  start-page: 91
  year: 2014
  ident: R31
  publication-title: J. Nonlinear Anal. Optim.
– volume: 176
  start-page: 46
  year: 2007
  ident: R37
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.09.007
– ident: R11
SSID ssib051866905
ssib051327486
ssj0003353
ssib050921426
Score 2.334428
Snippet The growing dependence on optimization models in decision-making has created a demand for tools that can facilitate the formulation and resolution of a broader...
SourceID crossref
SourceType Index Database
StartPage 4259
Title First and second order necessary optimality conditions for multiobjective programming with interval-valued objective functions on Riemannian manifolds
Volume 58
WOSCitedRecordID wos001335541500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2804-7303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051866905
  issn: 0399-0559
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lj9MwEMetsnCAA-Ip3rIEtyrZPOzEOVZoq0WCBVUL2ltlO7YaSJOlLcue-Bh8LD4TYzsP7-5lOXBo1LpJG3l-Go_jmb8RepMkkRQyU4EspQ4AijJgvFQBK2OdAV8lsXsDfnmfHx2xk5Pi02Typ6-FOavzpmHn58XpfzU1tIGxTensP5h7-FFogPdgdDiC2eF4LcPPKwjo7JrA1kx2y6lV15w2yhQEmBy5FrzE2oXf5nuXs2XTDW12YSu-OifY526th-e1lU2Q5HVgJMIhUh1PNcNjl1PXTBeVWputkMB1GHUN3daumrgPghfhLHwXLsKPoYlaARp4wV25NXtHpEm-Gdf7V9wOFYdVbYBarXk5EP3d7VgwnX1b1WPzTO-4cKVIq598u_KfbSRkSN4aarqMRgLtNMOVbUtYRALwS6nvwynzWKWeQwb6Cm9wJ4nbbebKwAG-CQxrSovm5kZip5p9UZ_70rg5ZDPadXwaLzftsrv2BrqZ5LQwKYYffh30_g1iMyNwN4R_NE6TnDDvM8uyIhqnb2nqVFT7XujldWm8v2n3u__yAiovMjq-h-52Uxo8cyjeRxPVPEB3PKHLh-i3hRIDlNhBiS2UeIASj1DiEUoMUOKLUGIPSmygxJegxOOpA5S4bfAIJR6gfIQ-zw-O3x4G3Y4ggYRpwi4oRJ5p6CGm8yzSuuSRjKgoGRGEC8mhY6SghSYQmmWCx4qplEVapImEiQXRefoY7TVto54gHOWSxeC-MpVIomLBJRWUSqYzUhQ8Zk_R675bl6dO-GV51dDPrnXWc3R7pPsF2tttfqiX6JY821XbzSvLyF_osKfD
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+and+second+order+necessary+optimality+conditions+for+multiobjective+programming+with+interval-valued+objective+functions+on+Riemannian+manifolds&rft.jtitle=R.A.I.R.O.+Recherche+op%C3%A9rationnelle&rft.au=Bhat%2C+Hilal+Ahmad&rft.au=Iqbal%2C+Akhlad&rft.au=Aftab%2C+Mahwash&rft.date=2024-09-01&rft.issn=0399-0559&rft.eissn=2804-7303&rft.volume=58&rft.issue=5&rft.spage=4259&rft.epage=4276&rft_id=info:doi/10.1051%2Fro%2F2024157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_ro_2024157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0399-0559&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0399-0559&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0399-0559&client=summon