An approach to distributed asynchronous multi‐sensor fusion utilising data compensation algorithm
Multi‐sensor networks often encounter challenges such as inconsistent sampling times among local sensors and data loss during transmission. To address these issues, this paper employs a data loss compensation strategy to reconstruct missing data information. It designs the state estimation of local...
Saved in:
| Published in: | IET radar, sonar & navigation Vol. 19; no. 1 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.01.2025
|
| ISSN: | 1751-8784, 1751-8792 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Multi‐sensor networks often encounter challenges such as inconsistent sampling times among local sensors and data loss during transmission. To address these issues, this paper employs a data loss compensation strategy to reconstruct missing data information. It designs the state estimation of local sensors utilising iterative state equations, leveraging multistep prediction techniques to estimate sensor states at unsampled points, thereby transforming the asynchronous sensor network system into a synchronous one. Furthermore, the projection theorem is applied to determine the fusion weights of local sensors, grounded on the principle of square‐averaging significance. Ultimately, data information pertaining to the same target is fused through arithmetic averaging, guided by distance correlation. Simulation outcomes demonstrate that the proposed algorithm balances estimation accuracy with communication overhead, achieved by designing an optimal number of communication iterations. |
|---|---|
| AbstractList | Multi‐sensor networks often encounter challenges such as inconsistent sampling times among local sensors and data loss during transmission. To address these issues, this paper employs a data loss compensation strategy to reconstruct missing data information. It designs the state estimation of local sensors utilising iterative state equations, leveraging multistep prediction techniques to estimate sensor states at unsampled points, thereby transforming the asynchronous sensor network system into a synchronous one. Furthermore, the projection theorem is applied to determine the fusion weights of local sensors, grounded on the principle of square‐averaging significance. Ultimately, data information pertaining to the same target is fused through arithmetic averaging, guided by distance correlation. Simulation outcomes demonstrate that the proposed algorithm balances estimation accuracy with communication overhead, achieved by designing an optimal number of communication iterations. |
| Author | Jin, Zhenlu Zhang, Qin Wang, Kuiwu Fu, Xiaolong |
| Author_xml | – sequence: 1 givenname: Kuiwu orcidid: 0000-0002-8847-2672 surname: Wang fullname: Wang, Kuiwu organization: Air Defense and Antimissile Defense College Air Force Engineering University Xi'an China – sequence: 2 givenname: Qin surname: Zhang fullname: Zhang, Qin organization: Air Defense and Antimissile Defense College Air Force Engineering University Xi'an China – sequence: 3 givenname: Zhenlu surname: Jin fullname: Jin, Zhenlu organization: Aviation Engineering College Air Force Engineering University Xi'an China – sequence: 4 givenname: Xiaolong surname: Fu fullname: Fu, Xiaolong organization: Air Defense and Antimissile Defense College Air Force Engineering University Xi'an China |
| BookMark | eNo9kLtOwzAYRi1UJNrCwhN4RkrxLU48VhU3qRILzNFvx2mNEjuynaEbj8Az8iQQQEzfJx3pDGeFFj54i9A1JRtKhLqNybMNZVLxM7SkVUmLulJs8f9rcYFWKb0RUpZSqCUyW49hHGMAc8Q54NalHJ2esm0xpJM3xxh8mBIepj67z_ePZH0KEXdTcsHjKbveJecPuIUM2IRh_OaQZwb9IUSXj8MlOu-gT_bqb9fo9f7uZfdY7J8fnnbbfWEYk7komZai67paGa5MzWouJadQQau40sJKJUhZWcZbpZUVTLVS1ECIZloBWMrX6ObXa2JIKdquGaMbIJ4aSpo5TzPnaX7y8C-xrV36 |
| Cites_doi | 10.1109/tpami.2015.2484339 10.1109/taes.2022.3207981 10.1109/tsp.2019.2946023 10.1080/00207170902906132 10.1109/tsp.2019.2957638 10.1109/ChiCC.2015.7259942 10.1016/j.sigpro.2019.01.028 10.1109/tsp.2018.2880704 10.1109/taes.2003.1261119 10.1016/j.automatica.2012.06.027 10.1109/tits.2023.3294519 10.1016/j.sigpro.2022.108739 10.1109/tsp.2004.836538 10.1016/j.sigpro.2019.107246 10.1002/acs.2569 10.1109/maes.2005.1499275 10.3390/s16081155 10.1109/taes.2007.4441756 10.1016/j.inffus.2019.11.001 10.1109/SDF.2013.6698250 10.1016/j.inffus.2017.03.006 10.23919/FUSION43075.2019.9011441 10.1109/tsipn.2016.2631944 10.1109/jsen.2021.3128226 10.1109/tmm.2019.2937185 10.1016/j.ces.2018.04.018 10.1016/j.sigpro.2021.108024 10.1109/taes.2018.2882960 10.1109/maes.2004.1263228 10.1016/j.sysconle.2004.02.022 10.1109/tie.2016.2611458 10.1109/taes.2024.3359592 10.1109/lsp.2019.2950588 10.1109/taes.2018.2796478 10.1016/j.inffus.2020.03.005 10.1016/j.ifacol.2016.03.076 10.1109/7.259528 10.1109/joe.1983.1145560 10.1109/lsp.2013.2283735 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1049/rsn2.12693 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8792 |
| ExternalDocumentID | 10_1049_rsn2_12693 |
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 4IJ 6IK 8FE 8FG 8VB 96U AAHJG AAJGR AAMMB AAYXX ABJCF ABMDY ABQXS ACCMX ACESK ACGFS ACIWK ACXQS ADEYR AEFGJ AEGXH AENEX AFAZI AFFHD AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CITATION DU5 EBS EJD F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IDLOA IGS IMI IPLJI ITC K1G L6V LAI M43 M7S MCNEO MS~ O9- OK1 P62 PHGZM PHGZT PQGLB PTHSS QWB RNS ROL RUI S0W U5U UNMZH WIN ZL0 |
| ID | FETCH-LOGICAL-c226t-52b64fff89c39c82836631a7ad939b4e694057e23d9b9e429d648a00b2b9aae13 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001384951100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-8784 |
| IngestDate | Wed Oct 29 21:07:19 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c226t-52b64fff89c39c82836631a7ad939b4e694057e23d9b9e429d648a00b2b9aae13 |
| ORCID | 0000-0002-8847-2672 |
| OpenAccessLink | https://doi.org/10.1049/rsn2.12693 |
| ParticipantIDs | crossref_primary_10_1049_rsn2_12693 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IET radar, sonar & navigation |
| PublicationYear | 2025 |
| References | e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 Yan L. (e_1_2_12_37_1) 2011 e_1_2_12_38_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_20_1 e_1_2_12_41_1 Bar‐Shalom Y. (e_1_2_12_11_1) 1988 e_1_2_12_21_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_25_1 e_1_2_12_26_1 e_1_2_12_47_1 Chen H. (e_1_2_12_9_1) 2016; 42 Xiao‐Jun Y. (e_1_2_12_8_1) 2012; 48 e_1_2_12_40_1 Li T.C. (e_1_2_12_29_1) 2020; 68 e_1_2_12_27_1 e_1_2_12_28_1 Zheng‐Jie L. (e_1_2_12_7_1) 2019; 20 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 Li G. (e_1_2_12_44_1) 2020 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_10_1 |
| References_xml | – ident: e_1_2_12_4_1 doi: 10.1109/tpami.2015.2484339 – ident: e_1_2_12_43_1 doi: 10.1109/taes.2022.3207981 – ident: e_1_2_12_5_1 doi: 10.1109/tsp.2019.2946023 – start-page: 1 volume-title: 2020 IEEE Radar Conference (RadarConf20) year: 2020 ident: e_1_2_12_44_1 – ident: e_1_2_12_36_1 doi: 10.1080/00207170902906132 – ident: e_1_2_12_24_1 doi: 10.1109/tsp.2019.2957638 – ident: e_1_2_12_40_1 doi: 10.1109/ChiCC.2015.7259942 – ident: e_1_2_12_45_1 doi: 10.1016/j.sigpro.2019.01.028 – volume-title: Tracking and Data Association year: 1988 ident: e_1_2_12_11_1 – ident: e_1_2_12_22_1 doi: 10.1109/tsp.2018.2880704 – ident: e_1_2_12_17_1 doi: 10.1109/taes.2003.1261119 – ident: e_1_2_12_38_1 doi: 10.1016/j.automatica.2012.06.027 – ident: e_1_2_12_2_1 doi: 10.1109/tits.2023.3294519 – ident: e_1_2_12_27_1 doi: 10.1016/j.sigpro.2022.108739 – ident: e_1_2_12_35_1 doi: 10.1109/tsp.2004.836538 – ident: e_1_2_12_25_1 doi: 10.1016/j.sigpro.2019.107246 – ident: e_1_2_12_39_1 doi: 10.1002/acs.2569 – ident: e_1_2_12_13_1 doi: 10.1109/maes.2005.1499275 – volume: 20 start-page: 76 issue: 5 year: 2019 ident: e_1_2_12_7_1 article-title: Multi‐target tracking power allocation optimization algorithm based on centralized MIMO radar publication-title: J. Air Force Eng. Univ. – ident: e_1_2_12_41_1 doi: 10.3390/s16081155 – ident: e_1_2_12_20_1 doi: 10.1109/taes.2007.4441756 – ident: e_1_2_12_6_1 doi: 10.1016/j.inffus.2019.11.001 – ident: e_1_2_12_12_1 doi: 10.1109/SDF.2013.6698250 – volume: 68 start-page: 2883 year: 2020 ident: e_1_2_12_29_1 article-title: On arithmetic average fusion and its application for distributed multi‐Bernoulli multi‐target tracking publication-title: IEEE Trans. Signal Process. – ident: e_1_2_12_10_1 doi: 10.1016/j.inffus.2017.03.006 – ident: e_1_2_12_19_1 doi: 10.23919/FUSION43075.2019.9011441 – ident: e_1_2_12_46_1 doi: 10.1109/tsipn.2016.2631944 – ident: e_1_2_12_42_1 doi: 10.1109/jsen.2021.3128226 – volume: 48 start-page: 1 issue: 11 year: 2012 ident: e_1_2_12_8_1 article-title: Review of distributed decision fusion in wireless sensor networks publication-title: Comput. Eng. Appl. – ident: e_1_2_12_18_1 doi: 10.1109/tmm.2019.2937185 – ident: e_1_2_12_33_1 doi: 10.1016/j.ces.2018.04.018 – ident: e_1_2_12_23_1 doi: 10.1016/j.sigpro.2021.108024 – ident: e_1_2_12_30_1 doi: 10.1109/taes.2018.2882960 – ident: e_1_2_12_15_1 doi: 10.1109/maes.2004.1263228 – ident: e_1_2_12_47_1 doi: 10.1016/j.sysconle.2004.02.022 – ident: e_1_2_12_32_1 doi: 10.1109/tie.2016.2611458 – ident: e_1_2_12_26_1 doi: 10.1109/taes.2024.3359592 – volume: 42 start-page: 34 issue: 4 year: 2016 ident: e_1_2_12_9_1 article-title: Sensor control strategy for maneuvering multi‐target tracking publication-title: Acta Autom. Sin. – ident: e_1_2_12_28_1 doi: 10.1109/lsp.2019.2950588 – ident: e_1_2_12_16_1 doi: 10.1109/taes.2018.2796478 – ident: e_1_2_12_3_1 doi: 10.1016/j.inffus.2020.03.005 – ident: e_1_2_12_31_1 doi: 10.1016/j.ifacol.2016.03.076 – ident: e_1_2_12_34_1 doi: 10.1109/7.259528 – ident: e_1_2_12_14_1 doi: 10.1109/joe.1983.1145560 – start-page: 4977 volume-title: Proceedings of the 30th Chinese Control Conference year: 2011 ident: e_1_2_12_37_1 – ident: e_1_2_12_21_1 doi: 10.1109/lsp.2013.2283735 |
| SSID | ssj0055649 |
| Score | 2.4080215 |
| Snippet | Multi‐sensor networks often encounter challenges such as inconsistent sampling times among local sensors and data loss during transmission. To address these... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | An approach to distributed asynchronous multi‐sensor fusion utilising data compensation algorithm |
| Volume | 19 |
| WOSCitedRecordID | wos001384951100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Journals customDbUrl: eissn: 1751-8792 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055649 issn: 1751-8784 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8792 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055649 issn: 1751-8784 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwgEOqLzEq8gS3FYpGzuJ4-MKtaKAViAtdMVlZSdOG2nxVtlkKTcO_AB-Y39Jx3aSdbuXcuASRY7zUObT-JvJ5BuE3khKFQ9JEYREFEGUxCwQRSoCWFyY6T81ckU03z6xySSdzfjnweBP9y_MesG0Ts_P-dl_NTWMgbHNr7P_YO7-ojAA-2B02ILZYXsjw491LxRuiGVulHFNUytglmL1S2dGDdfUvdpSwr7WYQXh7LIaFo3Jng3h8RalzSKYClJbdw7HHVbE4mRZlfXpD5_XHh1Mh5XIXbW2YfeubYcWayvhsfnWf9zmpz825c9mK2v9pewnfnDiBt9PlV70Ew8bMzYrBbjsdsltMxYk9jIWzsmyOAQv7FrD7St_jF_1zPw6ArccPgQ4YJBqpcl-SBLXbPGqqva11a6vQbRf3yM-N-fO7bm30G3CYm584_HRpFvP4zixQVT_1J3IbcTfbu7r0RqPn0x30f02sMBjB4gHaKD0Q3TPk5t8hLKxxh00cL3EHjSwDw1soXHx-68DBXagwD0osAEF9kGBe1A8Rl8PD6bv3gdtk40gA-ZdBzGRSVQURcozyjOIvylw0FAwkXPKZaQSbii9IjTnkitgL3kSpWI0kkRyIVRIn6AdvdTqKcKSGfppQupcRJLRNAsjQYo4EaksUkqfodfdO5qfOS2V-bYVnt9o1gt0dwOtl2inrhq1h-5k67pcVa-sAS8BwEJuAQ |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+to+distributed+asynchronous+multi%E2%80%90sensor+fusion+utilising+data+compensation+algorithm&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Wang%2C+Kuiwu&rft.au=Zhang%2C+Qin&rft.au=Jin%2C+Zhenlu&rft.au=Fu%2C+Xiaolong&rft.date=2025-01-01&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Frsn2.12693&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_rsn2_12693 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon |