An approach to distributed asynchronous multi‐sensor fusion utilising data compensation algorithm

Multi‐sensor networks often encounter challenges such as inconsistent sampling times among local sensors and data loss during transmission. To address these issues, this paper employs a data loss compensation strategy to reconstruct missing data information. It designs the state estimation of local...

Full description

Saved in:
Bibliographic Details
Published in:IET radar, sonar & navigation Vol. 19; no. 1
Main Authors: Wang, Kuiwu, Zhang, Qin, Jin, Zhenlu, Fu, Xiaolong
Format: Journal Article
Language:English
Published: 01.01.2025
ISSN:1751-8784, 1751-8792
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi‐sensor networks often encounter challenges such as inconsistent sampling times among local sensors and data loss during transmission. To address these issues, this paper employs a data loss compensation strategy to reconstruct missing data information. It designs the state estimation of local sensors utilising iterative state equations, leveraging multistep prediction techniques to estimate sensor states at unsampled points, thereby transforming the asynchronous sensor network system into a synchronous one. Furthermore, the projection theorem is applied to determine the fusion weights of local sensors, grounded on the principle of square‐averaging significance. Ultimately, data information pertaining to the same target is fused through arithmetic averaging, guided by distance correlation. Simulation outcomes demonstrate that the proposed algorithm balances estimation accuracy with communication overhead, achieved by designing an optimal number of communication iterations.
AbstractList Multi‐sensor networks often encounter challenges such as inconsistent sampling times among local sensors and data loss during transmission. To address these issues, this paper employs a data loss compensation strategy to reconstruct missing data information. It designs the state estimation of local sensors utilising iterative state equations, leveraging multistep prediction techniques to estimate sensor states at unsampled points, thereby transforming the asynchronous sensor network system into a synchronous one. Furthermore, the projection theorem is applied to determine the fusion weights of local sensors, grounded on the principle of square‐averaging significance. Ultimately, data information pertaining to the same target is fused through arithmetic averaging, guided by distance correlation. Simulation outcomes demonstrate that the proposed algorithm balances estimation accuracy with communication overhead, achieved by designing an optimal number of communication iterations.
Author Jin, Zhenlu
Zhang, Qin
Wang, Kuiwu
Fu, Xiaolong
Author_xml – sequence: 1
  givenname: Kuiwu
  orcidid: 0000-0002-8847-2672
  surname: Wang
  fullname: Wang, Kuiwu
  organization: Air Defense and Antimissile Defense College Air Force Engineering University Xi'an China
– sequence: 2
  givenname: Qin
  surname: Zhang
  fullname: Zhang, Qin
  organization: Air Defense and Antimissile Defense College Air Force Engineering University Xi'an China
– sequence: 3
  givenname: Zhenlu
  surname: Jin
  fullname: Jin, Zhenlu
  organization: Aviation Engineering College Air Force Engineering University Xi'an China
– sequence: 4
  givenname: Xiaolong
  surname: Fu
  fullname: Fu, Xiaolong
  organization: Air Defense and Antimissile Defense College Air Force Engineering University Xi'an China
BookMark eNo9kLtOwzAYRi1UJNrCwhN4RkrxLU48VhU3qRILzNFvx2mNEjuynaEbj8Az8iQQQEzfJx3pDGeFFj54i9A1JRtKhLqNybMNZVLxM7SkVUmLulJs8f9rcYFWKb0RUpZSqCUyW49hHGMAc8Q54NalHJ2esm0xpJM3xxh8mBIepj67z_ePZH0KEXdTcsHjKbveJecPuIUM2IRh_OaQZwb9IUSXj8MlOu-gT_bqb9fo9f7uZfdY7J8fnnbbfWEYk7komZai67paGa5MzWouJadQQau40sJKJUhZWcZbpZUVTLVS1ECIZloBWMrX6ObXa2JIKdquGaMbIJ4aSpo5TzPnaX7y8C-xrV36
Cites_doi 10.1109/tpami.2015.2484339
10.1109/taes.2022.3207981
10.1109/tsp.2019.2946023
10.1080/00207170902906132
10.1109/tsp.2019.2957638
10.1109/ChiCC.2015.7259942
10.1016/j.sigpro.2019.01.028
10.1109/tsp.2018.2880704
10.1109/taes.2003.1261119
10.1016/j.automatica.2012.06.027
10.1109/tits.2023.3294519
10.1016/j.sigpro.2022.108739
10.1109/tsp.2004.836538
10.1016/j.sigpro.2019.107246
10.1002/acs.2569
10.1109/maes.2005.1499275
10.3390/s16081155
10.1109/taes.2007.4441756
10.1016/j.inffus.2019.11.001
10.1109/SDF.2013.6698250
10.1016/j.inffus.2017.03.006
10.23919/FUSION43075.2019.9011441
10.1109/tsipn.2016.2631944
10.1109/jsen.2021.3128226
10.1109/tmm.2019.2937185
10.1016/j.ces.2018.04.018
10.1016/j.sigpro.2021.108024
10.1109/taes.2018.2882960
10.1109/maes.2004.1263228
10.1016/j.sysconle.2004.02.022
10.1109/tie.2016.2611458
10.1109/taes.2024.3359592
10.1109/lsp.2019.2950588
10.1109/taes.2018.2796478
10.1016/j.inffus.2020.03.005
10.1016/j.ifacol.2016.03.076
10.1109/7.259528
10.1109/joe.1983.1145560
10.1109/lsp.2013.2283735
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1049/rsn2.12693
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8792
ExternalDocumentID 10_1049_rsn2_12693
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHJG
AAJGR
AAMMB
AAYXX
ABJCF
ABMDY
ABQXS
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADEYR
AEFGJ
AEGXH
AENEX
AFAZI
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CITATION
DU5
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IDLOA
IGS
IMI
IPLJI
ITC
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OK1
P62
PHGZM
PHGZT
PQGLB
PTHSS
QWB
RNS
ROL
RUI
S0W
U5U
UNMZH
WIN
ZL0
ID FETCH-LOGICAL-c226t-52b64fff89c39c82836631a7ad939b4e694057e23d9b9e429d648a00b2b9aae13
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001384951100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8784
IngestDate Wed Oct 29 21:07:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c226t-52b64fff89c39c82836631a7ad939b4e694057e23d9b9e429d648a00b2b9aae13
ORCID 0000-0002-8847-2672
OpenAccessLink https://doi.org/10.1049/rsn2.12693
ParticipantIDs crossref_primary_10_1049_rsn2_12693
PublicationCentury 2000
PublicationDate 2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationTitle IET radar, sonar & navigation
PublicationYear 2025
References e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
Yan L. (e_1_2_12_37_1) 2011
e_1_2_12_38_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_20_1
e_1_2_12_41_1
Bar‐Shalom Y. (e_1_2_12_11_1) 1988
e_1_2_12_21_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_25_1
e_1_2_12_26_1
e_1_2_12_47_1
Chen H. (e_1_2_12_9_1) 2016; 42
Xiao‐Jun Y. (e_1_2_12_8_1) 2012; 48
e_1_2_12_40_1
Li T.C. (e_1_2_12_29_1) 2020; 68
e_1_2_12_27_1
e_1_2_12_28_1
Zheng‐Jie L. (e_1_2_12_7_1) 2019; 20
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
Li G. (e_1_2_12_44_1) 2020
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_10_1
References_xml – ident: e_1_2_12_4_1
  doi: 10.1109/tpami.2015.2484339
– ident: e_1_2_12_43_1
  doi: 10.1109/taes.2022.3207981
– ident: e_1_2_12_5_1
  doi: 10.1109/tsp.2019.2946023
– start-page: 1
  volume-title: 2020 IEEE Radar Conference (RadarConf20)
  year: 2020
  ident: e_1_2_12_44_1
– ident: e_1_2_12_36_1
  doi: 10.1080/00207170902906132
– ident: e_1_2_12_24_1
  doi: 10.1109/tsp.2019.2957638
– ident: e_1_2_12_40_1
  doi: 10.1109/ChiCC.2015.7259942
– ident: e_1_2_12_45_1
  doi: 10.1016/j.sigpro.2019.01.028
– volume-title: Tracking and Data Association
  year: 1988
  ident: e_1_2_12_11_1
– ident: e_1_2_12_22_1
  doi: 10.1109/tsp.2018.2880704
– ident: e_1_2_12_17_1
  doi: 10.1109/taes.2003.1261119
– ident: e_1_2_12_38_1
  doi: 10.1016/j.automatica.2012.06.027
– ident: e_1_2_12_2_1
  doi: 10.1109/tits.2023.3294519
– ident: e_1_2_12_27_1
  doi: 10.1016/j.sigpro.2022.108739
– ident: e_1_2_12_35_1
  doi: 10.1109/tsp.2004.836538
– ident: e_1_2_12_25_1
  doi: 10.1016/j.sigpro.2019.107246
– ident: e_1_2_12_39_1
  doi: 10.1002/acs.2569
– ident: e_1_2_12_13_1
  doi: 10.1109/maes.2005.1499275
– volume: 20
  start-page: 76
  issue: 5
  year: 2019
  ident: e_1_2_12_7_1
  article-title: Multi‐target tracking power allocation optimization algorithm based on centralized MIMO radar
  publication-title: J. Air Force Eng. Univ.
– ident: e_1_2_12_41_1
  doi: 10.3390/s16081155
– ident: e_1_2_12_20_1
  doi: 10.1109/taes.2007.4441756
– ident: e_1_2_12_6_1
  doi: 10.1016/j.inffus.2019.11.001
– ident: e_1_2_12_12_1
  doi: 10.1109/SDF.2013.6698250
– volume: 68
  start-page: 2883
  year: 2020
  ident: e_1_2_12_29_1
  article-title: On arithmetic average fusion and its application for distributed multi‐Bernoulli multi‐target tracking
  publication-title: IEEE Trans. Signal Process.
– ident: e_1_2_12_10_1
  doi: 10.1016/j.inffus.2017.03.006
– ident: e_1_2_12_19_1
  doi: 10.23919/FUSION43075.2019.9011441
– ident: e_1_2_12_46_1
  doi: 10.1109/tsipn.2016.2631944
– ident: e_1_2_12_42_1
  doi: 10.1109/jsen.2021.3128226
– volume: 48
  start-page: 1
  issue: 11
  year: 2012
  ident: e_1_2_12_8_1
  article-title: Review of distributed decision fusion in wireless sensor networks
  publication-title: Comput. Eng. Appl.
– ident: e_1_2_12_18_1
  doi: 10.1109/tmm.2019.2937185
– ident: e_1_2_12_33_1
  doi: 10.1016/j.ces.2018.04.018
– ident: e_1_2_12_23_1
  doi: 10.1016/j.sigpro.2021.108024
– ident: e_1_2_12_30_1
  doi: 10.1109/taes.2018.2882960
– ident: e_1_2_12_15_1
  doi: 10.1109/maes.2004.1263228
– ident: e_1_2_12_47_1
  doi: 10.1016/j.sysconle.2004.02.022
– ident: e_1_2_12_32_1
  doi: 10.1109/tie.2016.2611458
– ident: e_1_2_12_26_1
  doi: 10.1109/taes.2024.3359592
– volume: 42
  start-page: 34
  issue: 4
  year: 2016
  ident: e_1_2_12_9_1
  article-title: Sensor control strategy for maneuvering multi‐target tracking
  publication-title: Acta Autom. Sin.
– ident: e_1_2_12_28_1
  doi: 10.1109/lsp.2019.2950588
– ident: e_1_2_12_16_1
  doi: 10.1109/taes.2018.2796478
– ident: e_1_2_12_3_1
  doi: 10.1016/j.inffus.2020.03.005
– ident: e_1_2_12_31_1
  doi: 10.1016/j.ifacol.2016.03.076
– ident: e_1_2_12_34_1
  doi: 10.1109/7.259528
– ident: e_1_2_12_14_1
  doi: 10.1109/joe.1983.1145560
– start-page: 4977
  volume-title: Proceedings of the 30th Chinese Control Conference
  year: 2011
  ident: e_1_2_12_37_1
– ident: e_1_2_12_21_1
  doi: 10.1109/lsp.2013.2283735
SSID ssj0055649
Score 2.4080215
Snippet Multi‐sensor networks often encounter challenges such as inconsistent sampling times among local sensors and data loss during transmission. To address these...
SourceID crossref
SourceType Index Database
Title An approach to distributed asynchronous multi‐sensor fusion utilising data compensation algorithm
Volume 19
WOSCitedRecordID wos001384951100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Journals
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwgEOqLzEq8gS3FYpGzuJ4-MKtaKAViAtdMVlZSdOG2nxVtlkKTcO_AB-Y39Jx3aSdbuXcuASRY7zUObT-JvJ5BuE3khKFQ9JEYREFEGUxCwQRSoCWFyY6T81ckU03z6xySSdzfjnweBP9y_MesG0Ts_P-dl_NTWMgbHNr7P_YO7-ojAA-2B02ILZYXsjw491LxRuiGVulHFNUytglmL1S2dGDdfUvdpSwr7WYQXh7LIaFo3Jng3h8RalzSKYClJbdw7HHVbE4mRZlfXpD5_XHh1Mh5XIXbW2YfeubYcWayvhsfnWf9zmpz825c9mK2v9pewnfnDiBt9PlV70Ew8bMzYrBbjsdsltMxYk9jIWzsmyOAQv7FrD7St_jF_1zPw6ArccPgQ4YJBqpcl-SBLXbPGqqva11a6vQbRf3yM-N-fO7bm30G3CYm584_HRpFvP4zixQVT_1J3IbcTfbu7r0RqPn0x30f02sMBjB4gHaKD0Q3TPk5t8hLKxxh00cL3EHjSwDw1soXHx-68DBXagwD0osAEF9kGBe1A8Rl8PD6bv3gdtk40gA-ZdBzGRSVQURcozyjOIvylw0FAwkXPKZaQSbii9IjTnkitgL3kSpWI0kkRyIVRIn6AdvdTqKcKSGfppQupcRJLRNAsjQYo4EaksUkqfodfdO5qfOS2V-bYVnt9o1gt0dwOtl2inrhq1h-5k67pcVa-sAS8BwEJuAQ
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+to+distributed+asynchronous+multi%E2%80%90sensor+fusion+utilising+data+compensation+algorithm&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Wang%2C+Kuiwu&rft.au=Zhang%2C+Qin&rft.au=Jin%2C+Zhenlu&rft.au=Fu%2C+Xiaolong&rft.date=2025-01-01&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Frsn2.12693&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_rsn2_12693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon