Research on Data Mining of Network Security Hazards Based on Machine Learning Algorithms
With the development and progress of science and technology, an excellent algorithm for data mining of network security hazards is sought, which can effectively discover potential dangers in the network. Based on the XGBoost machine learning algorithm, the differential evolution (DE) algorithm is us...
Gespeichert in:
| Veröffentlicht in: | Applied mathematics and nonlinear sciences Jg. 9; H. 1 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Beirut
Sciendo
01.01.2024
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Schlagworte: | |
| ISSN: | 2444-8656, 2444-8656 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the development and progress of science and technology, an excellent algorithm for data mining of network security hazards is sought, which can effectively discover potential dangers in the network. Based on the XGBoost machine learning algorithm, the differential evolution (DE) algorithm is used to train the XGBoost algorithm, and then an optimized DE-XGBoost algorithm is proposed. The construction of an optimal mining and evaluation model is based on this. The DE-XGBoost algorithm’s performance is assessed against cybersecurity hazards using nominal-type posture indicators when data mining cybersecurity hazards. The experimental results show that the DE-XGboost algorithm has the lowest execution time and memory usage during mining, 5min and 82MB respectively, when the number of records in the dataset is 3,500. The DE-XGboost algorithm averages a digging full rate of 92.3%, which is the highest in terms of digging full rate. The posture evaluation experiment uses the DE-XGboost model to predict the posture value that matches the real value with the maximum number of sample points, which is 10 samples. The DE-XGboost algorithm is the perfect choice for cybersecurity data mining due to its optimal performance and best mining effect. |
|---|---|
| AbstractList | With the development and progress of science and technology, an excellent algorithm for data mining of network security hazards is sought, which can effectively discover potential dangers in the network. Based on the XGBoost machine learning algorithm, the differential evolution (DE) algorithm is used to train the XGBoost algorithm, and then an optimized DE-XGBoost algorithm is proposed. The construction of an optimal mining and evaluation model is based on this. The DE-XGBoost algorithm’s performance is assessed against cybersecurity hazards using nominal-type posture indicators when data mining cybersecurity hazards. The experimental results show that the DE-XGboost algorithm has the lowest execution time and memory usage during mining, 5min and 82MB respectively, when the number of records in the dataset is 3,500. The DE-XGboost algorithm averages a digging full rate of 92.3%, which is the highest in terms of digging full rate. The posture evaluation experiment uses the DE-XGboost model to predict the posture value that matches the real value with the maximum number of sample points, which is 10 samples. The DE-XGboost algorithm is the perfect choice for cybersecurity data mining due to its optimal performance and best mining effect. |
| Author | Wu, Liwan Yang, Chong |
| Author_xml | – sequence: 1 givenname: Liwan surname: Wu fullname: Wu, Liwan organization: Guangzhou Health Science College, Guangzhou, Guangdong, 510450, China – sequence: 2 givenname: Chong surname: Yang fullname: Yang, Chong email: yc_510450@163.com organization: Guangzhou Health Science College, Guangzhou, Guangdong, 510450, China |
| BookMark | eNptkEtLAzEURoNUsNZuXQdcT81r0smy1keFVsEHuAtpkmmntklNZij115uxgi5c3XvhO9-Fcwo6zjsLwDlGA8KGxaXauJgRRFiG0JAdgS5hjGUFz3nnz34C-jGuEEKEYso56YK3JxutCnoJvYPXqlZwVrnKLaAv4YOtdz68w2erm1DVezhRnyqYCK9UtKYFZkovK2fhNFV8U6P1wqfochPPwHGp1tH2f2YPvN7evIwn2fTx7n48mmaaEI4zZXQxVznmVCFasKEoKdUEY8QIJrkgghBjVK41y-l8bkoqtBaGWUY4tTbdPXBx6N0G_9HYWMuVb4JLLyXFAuOc5wKl1OCQ0sHHGGwpt6HaqLCXGMlWoGwFylagbAUmoDgAO7WubTB2EZp9Wn7b_wcFpl9p2nfg |
| Cites_doi | 10.1109/MIS.2017.2581326 10.1016/j.eswa.2021.115383 10.1016/j.eswa.2017.08.030 10.1109/MC.2018.2141032 10.1016/j.comcom.2020.07.039 10.1016/j.renene.2016.10.021 10.1016/j.cie.2017.04.017 10.1016/j.ijcip.2021.100408 |
| ContentType | Journal Article |
| Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.2478/amns-2024-0074 |
| DatabaseName | CrossRef ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2444-8656 |
| ExternalDocumentID | 10_2478_amns_2024_0074 10_2478_amns_2024_007491 |
| GroupedDBID | 9WM AATOW ABFKT ADBLJ AFFHD AFKRA AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BENPR CCPQU EBS M~E OK1 PHGZM PHGZT PIMPY QD8 SLJYH AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2261-adc8ba5163a038479f33c21104212592922dda5cc453bbdf39cc9d4e4263eedf3 |
| IEDL.DBID | PIMPY |
| ISSN | 2444-8656 |
| IngestDate | Sun Oct 19 01:31:47 EDT 2025 Sat Nov 29 05:04:35 EST 2025 Sat Nov 29 01:28:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2261-adc8ba5163a038479f33c21104212592922dda5cc453bbdf39cc9d4e4263eedf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3191156590?pq-origsite=%requestingapplication% |
| PQID | 3191156590 |
| PQPubID | 6761185 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3191156590 crossref_primary_10_2478_amns_2024_0074 walterdegruyter_journals_10_2478_amns_2024_007491 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Beirut |
| PublicationPlace_xml | – name: Beirut |
| PublicationTitle | Applied mathematics and nonlinear sciences |
| PublicationYear | 2024 |
| Publisher | Sciendo De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Publisher_xml | – name: Sciendo – name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| References | 2024101012595824475_j_amns-2024-0074_ref_006 2024101012595824475_j_amns-2024-0074_ref_005 2024101012595824475_j_amns-2024-0074_ref_004 2024101012595824475_j_amns-2024-0074_ref_003 2024101012595824475_j_amns-2024-0074_ref_009 2024101012595824475_j_amns-2024-0074_ref_008 2024101012595824475_j_amns-2024-0074_ref_007 2024101012595824475_j_amns-2024-0074_ref_002 2024101012595824475_j_amns-2024-0074_ref_001 2024101012595824475_j_amns-2024-0074_ref_012 2024101012595824475_j_amns-2024-0074_ref_011 2024101012595824475_j_amns-2024-0074_ref_010 |
| References_xml | – ident: 2024101012595824475_j_amns-2024-0074_ref_008 – ident: 2024101012595824475_j_amns-2024-0074_ref_010 doi: 10.1109/MIS.2017.2581326 – ident: 2024101012595824475_j_amns-2024-0074_ref_007 doi: 10.1016/j.eswa.2021.115383 – ident: 2024101012595824475_j_amns-2024-0074_ref_011 doi: 10.1016/j.eswa.2017.08.030 – ident: 2024101012595824475_j_amns-2024-0074_ref_001 doi: 10.1109/MC.2018.2141032 – ident: 2024101012595824475_j_amns-2024-0074_ref_002 doi: 10.1016/j.comcom.2020.07.039 – ident: 2024101012595824475_j_amns-2024-0074_ref_009 doi: 10.1016/j.renene.2016.10.021 – ident: 2024101012595824475_j_amns-2024-0074_ref_004 doi: 10.1016/j.cie.2017.04.017 – ident: 2024101012595824475_j_amns-2024-0074_ref_003 – ident: 2024101012595824475_j_amns-2024-0074_ref_012 – ident: 2024101012595824475_j_amns-2024-0074_ref_005 – ident: 2024101012595824475_j_amns-2024-0074_ref_006 doi: 10.1016/j.ijcip.2021.100408 |
| SSID | ssj0002313662 |
| Score | 2.2423851 |
| Snippet | With the development and progress of science and technology, an excellent algorithm for data mining of network security hazards is sought, which can... |
| SourceID | proquest crossref walterdegruyter |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | 05C85 Algorithms Cyber security Cybersecurity Data mining DE algorithm DE-XGBoost algorithm Machine learning XGBoost algorithm |
| Title | Research on Data Mining of Network Security Hazards Based on Machine Learning Algorithms |
| URI | https://reference-global.com/article/10.2478/amns-2024-0074 https://www.proquest.com/docview/3191156590 |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2444-8656 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002313662 issn: 2444-8656 databaseCode: PIMPY dateStart: 20160101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4oePACPiOKZA8mnhpK3z0ZUAgmQoiv4KnZR4smUpAWjf56d9qtRGM8eW83m53ZnW9nvv0G4MQxdGF7uqsxL-SaFbaYxiTM0FqOTnVuU59mwvP3V-5w6I3H_kg9j04UrbI4E7ODOld7Rt62PISbYsYxY96UjiOhjGP7-tn8RcMeUlhrVQ011qGMwlt6Ccqjy8Ho4SvnIrGM6ThGrt1oWK7XpNM4kY5iWBrG0u-xaQU4K29Z6VqEk8XyPS1KpVkE6lX_d-5bUFFIlLRz19mGtTDegapCpUTt-WQXxgU5j8xickFTSgZZUwkyi8gwJ5GTG9UFj_TpB77iIh0ZHAX-MMjImiFROq4T0n6eyMmkj9NkD-563dvzvqb6MWjcwDQVFdxj1JYIjuqmjGp-ZJocL5BYVbYlzjIMIajNuWWbjInI9Dn3hRWiJrwMxZG5D6V4FocHQKgEXp7HfCTJWRFzKMK-SEJJ4TLPdaManBaWCOa57EYgrytoswBtFqDNArRZDerFmgdq-yXBaolr0PphvNVXvw_otw7_HvIINnOPwTxMHUrpYhkewwZ_TZ-SRQPKne5wdN1QvvcJ5Z_p1A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9tQEB5BqAQXoC2oYX2HVj1ZOM_7AVWsSkQSRSqg9GTe5hQJHIgNiP4ofiMzXoioUG8cerdHem8-zXyzvBmArz63tRfagSVDoyzXtKQlkWZYLd8WtvJEJIrB8-fdoN8Ph8NoMANP9VsYaqusbWJhqPVYUY58B6GC5MX3IvvHza1FW6Ooulqv0ChhcWIeHzBky3Y7h6jfb5wfH50etK1qq4ClOCVbhFahFB7yEGE7aJujxHEUhUFUG_WQLXCutfCUcj1HSp04kVKRdg1NNkeHkjgodxbmXAS73YC5Qac3-PWS1UG25Pg-L6dDcjcId8R1miEUuWuRt37t_aaUdvGhKI5rM5rcPeZ1MbbwccdL_9vtLMNixabZXgn_jzBj0k-wVDFrVtmt7DMM6wZDNk7ZocgF6xWLMdg4Yf2yEZ79rDb5sbb4Qy_R2D46eE0_9IqGU8OqWbQjtnc1wsPnv6-zFTh7l_OtQiMdp-YLMIHkMQxlRI1-biJ9QdQ1QTqsAxkGQdKE77Wu45tydEiMIRehIiZUxISKmFDRhI1aq3FlQrJ4qtImtP6Cx_SrtwVGrbV_i9yG-fZprxt3O_2TdVgo8Ul5pQ1o5JM7swkf1H1-mU22KoQzuHhv2DwDmXg5Ag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Data+Mining+of+Network+Security+Hazards+Based+on+Machine+Learning+Algorithms&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Wu%2C+Liwan&rft.au=Yang%2C+Chong&rft.date=2024-01-01&rft.pub=De+Gruyter+Brill+Sp.+z+o.o.%2C+Paradigm+Publishing+Services&rft.eissn=2444-8656&rft.volume=9&rft.issue=1&rft_id=info:doi/10.2478%2Famns-2024-0074 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon |