Secrecy Throughput Maximization for IRS-aided MIMO Wireless Powered Communication Networks

In this paper, we consider deploying an intelligent reflecting surface (IRS) to enhance the downlink (DL) energy transfer and uplink (UL) information transmission efficiency for secure multiple-input multiple-output (MIMO) wireless powered communication networks (WPCNs). We aim to maximize the secre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on communications Ročník 70; číslo 11; s. 1
Hlavní autoři: Shi, Weiping, Wu, Qingqing, Xiao, Fu, Shu, Feng, Wang, Jiangzhou
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0090-6778, 1558-0857
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we consider deploying an intelligent reflecting surface (IRS) to enhance the downlink (DL) energy transfer and uplink (UL) information transmission efficiency for secure multiple-input multiple-output (MIMO) wireless powered communication networks (WPCNs). We aim to maximize the secrecy throughput of all users by jointly optimizing the DL/UL time allocation, the energy transmit covariance matrix of hybrid access point (AP), the information transmit beamforming matrix of users and the phase shifts of IRS in DL/UL, subject to constraints of energy/information transmit power at the hybrid AP/users and that of unit-modulus IRS phase shifts for DL/UL. To tackle the non-convex problem, we first transform the original problem into an equivalent form based on the mean-square error (MSE) method given time allocation, and then apply the alternating algorithm to update the optimization variables iteratively. Specifically, the energy covariance matrix and the information beamforming matrix are obtained based on the dual subgradient method. For the IRS phase shifts, we investigate two IRS beamforming reflection setups, namely different DL/UL IRS beamforming and identical DL/UL IRS beamforming. For the former case, the second-order cone programming technique and the Majorization-Minimization algorithm/element by element iterative algorithm are applied to obtain the DL and UL IRS phase shifts, respectively. For the latter case, the IRS phase shifts are obtained by the successive convex approximation technique. To further reduce the computational complexity of the single-user system, we derive the closed-form solutions of IRS phase shifts in each iteration for the two different reflection setups. Simulation results show that all the proposed algorithms can greatly improve the secrecy throughput compared to the conventional system without IRS.
AbstractList In this paper, we consider deploying an intelligent reflecting surface (IRS) to enhance the downlink (DL) energy transfer and uplink (UL) information transmission efficiency for secure multiple-input multiple-output (MIMO) wireless powered communication networks (WPCNs). We aim to maximize the secrecy throughput of all users by jointly optimizing the DL/UL time allocation, the energy transmit covariance matrix of hybrid access point (AP), the information transmit beamforming matrix of users and the phase shifts of IRS in DL/UL, subject to constraints of energy/information transmit power at the hybrid AP/users and that of unit-modulus IRS phase shifts for DL/UL. To tackle the non-convex problem, we first transform the original problem into an equivalent form based on the mean-square error (MSE) method given time allocation, and then apply the alternating algorithm to update the optimization variables iteratively. Specifically, the energy covariance matrix and the information beamforming matrix are obtained based on the dual subgradient method. For the IRS phase shifts, we investigate two IRS beamforming reflection setups, namely different DL/UL IRS beamforming and identical DL/UL IRS beamforming. For the former case, the second-order cone programming technique and the Majorization-Minimization algorithm/element by element iterative algorithm are applied to obtain the DL and UL IRS phase shifts, respectively. For the latter case, the IRS phase shifts are obtained by the successive convex approximation technique. To further reduce the computational complexity of the single-user system, we derive the closed-form solutions of IRS phase shifts in each iteration for the two different reflection setups. Simulation results show that all the proposed algorithms can greatly improve the secrecy throughput compared to the conventional system without IRS.
Author Shu, Feng
Shi, Weiping
Wu, Qingqing
Xiao, Fu
Wang, Jiangzhou
Author_xml – sequence: 1
  givenname: Weiping
  surname: Shi
  fullname: Shi, Weiping
  organization: School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Qingqing
  orcidid: 0000-0002-0043-3266
  surname: Wu
  fullname: Wu, Qingqing
  organization: Department of Electronic Engineering, Shanghai Jiao Tong University, China
– sequence: 3
  givenname: Fu
  orcidid: 0000-0003-1815-2793
  surname: Xiao
  fullname: Xiao, Fu
  organization: School of Computer, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 4
  givenname: Feng
  orcidid: 0000-0003-0073-1965
  surname: Shu
  fullname: Shu, Feng
  organization: School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 5
  givenname: Jiangzhou
  orcidid: 0000-0003-0881-3594
  surname: Wang
  fullname: Wang, Jiangzhou
  organization: School of Engineering and Digital Arts, University of Kent, Canterbury, U.K
BookMark eNp9kE1LAzEQhoMoWD_-gF4WPG-dJJtm9yjFj4JrRSuClyVNJhptNzXZpeqvd22LBw-eXhjmmZd59sh27Wsk5IhCn1IoTifDcVn2GTDW54wyybMt0qNC5CnkQm6THkAB6UDKfJfsxfgKABlw3iNP96gD6s9k8hJ8-_yyaJukVB9u7r5U43ydWB-S0d19qpxBk5Sjcpw8uoAzjDG59UsM3XTo5_O2dnpN3GCz9OEtHpAdq2YRDze5Tx4uzifDq_R6fDkanl2nmjHRpNryac6FktYYmBYAbGqMyWxBc8ELlFZzrVjRhTJW2EE-MELlCFRiR3HO98nJ-u4i-PcWY1O9-jbUXWXViZBCDrJMdFtsvaWDjzGgrRbBzVX4rChUPw6rlcPqx2G1cdhB-R9Iu2b1ZROUm_2PHq9Rh4i_XUVBuQDKvwFqnIJf
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TWC_2024_3478252
crossref_primary_10_1016_j_phycom_2025_102602
crossref_primary_10_1109_COMST_2024_3487112
crossref_primary_10_1109_TCOMM_2023_3347768
crossref_primary_10_1007_s11235_025_01309_8
crossref_primary_10_3390_electronics13071402
crossref_primary_10_1109_JIOT_2023_3326440
crossref_primary_10_1109_LWC_2024_3400974
crossref_primary_10_1109_TCOMM_2024_3351758
crossref_primary_10_1109_TWC_2024_3444032
crossref_primary_10_1109_TCOMM_2023_3343384
crossref_primary_10_1109_TWC_2024_3393621
crossref_primary_10_1109_ACCESS_2024_3525036
crossref_primary_10_1109_TGCN_2023_3341443
crossref_primary_10_1109_JSEN_2024_3521452
crossref_primary_10_1371_journal_pone_0327467
crossref_primary_10_1109_TMC_2025_3549445
crossref_primary_10_1109_JIOT_2025_3568827
crossref_primary_10_1109_TVT_2023_3279840
crossref_primary_10_1109_OJCOMS_2025_3526286
crossref_primary_10_1007_s11432_024_4102_3
crossref_primary_10_3390_drones7060403
crossref_primary_10_1109_JIOT_2025_3560827
crossref_primary_10_1002_dac_70233
crossref_primary_10_1007_s11432_024_4275_x
crossref_primary_10_1109_JIOT_2025_3584310
Cites_doi 10.1109/TWC.2020.3024860
10.1109/LWC.2020.2969629
10.1109/TWC.2015.2439673
10.1109/JSAC.2020.3000814
10.1109/JIOT.2020.3046929
10.1109/TVT.2016.2515607
10.1109/TCOMM.2020.3042275
10.1109/LCOMM.2020.3039811
10.1109/TSP.2011.2147784
10.1109/MCOM.001.1900107
10.1109/JSAC.2020.3000802
10.1109/TVT.2021.3096603
10.1109/MCOM.001.2001076
10.1109/TVT.2018.2852631
10.1109/TWC.2015.2502590
10.1109/ACCESS.2019.2915659
10.1109/JSAC.2018.2872372
10.1109/ACCESS.2018.2884953
10.1109/TWC.2019.2936025
10.1109/TWC.2022.3151624
10.1109/TWC.2015.2395414
10.1109/TWC.2013.112513.130760
10.1109/JIOT.2020.3045703
10.1109/TCOMM.2019.2958916
10.1109/JSAC.2018.2824231
10.1109/TCOMM.2014.2370035
10.1109/LCOMM.2020.3043475
10.1109/TWC.2019.2922609
10.1109/TSP.2014.2303422
10.1109/TWC.2020.3004330
10.1109/LWC.2021.3064992
10.1017/CBO9780511804441
10.1109/JIOT.2019.2913219
10.1109/TWC.2021.3133491
10.1109/MWC.001.1900534
10.1109/LWC.2019.2961656
10.1109/TWC.2020.2990766
10.1109/TCOMM.2020.3024621
10.1109/JSAC.2020.3007043
10.1109/LSP.2018.2890164
10.1109/TVT.2013.2285244
10.1109/TSP.2021.3073813
10.1109/TCOMM.2017.2664860
10.1109/JSYST.2018.2827077
10.1109/LWC.2021.3072502
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2022.3212734
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 1
ExternalDocumentID 10_1109_TCOMM_2022_3212734
9913501
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
AARMG
ABAZT
L7M
ID FETCH-LOGICAL-c225t-cf3b835a7fdd0b9002bddd4f918539e7fc3ca29fc3adf5f686d5a8e017e35a333
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000937284600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Mon Jun 30 10:10:45 EDT 2025
Sat Nov 29 04:08:24 EST 2025
Tue Nov 18 22:30:57 EST 2025
Tue Nov 25 14:44:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c225t-cf3b835a7fdd0b9002bddd4f918539e7fc3ca29fc3adf5f686d5a8e017e35a333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1815-2793
0000-0002-0043-3266
0000-0003-0881-3594
0000-0003-0073-1965
PQID 2737576445
PQPubID 85472
PageCount 1
ParticipantIDs crossref_primary_10_1109_TCOMM_2022_3212734
ieee_primary_9913501
proquest_journals_2737576445
crossref_citationtrail_10_1109_TCOMM_2022_3212734
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref46
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
grant (ref45) 2014
References_xml – ident: ref15
  doi: 10.1109/TWC.2020.3024860
– ident: ref38
  doi: 10.1109/LWC.2020.2969629
– ident: ref35
  doi: 10.1109/TWC.2015.2439673
– ident: ref16
  doi: 10.1109/JSAC.2020.3000814
– ident: ref28
  doi: 10.1109/JIOT.2020.3046929
– ident: ref7
  doi: 10.1109/TVT.2016.2515607
– ident: ref18
  doi: 10.1109/TCOMM.2020.3042275
– ident: ref46
  doi: 10.1109/LCOMM.2020.3039811
– ident: ref42
  doi: 10.1109/TSP.2011.2147784
– ident: ref20
  doi: 10.1109/MCOM.001.1900107
– ident: ref27
  doi: 10.1109/JSAC.2020.3000802
– ident: ref31
  doi: 10.1109/TVT.2021.3096603
– ident: ref13
  doi: 10.1109/MCOM.001.2001076
– ident: ref8
  doi: 10.1109/TVT.2018.2852631
– ident: ref2
  doi: 10.1109/TWC.2015.2502590
– ident: ref19
  doi: 10.1109/ACCESS.2019.2915659
– ident: ref44
  doi: 10.1109/JSAC.2018.2872372
– ident: ref6
  doi: 10.1109/ACCESS.2018.2884953
– ident: ref21
  doi: 10.1109/TWC.2019.2936025
– ident: ref23
  doi: 10.1109/TWC.2022.3151624
– ident: ref12
  doi: 10.1109/TWC.2015.2395414
– year: 2014
  ident: ref45
  publication-title: CVX MATLAB Software for Disciplined Convex Programming
– ident: ref5
  doi: 10.1109/TWC.2013.112513.130760
– ident: ref33
  doi: 10.1109/JIOT.2020.3045703
– ident: ref14
  doi: 10.1109/TCOMM.2019.2958916
– ident: ref9
  doi: 10.1109/JSAC.2018.2824231
– ident: ref3
  doi: 10.1109/TCOMM.2014.2370035
– ident: ref29
  doi: 10.1109/LCOMM.2020.3043475
– ident: ref22
  doi: 10.1109/TWC.2019.2922609
– ident: ref11
  doi: 10.1109/TSP.2014.2303422
– ident: ref37
  doi: 10.1109/TWC.2020.3004330
– ident: ref24
  doi: 10.1109/LWC.2021.3064992
– ident: ref43
  doi: 10.1017/CBO9780511804441
– ident: ref36
  doi: 10.1109/JIOT.2019.2913219
– ident: ref32
  doi: 10.1109/TWC.2021.3133491
– ident: ref1
  doi: 10.1109/MWC.001.1900534
– ident: ref26
  doi: 10.1109/LWC.2019.2961656
– ident: ref17
  doi: 10.1109/TWC.2020.2990766
– ident: ref25
  doi: 10.1109/TCOMM.2020.3024621
– ident: ref41
  doi: 10.1109/JSAC.2020.3007043
– ident: ref39
  doi: 10.1109/LSP.2018.2890164
– ident: ref10
  doi: 10.1109/TVT.2013.2285244
– ident: ref34
  doi: 10.1109/TSP.2021.3073813
– ident: ref40
  doi: 10.1109/TCOMM.2017.2664860
– ident: ref4
  doi: 10.1109/JSYST.2018.2827077
– ident: ref30
  doi: 10.1109/LWC.2021.3072502
SSID ssj0004033
Score 2.5291328
Snippet In this paper, we consider deploying an intelligent reflecting surface (IRS) to enhance the downlink (DL) energy transfer and uplink (UL) information...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Beamforming
Communication networks
Communications networks
Covariance matrix
Energy transfer
Intelligent reflecting surface
Iterative algorithms
Iterative methods
MIMO
MIMO communication
Optimization
phase shift optimization
secrecy throughput
Transmission efficiency
Wireless communications
Wireless networks
WPCN
Title Secrecy Throughput Maximization for IRS-aided MIMO Wireless Powered Communication Networks
URI https://ieeexplore.ieee.org/document/9913501
https://www.proquest.com/docview/2737576445
Volume 70
WOSCitedRecordID wos000937284600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8aAHX2hE0ezBmxbqbmm7R0MkcigQwYR4abb7SEgQCA-j_97ZtqBEY-KpTbPbNDu7O99055sP4DoJbVaY1A7lSjqeDKXDtTCOwgmTCG48IZNUbCLodMLhkPcKcLvhwmit0-QzXbO36Vm-msqV_VVWRyxjz8GKUAwCP-NqfXEgXZZXnLTp7EG4Jsi4vD5odqMIQ0FKa8wWNGfelhNKVVV-bMWpf2kd_O_LDmE_x5HkPjP8ERT05Bj2vlUXLMNL30JC-UEGmRbPbLUkkXgfvebUS4J4lbSf-o6tEqlI1I66xCbDjnHzIz2rnoZPtwgkpJMljS9O4Ln1MGg-OrmUgiNxwS4daViCWEsERik34bgNJkopz3DrrrkOjGRSUI4XoUzD-KGvGiLUuFw19mKMnUJpMp3oMyCeoSJAUEaZQA_oitBFyEMlxbjL6n36Fbhbj20s8zrjVu5iHKfxhsvj1B6xtUec26MCN5s-s6zKxp-ty9YCm5b54FegujZhnC_ERYztAwypPK9x_nuvC9i1787ohVUoLecrfQk78m05Wsyv0jn2CUMuzrA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MC6gP3sV5zYNvWleTbG0eRZQN7TbcBPGlpLnAYG5jF9F_70nbTYci-NRSElpykpzvNOc7H8BZErqsMGU8KrTyuAqVJ4y0nsYJk0hhuVRJKjYR1Ovh87NoFuBixoUxxqTJZ-bS3aZn-bqvJu5XWQmxjDsHW4ClMufUz9haXyxIn-U1J11CexBOKTK-KLVvGlGEwSCll8yVNGd8zg2luio_NuPUw9xt_O_bNmE9R5LkOjP9FhRMbxvWvtUX3IGXlgOF6oO0MzWewWRMIvneec3JlwQRK6k9tjxXJ1KTqBY1iEuH7eL2R5pOPw2fzlFISD1LGx_twtPdbfum6uViCp7CJTv2lGUJoi0ZWK39ROBGmGituRXOYQsTWMWUpAIvUtuyrYQVXZahwQVrsBdjbA8We_2e2QfCLZUBwjLKJPpAX4Y-gh6qKEZeTvGzUoSr6djGKq807gQvunEacfgiTu0RO3vEuT2KcD7rM8jqbPzZesdZYNYyH_wiHE1NGOdLcRRj-wCDKs7LB7_3OoWVajt6iB9q9ftDWHXvyciGR7A4Hk7MMSyrt3FnNDxJ59snLrfR9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secrecy+Throughput+Maximization+for+IRS-Aided+MIMO+Wireless+Powered+Communication+Networks&rft.jtitle=IEEE+transactions+on+communications&rft.au=Shi%2C+Weiping&rft.au=Wu%2C+Qingqing&rft.au=Xiao%2C+Fu&rft.au=Shu%2C+Feng&rft.date=2022-11-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=70&rft.issue=11&rft.spage=7520&rft.epage=7535&rft_id=info:doi/10.1109%2FTCOMM.2022.3212734&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2022_3212734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon