Semidefinite Programming for Wireless Cooperative Localization Using Biased RSS Measurements
Cooperative localization in wireless sensor network (WSN) using biased received signal strength (RSS) measurements is investigated in this letter. In the existing work on cooperative RSS localization, measurements of sensor nodes (including both target-anchor and target-target measurements) are gene...
Gespeichert in:
| Veröffentlicht in: | IEEE communications letters Jg. 26; H. 6; S. 1278 - 1282 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-7798, 1558-2558 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cooperative localization in wireless sensor network (WSN) using biased received signal strength (RSS) measurements is investigated in this letter. In the existing work on cooperative RSS localization, measurements of sensor nodes (including both target-anchor and target-target measurements) are generally assumed bias-free. However, in practice, they may be subject to biases, which directly affect localization accuracy. As a result, the existing localization methods are not applicable any more. In this letter, RSS observation biases are considered as the extra parameters to be estimated as well as locations of target nodes. To overcome the nonconvexity of the maximum likelihood (ML) estimator, semidefinite programming (SDP) is applied with <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norms, respectively. Then, the locations of multiple target nodes and observation biases are simultaneously estimated through convex optimization. Numerical examples demonstrate the performance superiority of the proposed methods compared to the existing bias-free SDP methods for wireless cooperative localization. |
|---|---|
| AbstractList | Cooperative localization in wireless sensor network (WSN) using biased received signal strength (RSS) measurements is investigated in this letter. In the existing work on cooperative RSS localization, measurements of sensor nodes (including both target-anchor and target-target measurements) are generally assumed bias-free. However, in practice, they may be subject to biases, which directly affect localization accuracy. As a result, the existing localization methods are not applicable any more. In this letter, RSS observation biases are considered as the extra parameters to be estimated as well as locations of target nodes. To overcome the nonconvexity of the maximum likelihood (ML) estimator, semidefinite programming (SDP) is applied with <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">l_{2} </tex-math></inline-formula> norms, respectively. Then, the locations of multiple target nodes and observation biases are simultaneously estimated through convex optimization. Numerical examples demonstrate the performance superiority of the proposed methods compared to the existing bias-free SDP methods for wireless cooperative localization. Cooperative localization in wireless sensor network (WSN) using biased received signal strength (RSS) measurements is investigated in this letter. In the existing work on cooperative RSS localization, measurements of sensor nodes (including both target-anchor and target-target measurements) are generally assumed bias-free. However, in practice, they may be subject to biases, which directly affect localization accuracy. As a result, the existing localization methods are not applicable any more. In this letter, RSS observation biases are considered as the extra parameters to be estimated as well as locations of target nodes. To overcome the nonconvexity of the maximum likelihood (ML) estimator, semidefinite programming (SDP) is applied with [Formula Omitted] and [Formula Omitted] norms, respectively. Then, the locations of multiple target nodes and observation biases are simultaneously estimated through convex optimization. Numerical examples demonstrate the performance superiority of the proposed methods compared to the existing bias-free SDP methods for wireless cooperative localization. |
| Author | Duan, Zhansheng Wang, Qi Li, Fei |
| Author_xml | – sequence: 1 givenname: Qi orcidid: 0000-0002-0122-2591 surname: Wang fullname: Wang, Qi email: wangqi@xsyu.edu.cn organization: School of Electronic Engineering, Xi'an Shiyou University, Xi'an, China – sequence: 2 givenname: Zhansheng orcidid: 0000-0001-7366-5984 surname: Duan fullname: Duan, Zhansheng email: zsduan@mail.xjtu.edu.cn organization: Center for Information Engineering Science Research, Xi'an Jiaotong University, Xi'an, China – sequence: 3 givenname: Fei surname: Li fullname: Li, Fei email: lif@xsyu.edu.cn organization: School of Electronic Engineering, Xi'an Shiyou University, Xi'an, China |
| BookMark | eNp9kE1Lw0AQhhdRsK3-Ab0EPKfObrLZzVGDX5BSsRYvQtgkk7KlydbdVNBf7_YDDx68zBfvM8O8Q3LcmQ4JuaAwphTS6zybTiZjBoyNI5okQsIRGVDOZch8OPY1yDQUIpWnZOjcEgAk43RA3mfY6hob3ekeg2drFla1re4WQWNs8KYtrtC5IDNmjVb1-hOD3FRqpb99Y7pg7rbaW60c1sHLbBZMULmNxRa73p2Rk0atHJ4f8ojM7-9es8cwnz48ZTd5WDHG-7BKYlZClaQgy0qWEQAKFYOsOW9iUFEJQP285mmtoMYE44qzRqqEKsE8Fo3I1X7v2pqPDbq-WJqN7fzJgiWCQyzTSHgV26sqa5yz2BRrq1tlvwoKxdbFYudisXWxOLjoIfkHqnS_e723Sq_-Ry_3qEbE31up4AmwNPoBneSC1Q |
| CODEN | ICLEF6 |
| CitedBy_id | crossref_primary_10_1016_j_future_2023_07_016 crossref_primary_10_1016_j_phycom_2023_102165 crossref_primary_10_1109_JSAC_2024_3413973 crossref_primary_10_1109_JIOT_2024_3407535 crossref_primary_10_1109_TWC_2024_3441643 crossref_primary_10_1109_JIOT_2024_3403972 crossref_primary_10_1109_JSAC_2023_3240714 crossref_primary_10_1109_LCOMM_2025_3550860 crossref_primary_10_1109_TITS_2023_3287209 crossref_primary_10_1109_JIOT_2023_3244982 crossref_primary_10_1177_01423312221148787 crossref_primary_10_1109_TVT_2023_3295868 crossref_primary_10_1155_2023_8931636 |
| Cites_doi | 10.1109/CSO.2009.447 10.1109/TSP.2012.2232664 10.1080/10556789908805766 10.1109/TSP.2010.2045416 10.1109/LCOMM.2018.2849963 10.1109/LSENS.2021.3125911 10.1109/TWC.2013.120613.130170 10.1109/TSP.2003.814469 10.1017/CBO9780511804441 10.1109/LSENS.2017.2787651 10.1109/TAES.2020.2999999 10.23919/ICIF.2018.8455659 10.1109/LSP.2020.3005298 10.1109/7.826314 10.1109/TVT.2010.2040096 10.1109/TSP.2015.2394300 10.1109/LCOMM.2014.2318031 10.1137/1038003 10.1109/LSP.2008.916731 10.1109/TVT.2014.2334397 10.1109/TAES.2019.2929998 10.1137/1.9781611970791 10.1109/LSP.2019.2892225 10.1109/TVT.2021.3089161 10.1109/TVT.2018.2880991 10.1109/TSP.2011.2152400 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/LCOMM.2022.3166780 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2558 |
| EndPage | 1282 |
| ExternalDocumentID | 10_1109_LCOMM_2022_3166780 9756029 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U20B2029 funderid: 10.13039/501100001809 – fundername: Natural Science Basic Research Plan in Shaanxi Province of China grantid: 2022JQ-641 funderid: 10.13039/501100007128 – fundername: National Key Research and Development Plan grantid: 2021YFC2202600; 2021YFC2202603 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c225t-c642b0c6908bc8b300e7a408d55f40a3b001c8bd59da0de6e4c52f8a61a72c693 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000809396900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-7798 |
| IngestDate | Mon Jun 30 10:23:15 EDT 2025 Tue Nov 18 20:42:38 EST 2025 Sat Nov 29 03:56:09 EST 2025 Wed Aug 27 02:24:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c225t-c642b0c6908bc8b300e7a408d55f40a3b001c8bd59da0de6e4c52f8a61a72c693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0122-2591 0000-0001-7366-5984 |
| PQID | 2675048937 |
| PQPubID | 85419 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2675048937 crossref_primary_10_1109_LCOMM_2022_3166780 crossref_citationtrail_10_1109_LCOMM_2022_3166780 ieee_primary_9756029 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE communications letters |
| PublicationTitleAbbrev | LCOMM |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 Rappaport (ref27) 1999 ref6 ref5 |
| References_xml | – ident: ref19 doi: 10.1109/CSO.2009.447 – ident: ref14 doi: 10.1109/TSP.2012.2232664 – ident: ref26 doi: 10.1080/10556789908805766 – ident: ref13 doi: 10.1109/TSP.2010.2045416 – ident: ref7 doi: 10.1109/LCOMM.2018.2849963 – ident: ref18 doi: 10.1109/LSENS.2021.3125911 – ident: ref11 doi: 10.1109/TWC.2013.120613.130170 – ident: ref22 doi: 10.1109/TSP.2003.814469 – ident: ref24 doi: 10.1017/CBO9780511804441 – ident: ref17 doi: 10.1109/LSENS.2017.2787651 – ident: ref21 doi: 10.1109/TAES.2020.2999999 – ident: ref12 doi: 10.23919/ICIF.2018.8455659 – ident: ref5 doi: 10.1109/LSP.2020.3005298 – ident: ref20 doi: 10.1109/7.826314 – ident: ref2 doi: 10.1109/TVT.2010.2040096 – ident: ref4 doi: 10.1109/TSP.2015.2394300 – ident: ref10 doi: 10.1109/LCOMM.2014.2318031 – ident: ref23 doi: 10.1137/1038003 – ident: ref16 doi: 10.1109/LSP.2008.916731 – ident: ref1 doi: 10.1109/TVT.2014.2334397 – ident: ref8 doi: 10.1109/TAES.2019.2929998 – ident: ref25 doi: 10.1137/1.9781611970791 – ident: ref3 doi: 10.1109/LSP.2019.2892225 – ident: ref15 doi: 10.1109/TVT.2021.3089161 – ident: ref6 doi: 10.1109/TVT.2018.2880991 – ident: ref9 doi: 10.1109/TSP.2011.2152400 – volume-title: Wireless Communications Principles and Practice year: 1999 ident: ref27 |
| SSID | ssj0008251 |
| Score | 2.4420447 |
| Snippet | Cooperative localization in wireless sensor network (WSN) using biased received signal strength (RSS) measurements is investigated in this letter. In the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1278 |
| SubjectTerms | Bias Convexity cooperative localization Localization Location awareness Maximum likelihood estimation Maximum likelihood estimators Measurement uncertainty Nodes Noise measurement Norms observation bias Optimization RSS SDP Semidefinite programming Signal strength Time measurement Wireless communication Wireless sensor networks |
| Title | Semidefinite Programming for Wireless Cooperative Localization Using Biased RSS Measurements |
| URI | https://ieeexplore.ieee.org/document/9756029 https://www.proquest.com/docview/2675048937 |
| Volume | 26 |
| WOSCitedRecordID | wos000809396900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2558 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008251 issn: 1089-7798 databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP-Yw4MefE1xOiUHb1qXpWmbHHUoHjYVp7KDUPIqDOYqe_j3m6RdVRTBW2nzlZJfv2e-B8CJijqSaCqDLOaRC91YlpIyDDJNrfKimRJ-FsFzL7m9ZcMhv6_BWVULY4zxyWfm3F36s3ydq4ULlbV5YvUz4SuwkiRxUatVSV1Xglkk03NrMXK2LJDBvN3r3vX71hUkxHqosZXO-JsS8lNVfohir1-uN__3ZVuwUdqR6KIAfhtqZrID61-6CzbgZWBeR9pkI2dWovsiEevVPkLWUEUu7XVsxRzq5vmbKfp_o57TbGVlJvLZBOhyZPWcRg-DAep_xhNnu_B0ffXYvQnKYQqBsiw7D5R1NCRW1hlmUjEZYmwSQTHTUZRRLEJnPdn7OuJaYG1iQ1VEMibijkiIJQv3oD7JJ2YfkAhDjWOiJZOUCiJZQgVTEY11B4daySZ0lrubqrLTuBt4MU69x4F56hFJHSJpiUgTTiuat6LPxp-rGw6DamW5_U1oLUFMS1acpSR2HeydWXbwO9UhrLl3F_lfLajPpwtzBKvqfT6aTY_9X_YBAWnP1w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9tAEB4BRQIeenCIUFr2oW9gslmv7d1HiIqocFJEAPGAZO1lKVIOlIPfz-zaCa1Alfpm2Tu2teOZ-WY8B8APk7Q0s1xHZSoTH7pBkdI6jkrL0Xjx0qgwi-A-z7pd8fAgr1fgZFkL45wLyWfu1B-Gf_l2bOY-VNaUGdpnJlfhA96G0apaa6l3fRFmlU4vETNKsSiRobKZt393OugMMoY-aor6mf5lhsJclTfKOFiYi0__926f4WONJMlZxfovsOJG27D1R3_BHXjsuWHfurLvgSW5rlKxhniJIFQlPvF1gIqOtMfjJ1d1ACe5t211bSYJ-QTkvI-WzpKbXo90XiOK0124u_h5276M6nEKkUGhnUUGXQ1NDbrDQhuhY0pdpjgVNklKTlXs8ROet4m0ilqXOm4SVgqVtlTGkCzeg7XReOT2gag4tjRlVgvNuWJaZFwJk_DUtmhsjW5Aa7G7hal7jfuRF4Mi-BxUFoEjhedIUXOkAcdLmqeq08Y_V-94HixX1tvfgMMFE4taGKcFS30Pew_MDt6nOoKNy9tOXuS_uldfYdM_p8oGO4S12WTuvsG6eZ71p5Pv4Yt7Afl90x4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semidefinite+Programming+for+Wireless+Cooperative+Localization+Using+Biased+RSS+Measurements&rft.jtitle=IEEE+communications+letters&rft.au=Wang%2C+Qi&rft.au=Duan%2C+Zhansheng&rft.au=Li%2C+Fei&rft.date=2022-06-01&rft.pub=IEEE&rft.issn=1089-7798&rft.volume=26&rft.issue=6&rft.spage=1278&rft.epage=1282&rft_id=info:doi/10.1109%2FLCOMM.2022.3166780&rft.externalDocID=9756029 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon |