Power Control for Wireless VBR Video Streaming: From Optimization to Reinforcement Learning
In this paper, we investigate the problem of power control for streaming variable bit rate (VBR) videos over wireless links. A system model involving a transmitter (e.g., a base station) that sends VBR video data to a receiver (e.g., a mobile user) equipped with a playout buffer is adopted, as used...
Uložené v:
| Vydané v: | IEEE transactions on communications Ročník 67; číslo 8; s. 5629 - 5644 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0090-6778, 1558-0857 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we investigate the problem of power control for streaming variable bit rate (VBR) videos over wireless links. A system model involving a transmitter (e.g., a base station) that sends VBR video data to a receiver (e.g., a mobile user) equipped with a playout buffer is adopted, as used in dynamic adaptive streaming video applications. In this setting, we analyze power control policies considering the following two objectives: 1) the minimization of the transmit power consumption and 2) the minimization of the transmission completion time of the communication session. In order to play the video without interruptions, the power control policy should also satisfy the requirement in which the VBR video data is delivered to the mobile user without causing playout buffer underflow or overflows. A directional water-filling algorithm, which provides a simple and concise interpretation of the necessary optimality conditions, is identified as the optimal offline policy. Following this, two online policies are proposed for power control based on channel side information (CSI) prediction within a short time window. Dynamic programming is employed to implement the optimal offline and the initial online power control policies that minimize the transmit power consumption in the communication session. Subsequently, reinforcement learning (RL)-based approach is employed for the second online power control policy. Through the simulation results, we show that the optimal offline power control policy that minimizes the overall power consumption leads to substantial energy savings compared with the strategy of minimizing the time duration of video streaming. We also demonstrate that the RL algorithm performs better than the dynamic programming-based online grouped water-filling (GWF) strategy unless the channel is highly correlated. |
|---|---|
| AbstractList | In this paper, we investigate the problem of power control for streaming variable bit rate (VBR) videos over wireless links. A system model involving a transmitter (e.g., a base station) that sends VBR video data to a receiver (e.g., a mobile user) equipped with a playout buffer is adopted, as used in dynamic adaptive streaming video applications. In this setting, we analyze power control policies considering the following two objectives: 1) the minimization of the transmit power consumption and 2) the minimization of the transmission completion time of the communication session. In order to play the video without interruptions, the power control policy should also satisfy the requirement in which the VBR video data is delivered to the mobile user without causing playout buffer underflow or overflows. A directional water-filling algorithm, which provides a simple and concise interpretation of the necessary optimality conditions, is identified as the optimal offline policy. Following this, two online policies are proposed for power control based on channel side information (CSI) prediction within a short time window. Dynamic programming is employed to implement the optimal offline and the initial online power control policies that minimize the transmit power consumption in the communication session. Subsequently, reinforcement learning (RL)-based approach is employed for the second online power control policy. Through the simulation results, we show that the optimal offline power control policy that minimizes the overall power consumption leads to substantial energy savings compared with the strategy of minimizing the time duration of video streaming. We also demonstrate that the RL algorithm performs better than the dynamic programming-based online grouped water-filling (GWF) strategy unless the channel is highly correlated. |
| Author | Velipasalar, Senem Gursoy, M. Cenk Ye, Chuang |
| Author_xml | – sequence: 1 givenname: Chuang orcidid: 0000-0002-1138-3823 surname: Ye fullname: Ye, Chuang email: chye@syr.edu organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA – sequence: 2 givenname: M. Cenk orcidid: 0000-0002-7352-1013 surname: Gursoy fullname: Gursoy, M. Cenk email: mcgursoy@syr.edu organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA – sequence: 3 givenname: Senem orcidid: 0000-0002-1430-1555 surname: Velipasalar fullname: Velipasalar, Senem email: svelipas@syr.edu organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA |
| BookMark | eNp9kEtLAzEUhYNUsK3-Ad0EXE_No3mMOy2-oFKptS5cDJnpjUQ6Sc1ERH-90wcuXLi6m_Odw_16qOODB4SOKRlQSvKz2Whyfz9ghOYDlhPFBN1DXSqEzogWqoO6hOQkk0rpA9RrmjdCyJBw3kUvD-ETIh4Fn2JYYhsifnYRltA0eH45xXO3gIAfUwRTO_96jq9jqPFklVztvk1yweMU8BScb9EKavAJj8FE34YP0b41ywaOdrePnq6vZqPbbDy5uRtdjLOKMZGyXHG70ESWMmdaUV5aoLwy5bCqJJNSAbW6LNVQloQZaYUpjaVcVkMoNWGW8T463fauYnj_gCYVb-Ej-nayYEwJkVOqVZti21QVQ9NEsMUqutrEr4KSYi2x2Egs1hKLncQW0n-gyqXN2ykat_wfPdmiDgB-t7RUXGnBfwAonoIS |
| CODEN | IECMBT |
| CitedBy_id | crossref_primary_10_1016_j_iot_2024_101145 crossref_primary_10_1109_TVT_2021_3134457 crossref_primary_10_1109_TVT_2020_2972363 crossref_primary_10_1109_MNET_011_2000148 crossref_primary_10_1109_TNSM_2024_3471632 crossref_primary_10_1109_TWC_2020_3041319 crossref_primary_10_1109_TIV_2023_3344478 crossref_primary_10_1109_TBC_2023_3301716 |
| Cites_doi | 10.1109/ICC.2016.7511405 10.1109/TCSVT.2005.846433 10.1109/JSAC.2016.2611899 10.1109/TMC.2014.2331963 10.1109/TVT.2014.2314646 10.1109/TCSVT.2006.873154 10.1109/TCOMM.2011.112811.100349 10.1109/TNN.1998.712192 10.1109/TCSVT.2008.918802 10.1109/TNET.2017.2701153 10.1109/TMM.2003.822795 10.1109/JSAC.2016.2612039 10.1109/TVT.2015.2480785 10.1109/JSAC.2002.802063 10.1109/MCAS.2005.1507521 10.1109/TBC.2008.2002716 10.1109/TCOMM.2018.2827063 10.1109/INFCOM.2007.166 10.1109/WCNC.2018.8377422 10.1109/ICASSP.2004.1326668 10.1109/TMC.2007.70706 10.1109/TMM.2013.2270457 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCOMM.2019.2907251 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0857 |
| EndPage | 5644 |
| ExternalDocumentID | 10_1109_TCOMM_2019_2907251 8673785 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-1618615 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYXX CITATION 7SP 8FD L7M RIG |
| ID | FETCH-LOGICAL-c225t-973fd806b6928713bfe13cab4cc62667e1f8bb746b02a6f5abaf136c4eb802f23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481946000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0090-6778 |
| IngestDate | Mon Jun 30 10:21:54 EDT 2025 Sat Nov 29 04:08:16 EST 2025 Tue Nov 18 22:30:57 EST 2025 Wed Aug 27 02:54:25 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c225t-973fd806b6928713bfe13cab4cc62667e1f8bb746b02a6f5abaf136c4eb802f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1430-1555 0000-0002-1138-3823 0000-0002-7352-1013 |
| PQID | 2275591187 |
| PQPubID | 85472 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TCOMM_2019_2907251 proquest_journals_2275591187 ieee_primary_8673785 crossref_citationtrail_10_1109_TCOMM_2019_2907251 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | gordon (ref25) 2001 ref12 ref15 ref11 ref10 ref2 he (ref13) 2005; 5 ref17 ref16 ref19 ref18 reisslein (ref26) 2018 ref24 he (ref14) 2008; 18 ref23 ref20 ref22 ref21 (ref1) 2017 ref7 ref9 ref4 ref3 ref6 ref5 wu (ref8) 2017; 35 |
| References_xml | – ident: ref24 doi: 10.1109/ICC.2016.7511405 – ident: ref16 doi: 10.1109/TCSVT.2005.846433 – ident: ref18 doi: 10.1109/JSAC.2016.2611899 – year: 2017 ident: ref1 publication-title: Cisco Visual Networking Index Global Mobile Data Traffic Forecast Update 20122017 Cisco White Paper – ident: ref2 doi: 10.1109/TMC.2014.2331963 – year: 2018 ident: ref26 publication-title: Video trace library – ident: ref4 doi: 10.1109/TVT.2014.2314646 – ident: ref15 doi: 10.1109/TCSVT.2006.873154 – ident: ref17 doi: 10.1109/TCOMM.2011.112811.100349 – ident: ref23 doi: 10.1109/TNN.1998.712192 – volume: 18 start-page: 596 year: 2008 ident: ref14 article-title: Energy minimization of portable video communication devices based on power-rate-distortion optimization publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2008.918802 – ident: ref7 doi: 10.1109/TNET.2017.2701153 – ident: ref10 doi: 10.1109/TMM.2003.822795 – ident: ref19 doi: 10.1109/JSAC.2016.2612039 – ident: ref9 doi: 10.1109/TVT.2015.2480785 – ident: ref20 doi: 10.1109/JSAC.2002.802063 – start-page: 1040 year: 2001 ident: ref25 article-title: Reinforcement learning with function approximation converges to a region publication-title: Advances in neural information processing systems – volume: 5 start-page: 6 year: 2005 ident: ref13 article-title: From rate-distortion analysis to resource-distortion analysis publication-title: IEEE Circuits Syst Mag doi: 10.1109/MCAS.2005.1507521 – ident: ref12 doi: 10.1109/TBC.2008.2002716 – ident: ref6 doi: 10.1109/TCOMM.2018.2827063 – ident: ref21 doi: 10.1109/INFCOM.2007.166 – ident: ref5 doi: 10.1109/WCNC.2018.8377422 – ident: ref22 doi: 10.1109/ICASSP.2004.1326668 – ident: ref11 doi: 10.1109/TMC.2007.70706 – ident: ref3 doi: 10.1109/TMM.2013.2270457 – volume: 35 start-page: 30 year: 2017 ident: ref8 article-title: Energy-efficient bandwidth aggregation for delay-constrained video over heterogeneous wireless networks publication-title: IEEE J Sel Areas Commun |
| SSID | ssj0004033 |
| Score | 2.3630145 |
| Snippet | In this paper, we investigate the problem of power control for streaming variable bit rate (VBR) videos over wireless links. A system model involving a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5629 |
| SubjectTerms | Adaptive control Algorithms Bit rate Buffer storage Buffers Completion time Computer simulation Control systems Digital media Dynamic programming Energy consumption Machine learning Optimization playout buffer overflow playout buffer underflow Policies Power consumption Power control Receivers reinforcement learning Streaming media variable bit rate (VBR) video Video data video streaming Video transmission Windows (intervals) Wireless communication |
| Title | Power Control for Wireless VBR Video Streaming: From Optimization to Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/8673785 https://www.proquest.com/docview/2275591187 |
| Volume | 67 |
| WOSCitedRecordID | wos000481946000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH3-LqKjl402qbtHl408XFgy9ERfBQkjQRwd3Kuvr7TdLsqiiCtx4ypeTrTDLJzPcB7JgqzRUhNKGVc_KcWZxIbWVCFOVYaiYLGUhcz9jFBb-_F1dTsDfphTHGhOIzs-8fw11-Ves3f1R2wL2oCi-mYZox1vRqffZApiQyTvpydsbHDTKpOLjpXp6f-yousY9dLoiL7NsiFFRVfoTisL70Fv73ZYswH_eR6KgBfgmmzGAZ5r6wC67Aw5VXQEPdphgdud0p8rWuzy62obvja3T3VJka-Wtp2XcGh6g3rPvo0sWQfmzORKMaXZvArarDMSKKdKyPq3DbO7npniZRSyHRzmNHiWDEVjyligqfIxFlTUa0VLnWLqWhzGSWK8VyqlIsqS2kkjYjVOdG8RRbTNagNagHZh0Ql0bYwnddF2nu8jFZ8UpyJTU2hBsh2pCNJ7fUkWjc6108lyHhSEUZACk9IGUEpA27E5uXhmbjz9ErHoLJyDj7beiMMSyjJ76WGDOXNHlR9Y3frTZh1r-7KerrQGs0fDNbMKPfR0-vw-3wk30A6HvPYg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH5iDGlwYDCYKLDhA7cRmtiJY3ODahUTbamqDiHtENmOPVVqG1QKvx_bcQsINGm3HPyUyF_es5_93vcBHOsyTiUhNKKldfI0NzgSyoiISMqwULnIhCdx7eS9Hru95f0VOFn2wmitffGZPnWP_i6_rNSDOyprMieqwrIP8DFLU5zU3VrPXZAxCZyTrqA9Z4sWmZg3h63rbtfVcfFTbLNBnCWvliGvq_ImGPsVpv35_75tCzbDThKd19Bvw4qefoGNF_yCO_Cn7zTQUKsuR0d2f4pctevYRjd0czFAN6NSV8hdTIuJNThD7Vk1Qdc2ikxCeyaaV2igPbuq8geJKBCy_t2F3-2fw9ZlFNQUImV9dh7xnJiSxVRS7rIkIo1OiBIyVcomNTTXiWFS5imVMRbUZEIKkxCqUi1ZjA0mX2F1Wk31HiAmNDeZ67vO4tRmZKJkpWBSKKwJ05w3IFlMbqEC1bhTvBgXPuWIeeEBKRwgRQCkAT-WNnc10cY_R-84CJYjw-w34HCBYRF88b7AOLdpk5NV33_f6gg-XQ67naLzq3d1AOvuPXWJ3yGszmcP-husqcf56H723f9wT9r50qk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+Control+for+Wireless+VBR+Video+Streaming%3A+From+Optimization+to+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+communications&rft.au=Ye%2C+Chuang&rft.au=Gursoy%2C+M.+Cenk&rft.au=Velipasalar%2C+Senem&rft.date=2019-08-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=67&rft.issue=8&rft.spage=5629&rft.epage=5644&rft_id=info:doi/10.1109%2FTCOMM.2019.2907251&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2019_2907251 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |