Power Control for Wireless VBR Video Streaming: From Optimization to Reinforcement Learning

In this paper, we investigate the problem of power control for streaming variable bit rate (VBR) videos over wireless links. A system model involving a transmitter (e.g., a base station) that sends VBR video data to a receiver (e.g., a mobile user) equipped with a playout buffer is adopted, as used...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on communications Ročník 67; číslo 8; s. 5629 - 5644
Hlavní autori: Ye, Chuang, Gursoy, M. Cenk, Velipasalar, Senem
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0090-6778, 1558-0857
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we investigate the problem of power control for streaming variable bit rate (VBR) videos over wireless links. A system model involving a transmitter (e.g., a base station) that sends VBR video data to a receiver (e.g., a mobile user) equipped with a playout buffer is adopted, as used in dynamic adaptive streaming video applications. In this setting, we analyze power control policies considering the following two objectives: 1) the minimization of the transmit power consumption and 2) the minimization of the transmission completion time of the communication session. In order to play the video without interruptions, the power control policy should also satisfy the requirement in which the VBR video data is delivered to the mobile user without causing playout buffer underflow or overflows. A directional water-filling algorithm, which provides a simple and concise interpretation of the necessary optimality conditions, is identified as the optimal offline policy. Following this, two online policies are proposed for power control based on channel side information (CSI) prediction within a short time window. Dynamic programming is employed to implement the optimal offline and the initial online power control policies that minimize the transmit power consumption in the communication session. Subsequently, reinforcement learning (RL)-based approach is employed for the second online power control policy. Through the simulation results, we show that the optimal offline power control policy that minimizes the overall power consumption leads to substantial energy savings compared with the strategy of minimizing the time duration of video streaming. We also demonstrate that the RL algorithm performs better than the dynamic programming-based online grouped water-filling (GWF) strategy unless the channel is highly correlated.
AbstractList In this paper, we investigate the problem of power control for streaming variable bit rate (VBR) videos over wireless links. A system model involving a transmitter (e.g., a base station) that sends VBR video data to a receiver (e.g., a mobile user) equipped with a playout buffer is adopted, as used in dynamic adaptive streaming video applications. In this setting, we analyze power control policies considering the following two objectives: 1) the minimization of the transmit power consumption and 2) the minimization of the transmission completion time of the communication session. In order to play the video without interruptions, the power control policy should also satisfy the requirement in which the VBR video data is delivered to the mobile user without causing playout buffer underflow or overflows. A directional water-filling algorithm, which provides a simple and concise interpretation of the necessary optimality conditions, is identified as the optimal offline policy. Following this, two online policies are proposed for power control based on channel side information (CSI) prediction within a short time window. Dynamic programming is employed to implement the optimal offline and the initial online power control policies that minimize the transmit power consumption in the communication session. Subsequently, reinforcement learning (RL)-based approach is employed for the second online power control policy. Through the simulation results, we show that the optimal offline power control policy that minimizes the overall power consumption leads to substantial energy savings compared with the strategy of minimizing the time duration of video streaming. We also demonstrate that the RL algorithm performs better than the dynamic programming-based online grouped water-filling (GWF) strategy unless the channel is highly correlated.
Author Velipasalar, Senem
Gursoy, M. Cenk
Ye, Chuang
Author_xml – sequence: 1
  givenname: Chuang
  orcidid: 0000-0002-1138-3823
  surname: Ye
  fullname: Ye, Chuang
  email: chye@syr.edu
  organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA
– sequence: 2
  givenname: M. Cenk
  orcidid: 0000-0002-7352-1013
  surname: Gursoy
  fullname: Gursoy, M. Cenk
  email: mcgursoy@syr.edu
  organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA
– sequence: 3
  givenname: Senem
  orcidid: 0000-0002-1430-1555
  surname: Velipasalar
  fullname: Velipasalar, Senem
  email: svelipas@syr.edu
  organization: Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA
BookMark eNp9kEtLAzEUhYNUsK3-Ad0EXE_No3mMOy2-oFKptS5cDJnpjUQ6Sc1ERH-90wcuXLi6m_Odw_16qOODB4SOKRlQSvKz2Whyfz9ghOYDlhPFBN1DXSqEzogWqoO6hOQkk0rpA9RrmjdCyJBw3kUvD-ETIh4Fn2JYYhsifnYRltA0eH45xXO3gIAfUwRTO_96jq9jqPFklVztvk1yweMU8BScb9EKavAJj8FE34YP0b41ywaOdrePnq6vZqPbbDy5uRtdjLOKMZGyXHG70ESWMmdaUV5aoLwy5bCqJJNSAbW6LNVQloQZaYUpjaVcVkMoNWGW8T463fauYnj_gCYVb-Ej-nayYEwJkVOqVZti21QVQ9NEsMUqutrEr4KSYi2x2Egs1hKLncQW0n-gyqXN2ykat_wfPdmiDgB-t7RUXGnBfwAonoIS
CODEN IECMBT
CitedBy_id crossref_primary_10_1016_j_iot_2024_101145
crossref_primary_10_1109_TVT_2021_3134457
crossref_primary_10_1109_TVT_2020_2972363
crossref_primary_10_1109_MNET_011_2000148
crossref_primary_10_1109_TNSM_2024_3471632
crossref_primary_10_1109_TWC_2020_3041319
crossref_primary_10_1109_TIV_2023_3344478
crossref_primary_10_1109_TBC_2023_3301716
Cites_doi 10.1109/ICC.2016.7511405
10.1109/TCSVT.2005.846433
10.1109/JSAC.2016.2611899
10.1109/TMC.2014.2331963
10.1109/TVT.2014.2314646
10.1109/TCSVT.2006.873154
10.1109/TCOMM.2011.112811.100349
10.1109/TNN.1998.712192
10.1109/TCSVT.2008.918802
10.1109/TNET.2017.2701153
10.1109/TMM.2003.822795
10.1109/JSAC.2016.2612039
10.1109/TVT.2015.2480785
10.1109/JSAC.2002.802063
10.1109/MCAS.2005.1507521
10.1109/TBC.2008.2002716
10.1109/TCOMM.2018.2827063
10.1109/INFCOM.2007.166
10.1109/WCNC.2018.8377422
10.1109/ICASSP.2004.1326668
10.1109/TMC.2007.70706
10.1109/TMM.2013.2270457
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2019.2907251
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 5644
ExternalDocumentID 10_1109_TCOMM_2019_2907251
8673785
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-1618615
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c225t-973fd806b6928713bfe13cab4cc62667e1f8bb746b02a6f5abaf136c4eb802f23
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481946000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Mon Jun 30 10:21:54 EDT 2025
Sat Nov 29 04:08:16 EST 2025
Tue Nov 18 22:30:57 EST 2025
Wed Aug 27 02:54:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c225t-973fd806b6928713bfe13cab4cc62667e1f8bb746b02a6f5abaf136c4eb802f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1430-1555
0000-0002-1138-3823
0000-0002-7352-1013
PQID 2275591187
PQPubID 85472
PageCount 16
ParticipantIDs crossref_primary_10_1109_TCOMM_2019_2907251
proquest_journals_2275591187
ieee_primary_8673785
crossref_citationtrail_10_1109_TCOMM_2019_2907251
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References gordon (ref25) 2001
ref12
ref15
ref11
ref10
ref2
he (ref13) 2005; 5
ref17
ref16
ref19
ref18
reisslein (ref26) 2018
ref24
he (ref14) 2008; 18
ref23
ref20
ref22
ref21
(ref1) 2017
ref7
ref9
ref4
ref3
ref6
ref5
wu (ref8) 2017; 35
References_xml – ident: ref24
  doi: 10.1109/ICC.2016.7511405
– ident: ref16
  doi: 10.1109/TCSVT.2005.846433
– ident: ref18
  doi: 10.1109/JSAC.2016.2611899
– year: 2017
  ident: ref1
  publication-title: Cisco Visual Networking Index Global Mobile Data Traffic Forecast Update 20122017 Cisco White Paper
– ident: ref2
  doi: 10.1109/TMC.2014.2331963
– year: 2018
  ident: ref26
  publication-title: Video trace library
– ident: ref4
  doi: 10.1109/TVT.2014.2314646
– ident: ref15
  doi: 10.1109/TCSVT.2006.873154
– ident: ref17
  doi: 10.1109/TCOMM.2011.112811.100349
– ident: ref23
  doi: 10.1109/TNN.1998.712192
– volume: 18
  start-page: 596
  year: 2008
  ident: ref14
  article-title: Energy minimization of portable video communication devices based on power-rate-distortion optimization
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2008.918802
– ident: ref7
  doi: 10.1109/TNET.2017.2701153
– ident: ref10
  doi: 10.1109/TMM.2003.822795
– ident: ref19
  doi: 10.1109/JSAC.2016.2612039
– ident: ref9
  doi: 10.1109/TVT.2015.2480785
– ident: ref20
  doi: 10.1109/JSAC.2002.802063
– start-page: 1040
  year: 2001
  ident: ref25
  article-title: Reinforcement learning with function approximation converges to a region
  publication-title: Advances in neural information processing systems
– volume: 5
  start-page: 6
  year: 2005
  ident: ref13
  article-title: From rate-distortion analysis to resource-distortion analysis
  publication-title: IEEE Circuits Syst Mag
  doi: 10.1109/MCAS.2005.1507521
– ident: ref12
  doi: 10.1109/TBC.2008.2002716
– ident: ref6
  doi: 10.1109/TCOMM.2018.2827063
– ident: ref21
  doi: 10.1109/INFCOM.2007.166
– ident: ref5
  doi: 10.1109/WCNC.2018.8377422
– ident: ref22
  doi: 10.1109/ICASSP.2004.1326668
– ident: ref11
  doi: 10.1109/TMC.2007.70706
– ident: ref3
  doi: 10.1109/TMM.2013.2270457
– volume: 35
  start-page: 30
  year: 2017
  ident: ref8
  article-title: Energy-efficient bandwidth aggregation for delay-constrained video over heterogeneous wireless networks
  publication-title: IEEE J Sel Areas Commun
SSID ssj0004033
Score 2.3630145
Snippet In this paper, we investigate the problem of power control for streaming variable bit rate (VBR) videos over wireless links. A system model involving a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5629
SubjectTerms Adaptive control
Algorithms
Bit rate
Buffer storage
Buffers
Completion time
Computer simulation
Control systems
Digital media
Dynamic programming
Energy consumption
Machine learning
Optimization
playout buffer overflow
playout buffer underflow
Policies
Power consumption
Power control
Receivers
reinforcement learning
Streaming media
variable bit rate (VBR) video
Video data
video streaming
Video transmission
Windows (intervals)
Wireless communication
Title Power Control for Wireless VBR Video Streaming: From Optimization to Reinforcement Learning
URI https://ieeexplore.ieee.org/document/8673785
https://www.proquest.com/docview/2275591187
Volume 67
WOSCitedRecordID wos000481946000032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH3-LqKjl402qbtHl408XFgy9ERfBQkjQRwd3Kuvr7TdLsqiiCtx4ypeTrTDLJzPcB7JgqzRUhNKGVc_KcWZxIbWVCFOVYaiYLGUhcz9jFBb-_F1dTsDfphTHGhOIzs-8fw11-Ves3f1R2wL2oCi-mYZox1vRqffZApiQyTvpydsbHDTKpOLjpXp6f-yousY9dLoiL7NsiFFRVfoTisL70Fv73ZYswH_eR6KgBfgmmzGAZ5r6wC67Aw5VXQEPdphgdud0p8rWuzy62obvja3T3VJka-Wtp2XcGh6g3rPvo0sWQfmzORKMaXZvArarDMSKKdKyPq3DbO7npniZRSyHRzmNHiWDEVjyligqfIxFlTUa0VLnWLqWhzGSWK8VyqlIsqS2kkjYjVOdG8RRbTNagNagHZh0Ql0bYwnddF2nu8jFZ8UpyJTU2hBsh2pCNJ7fUkWjc6108lyHhSEUZACk9IGUEpA27E5uXhmbjz9ErHoLJyDj7beiMMSyjJ76WGDOXNHlR9Y3frTZh1r-7KerrQGs0fDNbMKPfR0-vw-3wk30A6HvPYg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH5iDGlwYDCYKLDhA7cRmtiJY3ODahUTbamqDiHtENmOPVVqG1QKvx_bcQsINGm3HPyUyF_es5_93vcBHOsyTiUhNKKldfI0NzgSyoiISMqwULnIhCdx7eS9Hru95f0VOFn2wmitffGZPnWP_i6_rNSDOyprMieqwrIP8DFLU5zU3VrPXZAxCZyTrqA9Z4sWmZg3h63rbtfVcfFTbLNBnCWvliGvq_ImGPsVpv35_75tCzbDThKd19Bvw4qefoGNF_yCO_Cn7zTQUKsuR0d2f4pctevYRjd0czFAN6NSV8hdTIuJNThD7Vk1Qdc2ikxCeyaaV2igPbuq8geJKBCy_t2F3-2fw9ZlFNQUImV9dh7xnJiSxVRS7rIkIo1OiBIyVcomNTTXiWFS5imVMRbUZEIKkxCqUi1ZjA0mX2F1Wk31HiAmNDeZ67vO4tRmZKJkpWBSKKwJ05w3IFlMbqEC1bhTvBgXPuWIeeEBKRwgRQCkAT-WNnc10cY_R-84CJYjw-w34HCBYRF88b7AOLdpk5NV33_f6gg-XQ67naLzq3d1AOvuPXWJ3yGszmcP-husqcf56H723f9wT9r50qk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+Control+for+Wireless+VBR+Video+Streaming%3A+From+Optimization+to+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+communications&rft.au=Ye%2C+Chuang&rft.au=Gursoy%2C+M.+Cenk&rft.au=Velipasalar%2C+Senem&rft.date=2019-08-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=67&rft.issue=8&rft.spage=5629&rft.epage=5644&rft_id=info:doi/10.1109%2FTCOMM.2019.2907251&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2019_2907251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon