319 Development and Validation of an Artificial Intelligence Model to Accurately Predict Spinopelvic Parameters
OBJECTIVES/GOALS: The correction of spinopelvic parameters is associated with better outcomes in patients with adult spinal deformity (ASD). This study presents a novel artificial intelligence (AI) tool that automatically predicts spinopelvic parameters from spine x-rays with high accuracy and witho...
Uložené v:
| Vydané v: | Journal of clinical and translational science Ročník 8; číslo s1; s. 98 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cambridge
Cambridge University Press
01.04.2024
|
| Predmet: | |
| ISSN: | 2059-8661, 2059-8661 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | OBJECTIVES/GOALS: The correction of spinopelvic parameters is associated with better outcomes in patients with adult spinal deformity (ASD). This study presents a novel artificial intelligence (AI) tool that automatically predicts spinopelvic parameters from spine x-rays with high accuracy and without need for any manual entry. METHODS/STUDY POPULATION: The AI model was trained/validated on 761 sagittal whole-spine x-rays to predict the following parameters: Sagittal Vertical Axis (SVA), Pelvic Tilt (PT), Pelvic Incidence (PI), Sacral Slope (SS), Lumbar Lordosis (LL), T1-Pelvic Angle (T1PA), and L1-Pelvic Angle (L1PA). A separate test set of 40 x-rays was labeled by 4 reviewers including fellowship-trained spine surgeons and a neuroradiologist. Median errors relative to the most senior reviewer were calculated to determine model accuracy on test and cropped-test (i.e. lumbosacral) images. Intraclass correlation coefficients (ICC) were used to assess inter-rater reliability RESULTS/ANTICIPATED RESULTS: The AI model exhibited the following median (IQR) parameter errors: SVA[2.1mm (8.5mm), p=0.97], PT [1.5° (1.4°), p=0.52], PI[2.3° (2.4°), p=0.27], SS[1.7° (2.2°), p=0.64], LL [2.6° (4.0°), p=0.89], T1PA [1.3° (1.1°), p=0.41], and L1PA [1.3° (1.2°), p=0.51]. The parameter errors on cropped lumbosacral images were: LL[2.9° (2.6°), p=0.80] and SS[1.9° (2.2°), p=0.78]. The AI model exhibited excellent reliability at all parameters in both whole-spine (ICC: 0.92-1.0) and lumbosacral x-rays: (ICC: 0.92-0.93). DISCUSSION/SIGNIFICANCE: Our AI model accurately predicts spinopelvic parameters with excellent reliability comparable to fellowship-trained spine surgeons and neuroradiologists. Utilization of predictive AI tools in spine-imaging can substantially aid in patient selection and surgical planning. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2059-8661 2059-8661 |
| DOI: | 10.1017/cts.2024.289 |