ESTIMATION OF SOFTWARE COMPLEXITY OF CALCULATION OF AUTOREGRESSION COEFFICIENTS AT DIGITAL SPECTRAL ANALYSIS

The subject of research in the article are algorithms for fast calculation of autoregression coefficients in digital spectral analysis and estimation of the number of arithmetic operations required for their implementation. The aim of the article – comparative analysis of the speed of different algo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sučasnij stan naukovih doslìdženʹ ta tehnologìj v promislovostì (Online) číslo 1 (19); s. 85 - 91
Hlavní autoři: Zuev, Andrey, Ivashko, Andrey, Lunin, Denis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kharkiv National University of Radio Electronics 26.04.2022
Témata:
ISSN:2522-9818, 2524-2296
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The subject of research in the article are algorithms for fast calculation of autoregression coefficients in digital spectral analysis and estimation of the number of arithmetic operations required for their implementation. The aim of the article – comparative analysis of the speed of different algorithms for calculating the coefficients of autoregression as part of the algorithms of spectral analysis, including analysis of the complexity of their microcontroller implementation. Tasks to be solved: selection of spectral analysis methods suitable for diagnostics of technological equipment, analysis of methods for calculating autoregression coefficients and derivation of relations for estimating software complexity of algorithms and calculation of numerical estimates of addition and multiplication for some algorithms, adaptation of developed methods and estimates to microcontrollers. spectrum Applied methods: algorithm theory, Fourier transform, natural series, microcontroller programming. The results obtained: it is shown that spectral estimation methods based on Yul-Walker equations, which require the calculation of autoaggression coefficients, combine sufficient resolution and resistance to interference with acceptable implementation complexity. Estimates of the number of additions and multiplications for the Levinson, Durbin, and Trench algorithms are obtained, and their comparative analysis is performed. The calculation times for microcontroller arithmetic with fixed and floating points were count upon. Conclusions: When constructing spectrum analyzers for the diagnosis of technological equipment, it is advisable to use the Yul-Walker method. A comparison of Levinson, Durbin, and Trench algorithms for calculating autoregression coefficients showed that the Trench method requires a minimum number of additions, and the Durbin method requires a minimum number of multiplications. At microcontroller realization of spectrum analyzers, it is necessary to consider features of the arithmetic used by the controller. The Trench method is the fastest in the case of floating-point arithmetic and small-scale modeling. In other cases, Durbin's method is more effective.
AbstractList The subject of research in the article are algorithms for fast calculation of autoregression coefficients in digital spectral analysis and estimation of the number of arithmetic operations required for their implementation. The aim of the article – comparative analysis of the speed of different algorithms for calculating the coefficients of autoregression as part of the algorithms of spectral analysis, including analysis of the complexity of their microcontroller implementation. Tasks to be solved: selection of spectral analysis methods suitable for diagnostics of technological equipment, analysis of methods for calculating autoregression coefficients and derivation of relations for estimating software complexity of algorithms and calculation of numerical estimates of addition and multiplication for some algorithms, adaptation of developed methods and estimates to microcontrollers. spectrum Applied methods: algorithm theory, Fourier transform, natural series, microcontroller programming. The results obtained: it is shown that spectral estimation methods based on Yul-Walker equations, which require the calculation of autoaggression coefficients, combine sufficient resolution and resistance to interference with acceptable implementation complexity. Estimates of the number of additions and multiplications for the Levinson, Durbin, and Trench algorithms are obtained, and their comparative analysis is performed. The calculation times for microcontroller arithmetic with fixed and floating points were count upon. Conclusions: When constructing spectrum analyzers for the diagnosis of technological equipment, it is advisable to use the Yul-Walker method. A comparison of Levinson, Durbin, and Trench algorithms for calculating autoregression coefficients showed that the Trench method requires a minimum number of additions, and the Durbin method requires a minimum number of multiplications. At microcontroller realization of spectrum analyzers, it is necessary to consider features of the arithmetic used by the controller. The Trench method is the fastest in the case of floating-point arithmetic and small-scale modeling. In other cases, Durbin's method is more effective.
Author Ivashko, Andrey
Zuev, Andrey
Lunin, Denis
Author_xml – sequence: 1
  givenname: Andrey
  orcidid: 0000-0001-8206-4304
  surname: Zuev
  fullname: Zuev, Andrey
– sequence: 2
  givenname: Andrey
  orcidid: 0000-0002-4012-1697
  surname: Ivashko
  fullname: Ivashko, Andrey
– sequence: 3
  givenname: Denis
  orcidid: 0000-0002-9418-0000
  surname: Lunin
  fullname: Lunin, Denis
BookMark eNo9kNFqwjAUhsNwMOd8gV31BerSk6RNLkuXukC10kY2r0KqyVCcHe1u9varOrw6Pz-H74fvEY1O7ckh9BzhGcGcJC9K17WaAQaYRWKGObtDY2BAQwARjy4ZQsEj_oCmfX_AGANPYgzRGB1lrdUi1apcBmUe1GWu39NKBlm5WBXyQ-nNuc7SIlsXt690rctKzis5zA5NVso8V5mSS10HqQ5e1VzptAjqlcx0NYR0mRabWtVP6N7bY--m_3eC1rnU2VtYlHM1bIRbAMZCxrG31oKjFHwTOd9AIxLMmh1p4gbiBFMLxDMCzicusS7yVhDe8HjnMAVMJkhdubvWHsx3t_-y3a9p7d5cirb7NLb72W-PzlBnky1njO4ooY4KAc7iYVwQ8IJiNrDgytp2bd93zt94ETYX_eai35z1m0iYQT_5A168cTU
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.30837/ITSSI.2022.19.085
DatabaseName CrossRef
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 2524-2296
EndPage 91
ExternalDocumentID oai_doaj_org_article_4ea7c8554d434e4992ea0aaa932f9405
10_30837_ITSSI_2022_19_085
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c2255-580faaa2e442fb1efb2b9705bd3b6b26704a23f532ef7e7ae1fa938b86de04203
IEDL.DBID DOA
ISSN 2522-9818
IngestDate Fri Oct 03 12:52:12 EDT 2025
Sat Nov 29 06:22:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1 (19)
Language English
License http://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2255-580faaa2e442fb1efb2b9705bd3b6b26704a23f532ef7e7ae1fa938b86de04203
ORCID 0000-0002-4012-1697
0000-0002-9418-0000
0000-0001-8206-4304
OpenAccessLink https://doaj.org/article/4ea7c8554d434e4992ea0aaa932f9405
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_4ea7c8554d434e4992ea0aaa932f9405
crossref_primary_10_30837_ITSSI_2022_19_085
PublicationCentury 2000
PublicationDate 2022-04-26
PublicationDateYYYYMMDD 2022-04-26
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-26
  day: 26
PublicationDecade 2020
PublicationTitle Sučasnij stan naukovih doslìdženʹ ta tehnologìj v promislovostì (Online)
PublicationYear 2022
Publisher Kharkiv National University of Radio Electronics
Publisher_xml – name: Kharkiv National University of Radio Electronics
SSID ssj0002876021
ssib044762074
ssib036251356
Score 2.1794646
Snippet The subject of research in the article are algorithms for fast calculation of autoregression coefficients in digital spectral analysis and estimation of the...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 85
SubjectTerms autoregression
computational complexity
Durbin
Levinson
spectral analysis
Trench algorithms
Title ESTIMATION OF SOFTWARE COMPLEXITY OF CALCULATION OF AUTOREGRESSION COEFFICIENTS AT DIGITAL SPECTRAL ANALYSIS
URI https://doaj.org/article/4ea7c8554d434e4992ea0aaa932f9405
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 2524-2296
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002876021
  issn: 2522-9818
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2524-2296
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044762074
  issn: 2522-9818
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqhKpeUKFFUD7kQ29VwPFHHB9DyEKksLvaBLqcIjuxJapqiyjw-xk7uyi3Xnq1Jpb1NGO_mdhvEPoea6cJd30ktEkjroiIVGe7yPWOcespbRDTuavkdJoul2o-avXl74QN8sADcOfcatn5u1Q9h4-Bn1OridYaeIdTfFAvJVKNkinwJNiVRTwSXuMcYn6j-vIrlJRkQsKjLAoEJFJwbA0vahhQEnleNrCVQfJI6VmszohvtDw6tUbi_uEUmnxGO2v6iLNh2bvog13toY-b2-tf0O-ibsqbUHfCswmuZ5PmZ7YocD67mVfFsmzu_XCeVflt9W4FPjpbFFeLYWcFWyCvpS8-NTXOGnxZXpVNVuF6XuS-wzLOpll1X5f1V3Q7KZr8Olo3VIg6CFsRiZQ4gI5azqkzsXWGGiWJMD0ziaGJJFxT5gSj1kkrtY0d4JyaNOktBDdh-2hr9WdlDxAWDlIbqtPY8Y73LDbAE5nPlaxjve7EIfqxAax9HHQzWsg3ArxtgLf18LaxagHeQ3ThMX239JrXYQA8oV17QvsvT_j2PyY5Qp_8uvz_Ipoco63npxd7gra71-eHv0-nwcneABQIxtA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ESTIMATION+OF+SOFTWARE+COMPLEXITY+OF+CALCULATION+OF+AUTOREGRESSION+COEFFICIENTS+AT+DIGITAL+SPECTRAL+ANALYSIS&rft.jtitle=Su%C4%8Dasnij+stan+naukovih+dosl%C3%ACd%C5%BEen%CA%B9+ta+tehnolog%C3%ACj+v+promislovost%C3%AC+%28Online%29&rft.au=Zuev%2C+Andrey&rft.au=Ivashko%2C+Andrey&rft.au=Lunin%2C+Denis&rft.date=2022-04-26&rft.issn=2522-9818&rft.eissn=2524-2296&rft.issue=1+%2819%29&rft.spage=85&rft.epage=91&rft_id=info:doi/10.30837%2FITSSI.2022.19.085&rft.externalDBID=n%2Fa&rft.externalDocID=10_30837_ITSSI_2022_19_085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-9818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-9818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-9818&client=summon