Effective and efficient approach in IoT Botnet detection

Internet of Things (IoT) technology presents an advantage to daily life, but this advantage is not a guarantee of security. This is because cyber-attacks, such as botnets, remain a threat to the user. Detection systems are one of the alternatives to maintain the security of IoT network. A reliable d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sinergi (Fakultas Teknologi Industri Univeritas Mercu Buana. Ročník 28; číslo 1; s. 31 - 42
Hlavní autoři: Susanto, Susanto, Stiawan, Deris, Arifin, M. Agus Syamsul, Idris, Mohd. Yazid, Budiarto, Rahmat
Médium: Journal Article
Jazyk:angličtina
Vydáno: Universitas Mercu Buana 2024
Témata:
ISSN:1410-2331, 2460-1217
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Internet of Things (IoT) technology presents an advantage to daily life, but this advantage is not a guarantee of security. This is because cyber-attacks, such as botnets, remain a threat to the user. Detection systems are one of the alternatives to maintain the security of IoT network. A reliable detection system should effectively detect botnets with high accuracy levels and low positive rate. It should be efficient to perform detection quickly. However, data generated by IoT networks have high dimensions and high scalability, so they need to be minimized. In network security analysis process, high-dimension data pose challenges, such as the dimension curse correlation between different dimensions, which causes features that are hard to define, datasets that are mostly unordered, cluster combination, and exponential growth. In this study, we applied feature reduction using the Linear Discriminant Analysis (LDA) method to minimize features on the IoT network to detect botnet. The reduction process is carried out on the N-BaIoT dataset which has 115 features reduced to 2 features. Performing feature reduction with detection systems has become more effective and efficient. Experimental result showed that the application of LDA combined with machine learning on the classification Decision Tree method was able to detect with accuracy that reached 100% in 98.58s with only two features.
AbstractList Internet of Things (IoT) technology presents an advantage to daily life, but this advantage is not a guarantee of security. This is because cyber-attacks, such as botnets, remain a threat to the user. Detection systems are one of the alternatives to maintain the security of IoT network. A reliable detection system should effectively detect botnets with high accuracy levels and low positive rate. It should be efficient to perform detection quickly. However, data generated by IoT networks have high dimensions and high scalability, so they need to be minimized. In network security analysis process, high-dimension data pose challenges, such as the dimension curse correlation between different dimensions, which causes features that are hard to define, datasets that are mostly unordered, cluster combination, and exponential growth. In this study, we applied feature reduction using the Linear Discriminant Analysis (LDA) method to minimize features on the IoT network to detect botnet. The reduction process is carried out on the N-BaIoT dataset which has 115 features reduced to 2 features. Performing feature reduction with detection systems has become more effective and efficient. Experimental result showed that the application of LDA combined with machine learning on the classification Decision Tree method was able to detect with accuracy that reached 100% in 98.58s with only two features.
Author Budiarto, Rahmat
Susanto, Susanto
Stiawan, Deris
Idris, Mohd. Yazid
Arifin, M. Agus Syamsul
Author_xml – sequence: 1
  givenname: Susanto
  surname: Susanto
  fullname: Susanto, Susanto
– sequence: 2
  givenname: Deris
  surname: Stiawan
  fullname: Stiawan, Deris
– sequence: 3
  givenname: M. Agus Syamsul
  surname: Arifin
  fullname: Arifin, M. Agus Syamsul
– sequence: 4
  givenname: Mohd. Yazid
  surname: Idris
  fullname: Idris, Mohd. Yazid
– sequence: 5
  givenname: Rahmat
  surname: Budiarto
  fullname: Budiarto, Rahmat
BookMark eNo9kM1KAzEUhYNUsNY-gZt5gRnzO5MstVQtFNzUdbiT3NSUmpTMIPj29g9XFw6Xj3O-ezJJOSEhj4w2nEvJnoaYsGxjwymXDWsolTdkymVLa8ZZNyFTJhmtuRDsjsyHYUcpZYZTpdmU6GUI6Mb4gxUkX2EI0UVMYwWHQ8ngvqqYqlXeVC95TDhWHsfTe04P5DbAfsD59c7I5-tys3iv1x9vq8XzunacK1nrrkevu4DBcwi9EgCCBs27thdSeA2a9ky1Bh03nhrvWjzNQNEprZEbMSOrC9dn2NlDid9Qfm2GaM9BLlsLZYxujxY66IE6FbhWsgdpWhaMC0ZRIY-i8MgSF5YreRgKhn8eo_bs0l5d2lMJy-zRpfgDcGZp2A
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.22441/sinergi.2024.1.004
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2460-1217
EndPage 42
ExternalDocumentID oai_doaj_org_article_a7aba0c5f2854ba4961f9cf95034244e
10_22441_sinergi_2024_1_004
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
OK1
ID FETCH-LOGICAL-c2254-87bed87fefd2afb53aa30f8276b343d8a80b1569ec29d09dc6e2024e37588e293
IEDL.DBID DOA
ISSN 1410-2331
IngestDate Fri Oct 03 12:47:47 EDT 2025
Sat Nov 29 05:42:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2254-87bed87fefd2afb53aa30f8276b343d8a80b1569ec29d09dc6e2024e37588e293
OpenAccessLink https://doaj.org/article/a7aba0c5f2854ba4961f9cf95034244e
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_a7aba0c5f2854ba4961f9cf95034244e
crossref_primary_10_22441_sinergi_2024_1_004
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationTitle Sinergi (Fakultas Teknologi Industri Univeritas Mercu Buana.
PublicationYear 2024
Publisher Universitas Mercu Buana
Publisher_xml – name: Universitas Mercu Buana
SSID ssj0001920581
ssib044761024
Score 2.2894583
Snippet Internet of Things (IoT) technology presents an advantage to daily life, but this advantage is not a guarantee of security. This is because cyber-attacks, such...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 31
SubjectTerms dimensionality reduction
iot
lda
Title Effective and efficient approach in IoT Botnet detection
URI https://doaj.org/article/a7aba0c5f2854ba4961f9cf95034244e
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2460-1217
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920581
  issn: 1410-2331
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2460-1217
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044761024
  issn: 1410-2331
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcCCQIAoX_LASFoncRJ7pIgKJFQxFNTN8sdZKkOK2sDv52ynqBsLS4Yosux39p1fdPeOkFuDB8hIZzIQOWRcVy4TYKtMVlWpPRrcxXY-7y_NbCYWC_m60-or5IQleeAE3Fg32mhmKx9K_Yzmss69tF5WQbuOcwjelzVyh0zhTuIc2Tnr6x4-0j2GVbFjachrzIqyzJMEEUYwno83sdBuiXSx4KN8xPq2bdswtaPmH8PO9Igc9vdFep_meUz2oD0hImkOo6OiunUUogwERg-6VQiny5Y-r-Z0supa6KiDLmZctafkbfo4f3jK-hYImcWDxtFXGXCi8eBdob1B_HTJvCia2pS8dEILZpCBSbCFdEw6W0NYA5RIAwRgKD8jg3bVwjmhwGojGTh8Wm4K0BK5lhN1aZEFM-OH5G67YvWZlC4UMoQIkOoBUmFwlSsEaEgmAZXfT4NMdXyBxlO98dRfxrv4j0EuyUGYVvovckUG3foLrsm-_e6Wm_VN3Bc_ZZ-5KA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+and+efficient+approach+in+IoT+Botnet+detection&rft.jtitle=Sinergi+%28Fakultas+Teknologi+Industri+Univeritas+Mercu+Buana.&rft.au=Susanto%2C+Susanto&rft.au=Stiawan%2C+Deris&rft.au=Arifin%2C+M.+Agus+Syamsul&rft.au=Idris%2C+Mohd.+Yazid&rft.date=2024&rft.issn=1410-2331&rft.eissn=2460-1217&rft.volume=28&rft.issue=1&rft.spage=31&rft_id=info:doi/10.22441%2Fsinergi.2024.1.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_22441_sinergi_2024_1_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1410-2331&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1410-2331&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1410-2331&client=summon