Notice of Violation of IEEE Publication Principles: Single-Image Super-Resolution Algorithm Based on Structural Self-Similarity and Deformation Block Features

To solve the problem of insufficient sample resources and poor noise immunity in single-image super-resolution (SR) restoration procedure, the paper has proposed the single-image SR algorithm based on structural self-similarity and deformation block features (SSDBF). First, the proposed method const...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 7; s. 58791 - 58801
Hlavní autoři: Chen, Yuantao, Wang, Jin, Chen, Xi, Zhu, Mingwei, Yang, Kai, Wang, Zhi, Xia, Runlong
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2019
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To solve the problem of insufficient sample resources and poor noise immunity in single-image super-resolution (SR) restoration procedure, the paper has proposed the single-image SR algorithm based on structural self-similarity and deformation block features (SSDBF). First, the proposed method constructs a scale model, expands the search space as much as possible, and overcomes the shortcomings caused by the lack of a single-image SR training sample; Second, the limited internal dictionary size is increased by the geometric deformation of the sample block; Finally, in order to improve the anti-noise performance of the reconstructed picture, a group sparse learning dictionary is used to reconstruct the pending image. The experimental results show that, compared with state-of-the-art algorithms such as bicubic interpolation (BI), sparse coding (SC), deep recursive convolutional network (DRCN), multi-scale deep SR network (MDSR), super-resolution convolutional neural network (SRCNN) and second-order directional total generalized variation (DTGV). The SR images with more subjective visual effects and higher objective evaluation can be obtained through the proposed method. Compared with existing algorithms, the structural network converges more rapidly, the image edge and texture reconstruction effects are obviously improved, and the image quality evaluation, such as peak signal-noise ratio (PSNR), root mean square error (RMSE), and structural similarity (SSIM), are also superior and popular in image evaluation. Notice of Violation of IEEE Publication Principles “Single-Image Super-Resolution Algorithm Based on Structural Self-Similarity and Deformation Block Features” by Yuantao Chen, Jin Wang, Xi Chen, Mingwei Zhu, Kai Yang, Zhi Wang, and Runlong Xia in IEEE Access, April 2019 After careful and considered review of the content and authorship of this paper by a duly constituted expert committee, this paper has been found to be in violation of IEEE’s Publication Principles. This paper is a translation and duplication of the content from the paper cited below. The original content was copied without attribution (including appropriate references to the original author(s) and/or paper title) and without permission. Due to the nature of this violation, reasonable effort should be made to remove all past references to this paper, and future references should be made to the following article: “Single image super resolution algorithm based on structural self-similarity and deformation block feature” by Wen Xiang, Ling Zhang, Yunhua Chen, Qiumin Ji in the Journal of Computer Applications (39) 1, June 2018
AbstractList To solve the problem of insufficient sample resources and poor noise immunity in single-image super-resolution (SR) restoration procedure, the paper has proposed the single-image SR algorithm based on structural self-similarity and deformation block features (SSDBF). First, the proposed method constructs a scale model, expands the search space as much as possible, and overcomes the shortcomings caused by the lack of a single-image SR training sample; Second, the limited internal dictionary size is increased by the geometric deformation of the sample block; Finally, in order to improve the anti-noise performance of the reconstructed picture, a group sparse learning dictionary is used to reconstruct the pending image. The experimental results show that, compared with state-of-the-art algorithms such as bicubic interpolation (BI), sparse coding (SC), deep recursive convolutional network (DRCN), multi-scale deep SR network (MDSR), super-resolution convolutional neural network (SRCNN) and second-order directional total generalized variation (DTGV). The SR images with more subjective visual effects and higher objective evaluation can be obtained through the proposed method. Compared with existing algorithms, the structural network converges more rapidly, the image edge and texture reconstruction effects are obviously improved, and the image quality evaluation, such as peak signal-noise ratio (PSNR), root mean square error (RMSE), and structural similarity (SSIM), are also superior and popular in image evaluation.
To solve the problem of insufficient sample resources and poor noise immunity in single-image super-resolution (SR) restoration procedure, the paper has proposed the single-image SR algorithm based on structural self-similarity and deformation block features (SSDBF). First, the proposed method constructs a scale model, expands the search space as much as possible, and overcomes the shortcomings caused by the lack of a single-image SR training sample; Second, the limited internal dictionary size is increased by the geometric deformation of the sample block; Finally, in order to improve the anti-noise performance of the reconstructed picture, a group sparse learning dictionary is used to reconstruct the pending image. The experimental results show that, compared with state-of-the-art algorithms such as bicubic interpolation (BI), sparse coding (SC), deep recursive convolutional network (DRCN), multi-scale deep SR network (MDSR), super-resolution convolutional neural network (SRCNN) and second-order directional total generalized variation (DTGV). The SR images with more subjective visual effects and higher objective evaluation can be obtained through the proposed method. Compared with existing algorithms, the structural network converges more rapidly, the image edge and texture reconstruction effects are obviously improved, and the image quality evaluation, such as peak signal-noise ratio (PSNR), root mean square error (RMSE), and structural similarity (SSIM), are also superior and popular in image evaluation. Notice of Violation of IEEE Publication Principles “Single-Image Super-Resolution Algorithm Based on Structural Self-Similarity and Deformation Block Features” by Yuantao Chen, Jin Wang, Xi Chen, Mingwei Zhu, Kai Yang, Zhi Wang, and Runlong Xia in IEEE Access, April 2019 After careful and considered review of the content and authorship of this paper by a duly constituted expert committee, this paper has been found to be in violation of IEEE’s Publication Principles. This paper is a translation and duplication of the content from the paper cited below. The original content was copied without attribution (including appropriate references to the original author(s) and/or paper title) and without permission. Due to the nature of this violation, reasonable effort should be made to remove all past references to this paper, and future references should be made to the following article: “Single image super resolution algorithm based on structural self-similarity and deformation block feature” by Wen Xiang, Ling Zhang, Yunhua Chen, Qiumin Ji in the Journal of Computer Applications (39) 1, June 2018
Author Chen, Xi
Xia, Runlong
Chen, Yuantao
Wang, Zhi
Yang, Kai
Wang, Jin
Zhu, Mingwei
Author_xml – sequence: 1
  givenname: Yuantao
  orcidid: 0000-0003-2277-1765
  surname: Chen
  fullname: Chen, Yuantao
  organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 2
  givenname: Jin
  surname: Wang
  fullname: Wang, Jin
  email: jinwang@csust.edu.cn
  organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 3
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 4
  givenname: Mingwei
  surname: Zhu
  fullname: Zhu, Mingwei
  organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 5
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
  organization: Technical Quality Department, Hunan ZOOMLION Heavy Industry Intelligent Technology Corporation Ltd., Changsha, China
– sequence: 6
  givenname: Zhi
  surname: Wang
  fullname: Wang, Zhi
  organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 7
  givenname: Runlong
  surname: Xia
  fullname: Xia, Runlong
  organization: Hunan Institute of Scientific and Technical Information, Changsha, China
BookMark eNqFUU1P3DAQjSqQSim_gIv_QLa2kziZ3pZtKCshikjba-SPydbUiVdOcuDP8Fvr3SCEemEuHr95740071NyMvgBk-SS0RVjFL6sN5u6aVacMlhxYKwC_iE540xAmhWZOHnTf0wuxvGRxqoiVJRnyfOdn6xG4jvy23onJ-uHw2db1zW5n5WzesHugx203Tscv5LGDjuH6baXOyTNvMeQPuDo3Xxkrt3OBzv96cmVHNGQCDVTmPU0B-lIg65LG9tbJyPpicjBkG_Y-dAve66c13_JNcpIx_FzctpJN-LFy3ue_Lquf25u0tsf37eb9W2qOS94ylRlcqlACApKgRGoskoUhSgAMsHKAjmYrqQalDbUFCAyTiFOjYFccpWdJ9vF13j52O6D7WV4ar207RHwYdfKEA_lsOU5GEU7LguFeS6YVFRJw5EbVkIlRPTKFi8d_DgG7F79GG0PibVLYu0hsfYlsaiC_1TaTseTTEFa9472ctFaRHzdVgnIyjj9B4-1qBs
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_compeleceng_2020_106603
crossref_primary_10_1109_ACCESS_2019_2953516
crossref_primary_10_1007_s40009_023_01353_5
crossref_primary_10_1080_00051144_2020_1821535
crossref_primary_10_1109_ACCESS_2020_2994328
crossref_primary_10_1007_s11042_020_09796_4
crossref_primary_10_1007_s11042_020_09583_1
crossref_primary_10_1007_s11042_020_10152_9
crossref_primary_10_1007_s11042_021_10721_6
crossref_primary_10_1007_s11042_020_10218_8
crossref_primary_10_1007_s11042_020_09940_0
crossref_primary_10_1007_s11042_021_10924_x
crossref_primary_10_1007_s12652_020_02066_z
crossref_primary_10_3390_app9112316
crossref_primary_10_1109_ACCESS_2020_2971841
crossref_primary_10_1007_s11042_020_09969_1
crossref_primary_10_1007_s11042_020_10187_y
crossref_primary_10_1016_j_asoc_2020_106183
crossref_primary_10_1016_j_solener_2021_03_058
crossref_primary_10_1007_s11042_020_09946_8
crossref_primary_10_1109_ACCESS_2020_2997953
crossref_primary_10_1007_s11042_020_09543_9
crossref_primary_10_3724_SP_J_1089_2022_18903
crossref_primary_10_1007_s11042_022_13275_3
crossref_primary_10_1080_00051144_2019_1691835
crossref_primary_10_3390_s19183978
crossref_primary_10_1007_s11760_024_03636_w
crossref_primary_10_3390_s19143145
crossref_primary_10_1007_s11042_020_09448_7
crossref_primary_10_1109_ACCESS_2019_2958817
crossref_primary_10_1007_s11042_021_10672_y
crossref_primary_10_1155_2020_8822777
crossref_primary_10_1007_s11760_023_02936_x
crossref_primary_10_1166_jmihi_2021_3315
crossref_primary_10_1007_s11042_020_09883_6
crossref_primary_10_3390_electronics8101106
crossref_primary_10_1007_s11042_020_10348_z
crossref_primary_10_1007_s00371_020_01932_3
crossref_primary_10_1007_s11042_020_10080_8
crossref_primary_10_1109_ACCESS_2020_2999965
crossref_primary_10_1007_s00521_020_05566_3
crossref_primary_10_1007_s11042_021_11209_z
crossref_primary_10_1007_s11042_021_11668_4
crossref_primary_10_1007_s11042_023_15420_y
crossref_primary_10_3390_app9153007
crossref_primary_10_1109_ACCESS_2020_3007896
crossref_primary_10_1016_j_patcog_2019_107163
crossref_primary_10_1109_ACCESS_2019_2957776
crossref_primary_10_1007_s11042_020_09458_5
crossref_primary_10_3390_app9224968
crossref_primary_10_1007_s11042_022_11962_9
crossref_primary_10_1109_ACCESS_2020_2976478
crossref_primary_10_1007_s11042_020_09372_w
crossref_primary_10_1007_s11042_022_12511_0
crossref_primary_10_1109_ACCESS_2020_3019713
crossref_primary_10_1007_s11042_020_09077_0
crossref_primary_10_1007_s11042_021_10774_7
crossref_primary_10_1109_ACCESS_2020_2964621
crossref_primary_10_1007_s11042_021_10601_z
crossref_primary_10_1007_s11042_021_10754_x
crossref_primary_10_1016_j_patrec_2020_09_009
crossref_primary_10_1109_JSTARS_2020_3028774
crossref_primary_10_1007_s11042_020_10462_y
crossref_primary_10_1109_ACCESS_2019_2933673
crossref_primary_10_1007_s11042_020_09037_8
crossref_primary_10_1007_s11042_021_11223_1
crossref_primary_10_1007_s11042_020_09154_4
Cites_doi 10.1109/ICCV.2013.241
10.1145/1531326.1531330
10.1109/CVPR.2016.181
10.1109/CVPR.2016.182
10.1109/ACCESS.2018.2855127
10.1109/ICCPHOT.2010.5585097
10.1109/CVPR.2013.141
10.1109/LSP.2012.2220349
10.1109/ICCV.2013.75
10.1109/TBC.2018.2871376
10.1016/j.ins.2017.12.032
10.1109/ACCESS.2018.2847037
10.1145/2185520.2185578
10.1109/TSMC.2017.2751504
10.1109/ICCV.2017.486
10.1155/2018/5986062
10.1109/TIP.2010.2050625
10.1109/ACCESS.2018.2812794
10.1109/CVPR.2004.1315043
10.1109/CVPR.2016.90
10.1109/TSP.2006.881199
10.1016/1049-9652(91)90045-L
10.1109/ACCESS.2019.2892979
10.1109/TIE.2017.2652339
10.1109/38.988747
10.1109/TMM.2014.2373812
10.1109/CVPRW.2017.151
10.1109/TIP.2011.2108306
10.1007/978-3-319-10593-2_13
10.1109/ACCESS.2018.2820093
10.1109/ACCESS.2019.2901742
10.1109/ACCESS.2018.2823979
10.1109/ACCESS.2018.2854411
10.1109/CVPR.2011.5995401
10.1109/TPAMI.2015.2439281
10.1109/TIP.2015.2439035
10.1109/TASSP.1981.1163711
10.1109/ACCESS.2018.2797197
10.1109/TIP.2017.2735192
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2019.2911892
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 58801
ExternalDocumentID oai_doaj_org_article_249db0f2a5be4461ab0bad2e2d179866
10_1109_ACCESS_2019_2911892
8693792
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1836208; 61811530332; 61811540410
  funderid: 10.13039/501100001809
– fundername: Changsha Industrial Science and Technology Commissioner
  grantid: 2017-7
– fundername: Open Research Fund of Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation
  grantid: 2015TP1005
– fundername: Changsha Science and Technology Planning
  grantid: KQ1703018; KQ1706064; KQ1703018-01
– fundername: Research Foundation of Education Bureau of Hunan Province
  grantid: 17A007
– fundername: Teaching and Reforming Project of Changsha University of Science and Technology
  grantid: JG1755; JG1711; JG1615; JG201815; CN1501; XJT[2015]291 No.156; XJT[2016]400 No.219; XJT[2017]452 No.132; XJT[2018]436 No.193
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c2252-1b8d4ab96609bb9d6eb38655659936175e29df70c9bcd0d5963209659dd94a2b3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:28 EDT 2025
Sat Nov 29 03:57:35 EST 2025
Tue Nov 18 21:24:08 EST 2025
Wed Aug 27 02:59:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2252-1b8d4ab96609bb9d6eb38655659936175e29df70c9bcd0d5963209659dd94a2b3
ORCID 0000-0003-2277-1765
OpenAccessLink https://doaj.org/article/249db0f2a5be4461ab0bad2e2d179866
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2019_2911892
doaj_primary_oai_doaj_org_article_249db0f2a5be4461ab0bad2e2d179866
ieee_primary_8693792
crossref_primary_10_1109_ACCESS_2019_2911892
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref33
ref11
ref32
wu (ref30) 2017; 45
ref10
ref2
ref1
yang (ref25) 2008
ref39
ref17
ref38
ref16
ref19
ref18
gui (ref45) 2019; 35
chen (ref43) 2018; 22
zeng (ref7) 2018; 55
ref46
ref24
ref23
ref48
ref26
ref47
ref20
ref41
ref22
tu (ref44) 2018; 55
ref28
ref27
ref29
ref8
singh (ref21) 2014
zhang (ref42) 2018; 77
ref4
ref3
ref6
ref5
krizhevsky (ref9) 2012
ref40
References_xml – volume: 55
  start-page: 121
  year: 2018
  ident: ref7
  article-title: Adversarial learning for distant supervised relation extraction
  publication-title: Comput Mater Continua
– ident: ref11
  doi: 10.1109/ICCV.2013.241
– ident: ref26
  doi: 10.1145/1531326.1531330
– volume: 22
  start-page: 1
  year: 2018
  ident: ref43
  article-title: A novel online incremental and decremental learning algorithm based on variable support vector machine
  publication-title: Cluster Comput
– start-page: 552
  year: 2014
  ident: ref21
  article-title: Super-resolution using sub-band self-similarity
  publication-title: Proc Asian Conf Comput Vis
– ident: ref15
  doi: 10.1109/CVPR.2016.181
– ident: ref13
  doi: 10.1109/CVPR.2016.182
– ident: ref16
  doi: 10.1109/ACCESS.2018.2855127
– ident: ref19
  doi: 10.1109/ICCPHOT.2010.5585097
– ident: ref36
  doi: 10.1109/CVPR.2013.141
– ident: ref28
  doi: 10.1109/LSP.2012.2220349
– start-page: 1097
  year: 2012
  ident: ref9
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref5
  doi: 10.1109/ICCV.2013.75
– volume: 55
  start-page: 243
  year: 2018
  ident: ref44
  article-title: Semi-supervised learning with generative adversarial networks on digital signal modulation classification
  publication-title: Comput Mater Continua
– ident: ref32
  doi: 10.1109/TBC.2018.2871376
– ident: ref12
  doi: 10.1016/j.ins.2017.12.032
– ident: ref8
  doi: 10.1109/ACCESS.2018.2847037
– ident: ref27
  doi: 10.1145/2185520.2185578
– volume: 35
  start-page: 1
  year: 2019
  ident: ref45
  article-title: Joint learning of visual and spatial features for editpropagation from a single image
  publication-title: Visual Comput
– ident: ref39
  doi: 10.1109/TSMC.2017.2751504
– ident: ref18
  doi: 10.1109/ICCV.2017.486
– ident: ref37
  doi: 10.1155/2018/5986062
– ident: ref4
  doi: 10.1109/TIP.2010.2050625
– volume: 77
  start-page: 1
  year: 2018
  ident: ref42
  article-title: Spatial and semantic convolutional features for robust visual object tracking
  publication-title: Multimedia Tools Appl
– ident: ref40
  doi: 10.1109/ACCESS.2018.2812794
– ident: ref3
  doi: 10.1109/CVPR.2004.1315043
– ident: ref24
  doi: 10.1109/CVPR.2016.90
– ident: ref23
  doi: 10.1109/TSP.2006.881199
– ident: ref1
  doi: 10.1016/1049-9652(91)90045-L
– ident: ref48
  doi: 10.1109/ACCESS.2019.2892979
– ident: ref33
  doi: 10.1109/TIE.2017.2652339
– ident: ref2
  doi: 10.1109/38.988747
– ident: ref34
  doi: 10.1109/TMM.2014.2373812
– ident: ref17
  doi: 10.1109/CVPRW.2017.151
– volume: 45
  start-page: 2625
  year: 2017
  ident: ref30
  article-title: Second-order directional total generalized variation regularization for image super-resolution
  publication-title: Acta Electronica Sinica
– ident: ref29
  doi: 10.1109/TIP.2011.2108306
– ident: ref6
  doi: 10.1007/978-3-319-10593-2_13
– ident: ref46
  doi: 10.1109/ACCESS.2018.2820093
– ident: ref47
  doi: 10.1109/ACCESS.2019.2901742
– ident: ref41
  doi: 10.1109/ACCESS.2018.2823979
– ident: ref14
  doi: 10.1109/ACCESS.2018.2854411
– ident: ref22
  doi: 10.1109/CVPR.2011.5995401
– ident: ref10
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref35
  doi: 10.1109/TIP.2015.2439035
– year: 2008
  ident: ref25
  article-title: Image super-resolution as sparse representation of raw image patches
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref20
  doi: 10.1109/TASSP.1981.1163711
– ident: ref38
  doi: 10.1109/ACCESS.2018.2797197
– ident: ref31
  doi: 10.1109/TIP.2017.2735192
SSID ssj0000816957
Score 2.1144156
Snippet To solve the problem of insufficient sample resources and poor noise immunity in single-image super-resolution (SR) restoration procedure, the paper has...
SourceID doaj
crossref
ieee
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 58791
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELdYxcP2wMfYRIFNftgjBsfNh81b24E2aaqQMhBvUZxzIKJtqkL5c_hbuXPSCCQ0aW-JY0eO7s73kbvfMfZDF4NQOiuFCSWIsAy00DbBwzDSuQ3wmQ59ofCfZDLRNzfmcoMdd7UwzjmffOZO6NL_y4e6WFGo7FTHqEwNHrgfkiRuarW6eAo1kDBR0gILBdKcDsdj_AbK3jInCmVaG_VG-XiM_jdNVbxOudj-v93ssK3WduTDhti7bMPNP7NPrxAF99jzpKZsNl6X_Lqqmzw3uiGfjr8K0fHLdZD94YynuHTqxO8Zni08XS3cUlBUv-FJPpze1svq8W7GR6jxgONQ6kFnCbCDp25airSaVegho0HP8znwn64rieQjVJb3nAzNFTr2X9jVxfnf8S_RtmAQBQq6EoHVEOaWIDyNtQZi9L2plDWO0K5B4ydyykCZyMLYAiREKM6K8GQMgAlzZQdfWW9ez90-4yrI0fcrcY5Fq8HFxkA0UDYGCxGU5aDP1Jo2WdHik1ObjGnm_RRpsoagGRE0awnaZ8fdokUDz_Hv6SMiejeVsLX9ABI2a0U1Q4cUrCxVHlmHznKQW2lzUE4BgbvFcZ_tETN0L2n54OD94UP2kXbQRG2OWA8J5L6xzeLpsXpYfvc8_AI7GPDl
  priority: 102
  providerName: IEEE
Title Notice of Violation of IEEE Publication Principles: Single-Image Super-Resolution Algorithm Based on Structural Self-Similarity and Deformation Block Features
URI https://ieeexplore.ieee.org/document/8693792
https://doaj.org/article/249db0f2a5be4461ab0bad2e2d179866
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1EN7qFoo6raAfOgRg-PNh4fb7gICqayQQhG3KM44bcTuBi3QY39KfyszTlgtl_bSS6Q4tuV4xp55I_uNEF9tNYy1d1pBrFHFdWSVdRlthoktXUTfbBwuCn_LplN7cwOXa6m--ExYRw_cTdwhwQN0ujZl4jxBl6h02pVovEGm2koD2bbOYA1MhT3YRikkWU8zFGk4HE0m9Ed8lgsODK1wC-aFKQqM_S9SrAQLc_pevOtdQznqhvRBvPKLTfF2jTBwS_yZtnxYTba1vG7a7hgbvzBkk2sROHn5HEO_P5I5NZ15dT6nrUPmj3d-qTho36mcHM1-tMvm4edcjsmgoaSiPHDKMh-HzP2sVnkzbwgAk78uywXKY7-68SjHZAtvJfuRj4TbP4rvpydXkzPVZ1hQFa1joyJnMS4dM3SCc4ApQWu-qZom5LaQb5N4A1hnugJXocaEVqthuhhAhLg0brgtNhbtwn8S0kQlQbua6jhyCnwKgMnQuBQdJljXw4Ewz5NdVD39OGfBmBUBhmgoOgkVLKGil9BA7K8a3XXsG3-vPmYprqoydXYoIIUqeoUq_qVQA7HFOrDqxKbkwYH5_D_6_iLe8Hi7EM6O2CBx-l3xuvr10Nwv94IK0_Pi98leuIj4BLBH9j0
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED9NAwl4YMBAFAb4gcd5c9wktXlrC9MmSjUpA-0tinMOi9Y2U7fycfis3DlZtEkIibfEsSNHd-f7k7vfAXw05TBW3ilpY4UyriIjjRvRYZiYwkX0zMShUHg2ms_N-bk93YL9vhbGex-Sz_wBX4Z_-diUGw6VHZqUlKmlA_cBd87qqrX6iAq3kLDJqIMWipQ9HE-n9BWcv2UPNEm1sfqe-gko_ffaqgStcrTzf_t5Bk8761GMW3I_hy2_egFP7mAK7sLvecP5bKKpxI-6aTPd-Ia9OnEnSCdOb8Ps159ERksXXp4s6XQR2ebKryXH9VuuFOPFz2Zd31wsxYR0HgoaygLsLEN2iMwvKpnVy5p8ZDLpRbFC8dn3RZFiQuryUrCpuSHX_iV8P_pyNj2WXRMGWZKoaxk5g3HhGMTTOmcxJe-bi1nThCwbMn8Sry1WI1VaV6LChARaM6KMRbRxod3wFWyvmpV_DUJHBXl_Fc1xZDf41FpMhtql6DDBqhoOQN_SJi87hHJulLHIg6eibN4SNGeC5h1BB7DfL7pqATr-PX3CRO-nMrp2GCDC5p2w5uSSolOVLhLnyV2OCqdcgdprZHi3NB3ALjND_5KOD978ffgDPDo--zbLZyfzr2_hMe-mjeHswTYRy7-Dh-Wvm_p6_T7w8x_mn_Qu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Notice+of+Violation+of+IEEE+Publication+Principles%3A+Single-Image+Super-Resolution+Algorithm+Based+on+Structural+Self-Similarity+and+Deformation+Block+Features&rft.jtitle=IEEE+access&rft.au=Chen%2C+Yuantao&rft.au=Wang%2C+Jin&rft.au=Chen%2C+Xi&rft.au=Zhu%2C+Mingwei&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=58791&rft.epage=58801&rft_id=info:doi/10.1109%2FACCESS.2019.2911892&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2911892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon