Notice of Violation of IEEE Publication Principles: Single-Image Super-Resolution Algorithm Based on Structural Self-Similarity and Deformation Block Features
To solve the problem of insufficient sample resources and poor noise immunity in single-image super-resolution (SR) restoration procedure, the paper has proposed the single-image SR algorithm based on structural self-similarity and deformation block features (SSDBF). First, the proposed method const...
Uloženo v:
| Vydáno v: | IEEE access Ročník 7; s. 58791 - 58801 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2019
|
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To solve the problem of insufficient sample resources and poor noise immunity in single-image super-resolution (SR) restoration procedure, the paper has proposed the single-image SR algorithm based on structural self-similarity and deformation block features (SSDBF). First, the proposed method constructs a scale model, expands the search space as much as possible, and overcomes the shortcomings caused by the lack of a single-image SR training sample; Second, the limited internal dictionary size is increased by the geometric deformation of the sample block; Finally, in order to improve the anti-noise performance of the reconstructed picture, a group sparse learning dictionary is used to reconstruct the pending image. The experimental results show that, compared with state-of-the-art algorithms such as bicubic interpolation (BI), sparse coding (SC), deep recursive convolutional network (DRCN), multi-scale deep SR network (MDSR), super-resolution convolutional neural network (SRCNN) and second-order directional total generalized variation (DTGV). The SR images with more subjective visual effects and higher objective evaluation can be obtained through the proposed method. Compared with existing algorithms, the structural network converges more rapidly, the image edge and texture reconstruction effects are obviously improved, and the image quality evaluation, such as peak signal-noise ratio (PSNR), root mean square error (RMSE), and structural similarity (SSIM), are also superior and popular in image evaluation.
Notice of Violation of IEEE Publication Principles “Single-Image Super-Resolution Algorithm Based on Structural Self-Similarity and Deformation Block Features” by Yuantao Chen, Jin Wang, Xi Chen, Mingwei Zhu, Kai Yang, Zhi Wang, and Runlong Xia in IEEE Access, April 2019 After careful and considered review of the content and authorship of this paper by a duly constituted expert committee, this paper has been found to be in violation of IEEE’s Publication Principles. This paper is a translation and duplication of the content from the paper cited below. The original content was copied without attribution (including appropriate references to the original author(s) and/or paper title) and without permission. Due to the nature of this violation, reasonable effort should be made to remove all past references to this paper, and future references should be made to the following article: “Single image super resolution algorithm based on structural self-similarity and deformation block feature” by Wen Xiang, Ling Zhang, Yunhua Chen, Qiumin Ji in the Journal of Computer Applications (39) 1, June 2018 |
|---|---|
| AbstractList | To solve the problem of insufficient sample resources and poor noise immunity in single-image super-resolution (SR) restoration procedure, the paper has proposed the single-image SR algorithm based on structural self-similarity and deformation block features (SSDBF). First, the proposed method constructs a scale model, expands the search space as much as possible, and overcomes the shortcomings caused by the lack of a single-image SR training sample; Second, the limited internal dictionary size is increased by the geometric deformation of the sample block; Finally, in order to improve the anti-noise performance of the reconstructed picture, a group sparse learning dictionary is used to reconstruct the pending image. The experimental results show that, compared with state-of-the-art algorithms such as bicubic interpolation (BI), sparse coding (SC), deep recursive convolutional network (DRCN), multi-scale deep SR network (MDSR), super-resolution convolutional neural network (SRCNN) and second-order directional total generalized variation (DTGV). The SR images with more subjective visual effects and higher objective evaluation can be obtained through the proposed method. Compared with existing algorithms, the structural network converges more rapidly, the image edge and texture reconstruction effects are obviously improved, and the image quality evaluation, such as peak signal-noise ratio (PSNR), root mean square error (RMSE), and structural similarity (SSIM), are also superior and popular in image evaluation. To solve the problem of insufficient sample resources and poor noise immunity in single-image super-resolution (SR) restoration procedure, the paper has proposed the single-image SR algorithm based on structural self-similarity and deformation block features (SSDBF). First, the proposed method constructs a scale model, expands the search space as much as possible, and overcomes the shortcomings caused by the lack of a single-image SR training sample; Second, the limited internal dictionary size is increased by the geometric deformation of the sample block; Finally, in order to improve the anti-noise performance of the reconstructed picture, a group sparse learning dictionary is used to reconstruct the pending image. The experimental results show that, compared with state-of-the-art algorithms such as bicubic interpolation (BI), sparse coding (SC), deep recursive convolutional network (DRCN), multi-scale deep SR network (MDSR), super-resolution convolutional neural network (SRCNN) and second-order directional total generalized variation (DTGV). The SR images with more subjective visual effects and higher objective evaluation can be obtained through the proposed method. Compared with existing algorithms, the structural network converges more rapidly, the image edge and texture reconstruction effects are obviously improved, and the image quality evaluation, such as peak signal-noise ratio (PSNR), root mean square error (RMSE), and structural similarity (SSIM), are also superior and popular in image evaluation. Notice of Violation of IEEE Publication Principles “Single-Image Super-Resolution Algorithm Based on Structural Self-Similarity and Deformation Block Features” by Yuantao Chen, Jin Wang, Xi Chen, Mingwei Zhu, Kai Yang, Zhi Wang, and Runlong Xia in IEEE Access, April 2019 After careful and considered review of the content and authorship of this paper by a duly constituted expert committee, this paper has been found to be in violation of IEEE’s Publication Principles. This paper is a translation and duplication of the content from the paper cited below. The original content was copied without attribution (including appropriate references to the original author(s) and/or paper title) and without permission. Due to the nature of this violation, reasonable effort should be made to remove all past references to this paper, and future references should be made to the following article: “Single image super resolution algorithm based on structural self-similarity and deformation block feature” by Wen Xiang, Ling Zhang, Yunhua Chen, Qiumin Ji in the Journal of Computer Applications (39) 1, June 2018 |
| Author | Chen, Xi Xia, Runlong Chen, Yuantao Wang, Zhi Yang, Kai Wang, Jin Zhu, Mingwei |
| Author_xml | – sequence: 1 givenname: Yuantao orcidid: 0000-0003-2277-1765 surname: Chen fullname: Chen, Yuantao organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 2 givenname: Jin surname: Wang fullname: Wang, Jin email: jinwang@csust.edu.cn organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 3 givenname: Xi surname: Chen fullname: Chen, Xi organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 4 givenname: Mingwei surname: Zhu fullname: Zhu, Mingwei organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 5 givenname: Kai surname: Yang fullname: Yang, Kai organization: Technical Quality Department, Hunan ZOOMLION Heavy Industry Intelligent Technology Corporation Ltd., Changsha, China – sequence: 6 givenname: Zhi surname: Wang fullname: Wang, Zhi organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 7 givenname: Runlong surname: Xia fullname: Xia, Runlong organization: Hunan Institute of Scientific and Technical Information, Changsha, China |
| BookMark | eNqFUU1P3DAQjSqQSim_gIv_QLa2kziZ3pZtKCshikjba-SPydbUiVdOcuDP8Fvr3SCEemEuHr95740071NyMvgBk-SS0RVjFL6sN5u6aVacMlhxYKwC_iE540xAmhWZOHnTf0wuxvGRxqoiVJRnyfOdn6xG4jvy23onJ-uHw2db1zW5n5WzesHugx203Tscv5LGDjuH6baXOyTNvMeQPuDo3Xxkrt3OBzv96cmVHNGQCDVTmPU0B-lIg65LG9tbJyPpicjBkG_Y-dAve66c13_JNcpIx_FzctpJN-LFy3ue_Lquf25u0tsf37eb9W2qOS94ylRlcqlACApKgRGoskoUhSgAMsHKAjmYrqQalDbUFCAyTiFOjYFccpWdJ9vF13j52O6D7WV4ar207RHwYdfKEA_lsOU5GEU7LguFeS6YVFRJw5EbVkIlRPTKFi8d_DgG7F79GG0PibVLYu0hsfYlsaiC_1TaTseTTEFa9472ctFaRHzdVgnIyjj9B4-1qBs |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_compeleceng_2020_106603 crossref_primary_10_1109_ACCESS_2019_2953516 crossref_primary_10_1007_s40009_023_01353_5 crossref_primary_10_1080_00051144_2020_1821535 crossref_primary_10_1109_ACCESS_2020_2994328 crossref_primary_10_1007_s11042_020_09796_4 crossref_primary_10_1007_s11042_020_09583_1 crossref_primary_10_1007_s11042_020_10152_9 crossref_primary_10_1007_s11042_021_10721_6 crossref_primary_10_1007_s11042_020_10218_8 crossref_primary_10_1007_s11042_020_09940_0 crossref_primary_10_1007_s11042_021_10924_x crossref_primary_10_1007_s12652_020_02066_z crossref_primary_10_3390_app9112316 crossref_primary_10_1109_ACCESS_2020_2971841 crossref_primary_10_1007_s11042_020_09969_1 crossref_primary_10_1007_s11042_020_10187_y crossref_primary_10_1016_j_asoc_2020_106183 crossref_primary_10_1016_j_solener_2021_03_058 crossref_primary_10_1007_s11042_020_09946_8 crossref_primary_10_1109_ACCESS_2020_2997953 crossref_primary_10_1007_s11042_020_09543_9 crossref_primary_10_3724_SP_J_1089_2022_18903 crossref_primary_10_1007_s11042_022_13275_3 crossref_primary_10_1080_00051144_2019_1691835 crossref_primary_10_3390_s19183978 crossref_primary_10_1007_s11760_024_03636_w crossref_primary_10_3390_s19143145 crossref_primary_10_1007_s11042_020_09448_7 crossref_primary_10_1109_ACCESS_2019_2958817 crossref_primary_10_1007_s11042_021_10672_y crossref_primary_10_1155_2020_8822777 crossref_primary_10_1007_s11760_023_02936_x crossref_primary_10_1166_jmihi_2021_3315 crossref_primary_10_1007_s11042_020_09883_6 crossref_primary_10_3390_electronics8101106 crossref_primary_10_1007_s11042_020_10348_z crossref_primary_10_1007_s00371_020_01932_3 crossref_primary_10_1007_s11042_020_10080_8 crossref_primary_10_1109_ACCESS_2020_2999965 crossref_primary_10_1007_s00521_020_05566_3 crossref_primary_10_1007_s11042_021_11209_z crossref_primary_10_1007_s11042_021_11668_4 crossref_primary_10_1007_s11042_023_15420_y crossref_primary_10_3390_app9153007 crossref_primary_10_1109_ACCESS_2020_3007896 crossref_primary_10_1016_j_patcog_2019_107163 crossref_primary_10_1109_ACCESS_2019_2957776 crossref_primary_10_1007_s11042_020_09458_5 crossref_primary_10_3390_app9224968 crossref_primary_10_1007_s11042_022_11962_9 crossref_primary_10_1109_ACCESS_2020_2976478 crossref_primary_10_1007_s11042_020_09372_w crossref_primary_10_1007_s11042_022_12511_0 crossref_primary_10_1109_ACCESS_2020_3019713 crossref_primary_10_1007_s11042_020_09077_0 crossref_primary_10_1007_s11042_021_10774_7 crossref_primary_10_1109_ACCESS_2020_2964621 crossref_primary_10_1007_s11042_021_10601_z crossref_primary_10_1007_s11042_021_10754_x crossref_primary_10_1016_j_patrec_2020_09_009 crossref_primary_10_1109_JSTARS_2020_3028774 crossref_primary_10_1007_s11042_020_10462_y crossref_primary_10_1109_ACCESS_2019_2933673 crossref_primary_10_1007_s11042_020_09037_8 crossref_primary_10_1007_s11042_021_11223_1 crossref_primary_10_1007_s11042_020_09154_4 |
| Cites_doi | 10.1109/ICCV.2013.241 10.1145/1531326.1531330 10.1109/CVPR.2016.181 10.1109/CVPR.2016.182 10.1109/ACCESS.2018.2855127 10.1109/ICCPHOT.2010.5585097 10.1109/CVPR.2013.141 10.1109/LSP.2012.2220349 10.1109/ICCV.2013.75 10.1109/TBC.2018.2871376 10.1016/j.ins.2017.12.032 10.1109/ACCESS.2018.2847037 10.1145/2185520.2185578 10.1109/TSMC.2017.2751504 10.1109/ICCV.2017.486 10.1155/2018/5986062 10.1109/TIP.2010.2050625 10.1109/ACCESS.2018.2812794 10.1109/CVPR.2004.1315043 10.1109/CVPR.2016.90 10.1109/TSP.2006.881199 10.1016/1049-9652(91)90045-L 10.1109/ACCESS.2019.2892979 10.1109/TIE.2017.2652339 10.1109/38.988747 10.1109/TMM.2014.2373812 10.1109/CVPRW.2017.151 10.1109/TIP.2011.2108306 10.1007/978-3-319-10593-2_13 10.1109/ACCESS.2018.2820093 10.1109/ACCESS.2019.2901742 10.1109/ACCESS.2018.2823979 10.1109/ACCESS.2018.2854411 10.1109/CVPR.2011.5995401 10.1109/TPAMI.2015.2439281 10.1109/TIP.2015.2439035 10.1109/TASSP.1981.1163711 10.1109/ACCESS.2018.2797197 10.1109/TIP.2017.2735192 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
| DOI | 10.1109/ACCESS.2019.2911892 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 58801 |
| ExternalDocumentID | oai_doaj_org_article_249db0f2a5be4461ab0bad2e2d179866 10_1109_ACCESS_2019_2911892 8693792 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1836208; 61811530332; 61811540410 funderid: 10.13039/501100001809 – fundername: Changsha Industrial Science and Technology Commissioner grantid: 2017-7 – fundername: Open Research Fund of Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation grantid: 2015TP1005 – fundername: Changsha Science and Technology Planning grantid: KQ1703018; KQ1706064; KQ1703018-01 – fundername: Research Foundation of Education Bureau of Hunan Province grantid: 17A007 – fundername: Teaching and Reforming Project of Changsha University of Science and Technology grantid: JG1755; JG1711; JG1615; JG201815; CN1501; XJT[2015]291 No.156; XJT[2016]400 No.219; XJT[2017]452 No.132; XJT[2018]436 No.193 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c2252-1b8d4ab96609bb9d6eb38655659936175e29df70c9bcd0d5963209659dd94a2b3 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:28 EDT 2025 Sat Nov 29 03:57:35 EST 2025 Tue Nov 18 21:24:08 EST 2025 Wed Aug 27 02:59:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2252-1b8d4ab96609bb9d6eb38655659936175e29df70c9bcd0d5963209659dd94a2b3 |
| ORCID | 0000-0003-2277-1765 |
| OpenAccessLink | https://doaj.org/article/249db0f2a5be4461ab0bad2e2d179866 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2019_2911892 doaj_primary_oai_doaj_org_article_249db0f2a5be4461ab0bad2e2d179866 ieee_primary_8693792 crossref_primary_10_1109_ACCESS_2019_2911892 |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref33 ref11 ref32 wu (ref30) 2017; 45 ref10 ref2 ref1 yang (ref25) 2008 ref39 ref17 ref38 ref16 ref19 ref18 gui (ref45) 2019; 35 chen (ref43) 2018; 22 zeng (ref7) 2018; 55 ref46 ref24 ref23 ref48 ref26 ref47 ref20 ref41 ref22 tu (ref44) 2018; 55 ref28 ref27 ref29 ref8 singh (ref21) 2014 zhang (ref42) 2018; 77 ref4 ref3 ref6 ref5 krizhevsky (ref9) 2012 ref40 |
| References_xml | – volume: 55 start-page: 121 year: 2018 ident: ref7 article-title: Adversarial learning for distant supervised relation extraction publication-title: Comput Mater Continua – ident: ref11 doi: 10.1109/ICCV.2013.241 – ident: ref26 doi: 10.1145/1531326.1531330 – volume: 22 start-page: 1 year: 2018 ident: ref43 article-title: A novel online incremental and decremental learning algorithm based on variable support vector machine publication-title: Cluster Comput – start-page: 552 year: 2014 ident: ref21 article-title: Super-resolution using sub-band self-similarity publication-title: Proc Asian Conf Comput Vis – ident: ref15 doi: 10.1109/CVPR.2016.181 – ident: ref13 doi: 10.1109/CVPR.2016.182 – ident: ref16 doi: 10.1109/ACCESS.2018.2855127 – ident: ref19 doi: 10.1109/ICCPHOT.2010.5585097 – ident: ref36 doi: 10.1109/CVPR.2013.141 – ident: ref28 doi: 10.1109/LSP.2012.2220349 – start-page: 1097 year: 2012 ident: ref9 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Int Conf Neural Inf Process – ident: ref5 doi: 10.1109/ICCV.2013.75 – volume: 55 start-page: 243 year: 2018 ident: ref44 article-title: Semi-supervised learning with generative adversarial networks on digital signal modulation classification publication-title: Comput Mater Continua – ident: ref32 doi: 10.1109/TBC.2018.2871376 – ident: ref12 doi: 10.1016/j.ins.2017.12.032 – ident: ref8 doi: 10.1109/ACCESS.2018.2847037 – ident: ref27 doi: 10.1145/2185520.2185578 – volume: 35 start-page: 1 year: 2019 ident: ref45 article-title: Joint learning of visual and spatial features for editpropagation from a single image publication-title: Visual Comput – ident: ref39 doi: 10.1109/TSMC.2017.2751504 – ident: ref18 doi: 10.1109/ICCV.2017.486 – ident: ref37 doi: 10.1155/2018/5986062 – ident: ref4 doi: 10.1109/TIP.2010.2050625 – volume: 77 start-page: 1 year: 2018 ident: ref42 article-title: Spatial and semantic convolutional features for robust visual object tracking publication-title: Multimedia Tools Appl – ident: ref40 doi: 10.1109/ACCESS.2018.2812794 – ident: ref3 doi: 10.1109/CVPR.2004.1315043 – ident: ref24 doi: 10.1109/CVPR.2016.90 – ident: ref23 doi: 10.1109/TSP.2006.881199 – ident: ref1 doi: 10.1016/1049-9652(91)90045-L – ident: ref48 doi: 10.1109/ACCESS.2019.2892979 – ident: ref33 doi: 10.1109/TIE.2017.2652339 – ident: ref2 doi: 10.1109/38.988747 – ident: ref34 doi: 10.1109/TMM.2014.2373812 – ident: ref17 doi: 10.1109/CVPRW.2017.151 – volume: 45 start-page: 2625 year: 2017 ident: ref30 article-title: Second-order directional total generalized variation regularization for image super-resolution publication-title: Acta Electronica Sinica – ident: ref29 doi: 10.1109/TIP.2011.2108306 – ident: ref6 doi: 10.1007/978-3-319-10593-2_13 – ident: ref46 doi: 10.1109/ACCESS.2018.2820093 – ident: ref47 doi: 10.1109/ACCESS.2019.2901742 – ident: ref41 doi: 10.1109/ACCESS.2018.2823979 – ident: ref14 doi: 10.1109/ACCESS.2018.2854411 – ident: ref22 doi: 10.1109/CVPR.2011.5995401 – ident: ref10 doi: 10.1109/TPAMI.2015.2439281 – ident: ref35 doi: 10.1109/TIP.2015.2439035 – year: 2008 ident: ref25 article-title: Image super-resolution as sparse representation of raw image patches publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref20 doi: 10.1109/TASSP.1981.1163711 – ident: ref38 doi: 10.1109/ACCESS.2018.2797197 – ident: ref31 doi: 10.1109/TIP.2017.2735192 |
| SSID | ssj0000816957 |
| Score | 2.1144156 |
| Snippet | To solve the problem of insufficient sample resources and poor noise immunity in single-image super-resolution (SR) restoration procedure, the paper has... |
| SourceID | doaj crossref ieee |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 58791 |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELdYxcP2wMfYRIFNftgjBsfNh81b24E2aaqQMhBvUZxzIKJtqkL5c_hbuXPSCCQ0aW-JY0eO7s73kbvfMfZDF4NQOiuFCSWIsAy00DbBwzDSuQ3wmQ59ofCfZDLRNzfmcoMdd7UwzjmffOZO6NL_y4e6WFGo7FTHqEwNHrgfkiRuarW6eAo1kDBR0gILBdKcDsdj_AbK3jInCmVaG_VG-XiM_jdNVbxOudj-v93ssK3WduTDhti7bMPNP7NPrxAF99jzpKZsNl6X_Lqqmzw3uiGfjr8K0fHLdZD94YynuHTqxO8Zni08XS3cUlBUv-FJPpze1svq8W7GR6jxgONQ6kFnCbCDp25airSaVegho0HP8znwn64rieQjVJb3nAzNFTr2X9jVxfnf8S_RtmAQBQq6EoHVEOaWIDyNtQZi9L2plDWO0K5B4ydyykCZyMLYAiREKM6K8GQMgAlzZQdfWW9ez90-4yrI0fcrcY5Fq8HFxkA0UDYGCxGU5aDP1Jo2WdHik1ObjGnm_RRpsoagGRE0awnaZ8fdokUDz_Hv6SMiejeVsLX9ABI2a0U1Q4cUrCxVHlmHznKQW2lzUE4BgbvFcZ_tETN0L2n54OD94UP2kXbQRG2OWA8J5L6xzeLpsXpYfvc8_AI7GPDl priority: 102 providerName: IEEE |
| Title | Notice of Violation of IEEE Publication Principles: Single-Image Super-Resolution Algorithm Based on Structural Self-Similarity and Deformation Block Features |
| URI | https://ieeexplore.ieee.org/document/8693792 https://doaj.org/article/249db0f2a5be4461ab0bad2e2d179866 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1EN7qFoo6raAfOgRg-PNh4fb7gICqayQQhG3KM44bcTuBi3QY39KfyszTlgtl_bSS6Q4tuV4xp55I_uNEF9tNYy1d1pBrFHFdWSVdRlthoktXUTfbBwuCn_LplN7cwOXa6m--ExYRw_cTdwhwQN0ujZl4jxBl6h02pVovEGm2koD2bbOYA1MhT3YRikkWU8zFGk4HE0m9Ed8lgsODK1wC-aFKQqM_S9SrAQLc_pevOtdQznqhvRBvPKLTfF2jTBwS_yZtnxYTba1vG7a7hgbvzBkk2sROHn5HEO_P5I5NZ15dT6nrUPmj3d-qTho36mcHM1-tMvm4edcjsmgoaSiPHDKMh-HzP2sVnkzbwgAk78uywXKY7-68SjHZAtvJfuRj4TbP4rvpydXkzPVZ1hQFa1joyJnMS4dM3SCc4ApQWu-qZom5LaQb5N4A1hnugJXocaEVqthuhhAhLg0brgtNhbtwn8S0kQlQbua6jhyCnwKgMnQuBQdJljXw4Ewz5NdVD39OGfBmBUBhmgoOgkVLKGil9BA7K8a3XXsG3-vPmYprqoydXYoIIUqeoUq_qVQA7HFOrDqxKbkwYH5_D_6_iLe8Hi7EM6O2CBx-l3xuvr10Nwv94IK0_Pi98leuIj4BLBH9j0 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED9NAwl4YMBAFAb4gcd5c9wktXlrC9MmSjUpA-0tinMOi9Y2U7fycfis3DlZtEkIibfEsSNHd-f7k7vfAXw05TBW3ilpY4UyriIjjRvRYZiYwkX0zMShUHg2ms_N-bk93YL9vhbGex-Sz_wBX4Z_-diUGw6VHZqUlKmlA_cBd87qqrX6iAq3kLDJqIMWipQ9HE-n9BWcv2UPNEm1sfqe-gko_ffaqgStcrTzf_t5Bk8761GMW3I_hy2_egFP7mAK7sLvecP5bKKpxI-6aTPd-Ia9OnEnSCdOb8Ps159ERksXXp4s6XQR2ebKryXH9VuuFOPFz2Zd31wsxYR0HgoaygLsLEN2iMwvKpnVy5p8ZDLpRbFC8dn3RZFiQuryUrCpuSHX_iV8P_pyNj2WXRMGWZKoaxk5g3HhGMTTOmcxJe-bi1nThCwbMn8Sry1WI1VaV6LChARaM6KMRbRxod3wFWyvmpV_DUJHBXl_Fc1xZDf41FpMhtql6DDBqhoOQN_SJi87hHJulLHIg6eibN4SNGeC5h1BB7DfL7pqATr-PX3CRO-nMrp2GCDC5p2w5uSSolOVLhLnyV2OCqdcgdprZHi3NB3ALjND_5KOD978ffgDPDo--zbLZyfzr2_hMe-mjeHswTYRy7-Dh-Wvm_p6_T7w8x_mn_Qu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Notice+of+Violation+of+IEEE+Publication+Principles%3A+Single-Image+Super-Resolution+Algorithm+Based+on+Structural+Self-Similarity+and+Deformation+Block+Features&rft.jtitle=IEEE+access&rft.au=Chen%2C+Yuantao&rft.au=Wang%2C+Jin&rft.au=Chen%2C+Xi&rft.au=Zhu%2C+Mingwei&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=58791&rft.epage=58801&rft_id=info:doi/10.1109%2FACCESS.2019.2911892&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2911892 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |