Concurrent-Learning-Based Adaptive Critic Formation for Multirobots Under Safety Constraints

This article presents a concurrent learning-based adaptive critic formation for multirobots under safety constraints, which comprises of an initial formation consensus item and a collision-free adaptive critic policy. First, based on directed graph communication, an initial formation consensus item...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE internet of things journal Ročník 12; číslo 6; s. 7610 - 7621
Hlavní autoři: Cheng, Yunjie, Shao, Xingling, Li, Jiangmiao, Liu, Jun, Zhang, Qingzhen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 15.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4662, 2327-4662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article presents a concurrent learning-based adaptive critic formation for multirobots under safety constraints, which comprises of an initial formation consensus item and a collision-free adaptive critic policy. First, based on directed graph communication, an initial formation consensus item is designed to maintain the velocity agreement under a leader-follower setting. Particularly, a collision-free adaptive critic policy is developed that enables robots to preserve formation configuration with the minimum cost while excluding collisions caused by inter-robots and static/moving obstacles, wherein safety constraints encoded by an elegantly devised penalty function are enforced by converting constrained optimal control into unconstrained optimal control issue. Furthermore, by revisiting real-time and historical information, a concurrent weight learning rule is elaborated under a critic-only adaptive dynamic programming, improving the weight convergence without demanding the persistence excitation conditions. The remarkable benefits outperforming existing outcomes are safety-critical coordination with energy-saving performances is assured under a computationally efficient optimal learning paradigm. Involved errors are theoretically proved to be convergent. Finally, the values and superiorities are verified through extensive simulations on 2-D and 3-D multirobots.
AbstractList This article presents a concurrent learning-based adaptive critic formation for multirobots under safety constraints, which comprises of an initial formation consensus item and a collision-free adaptive critic policy. First, based on directed graph communication, an initial formation consensus item is designed to maintain the velocity agreement under a leader-follower setting. Particularly, a collision-free adaptive critic policy is developed that enables robots to preserve formation configuration with the minimum cost while excluding collisions caused by inter-robots and static/moving obstacles, wherein safety constraints encoded by an elegantly devised penalty function are enforced by converting constrained optimal control into unconstrained optimal control issue. Furthermore, by revisiting real-time and historical information, a concurrent weight learning rule is elaborated under a critic-only adaptive dynamic programming, improving the weight convergence without demanding the persistence excitation conditions. The remarkable benefits outperforming existing outcomes are safety-critical coordination with energy-saving performances is assured under a computationally efficient optimal learning paradigm. Involved errors are theoretically proved to be convergent. Finally, the values and superiorities are verified through extensive simulations on 2-D and 3-D multirobots.
Author Zhang, Qingzhen
Shao, Xingling
Liu, Jun
Cheng, Yunjie
Li, Jiangmiao
Author_xml – sequence: 1
  givenname: Yunjie
  orcidid: 0009-0004-2357-3749
  surname: Cheng
  fullname: Cheng, Yunjie
  email: sz202206072@st.nuc.edu.cn
  organization: School of Instrument and Electronics and the State Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China, Taiyuan, China
– sequence: 2
  givenname: Xingling
  orcidid: 0000-0002-6187-4575
  surname: Shao
  fullname: Shao, Xingling
  email: shaoxl@nuc.edu.cn
  organization: School of Instrument and Electronics and the State Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China, Taiyuan, China
– sequence: 3
  givenname: Jiangmiao
  surname: Li
  fullname: Li, Jiangmiao
  organization: School of Instrument and Electronics and the State Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China, Taiyuan, China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0002-1128-8201
  surname: Liu
  fullname: Liu, Jun
  organization: School of Instrument and Electronics and the State Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China, Taiyuan, China
– sequence: 5
  givenname: Qingzhen
  orcidid: 0000-0002-7968-3523
  surname: Zhang
  fullname: Zhang, Qingzhen
  email: zhangqz@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
BookMark eNp9kE1LAzEQhoNUsNb-AMHDguet2SSbbI51sVqp9GB7E5Y0OyspbVKTVOi_d9f2UDzIDMwc3mc-3mvUs84CQrcZHmUZlg-v0_liRDBhI8qkaOMC9QklImWck95Zf4WGIawxxi2WZ5L30UfprN57DzamM1DeGvuZPqoAdTKu1S6ab0hKb6LRycT5rYrG2aRxPnnbb6LxbuViSJa2Bp-8qwbiIWkHhuiVsTHcoMtGbQIMT3WAlpOnRfmSzubP03I8SzUhLKZQgyYCcyEyTQvNuM5zVgOFQmBMci1XckUaUJxiziBvJOaaKwa1pCBrRegA3R_n7rz72kOI1drtvW1XVjQTrBCSFkWrEkeV9i4ED02lTfx9qDt3U2W46tysOjerzs3q5GZLZn_InTdb5Q__MndHxgDAmV7klLb5A-RxgxY
CODEN IITJAU
CitedBy_id crossref_primary_10_3390_drones9080558
crossref_primary_10_1007_s11071_025_11594_2
crossref_primary_10_1109_TAES_2025_3542345
Cites_doi 10.1016/j.ast.2021.107127
10.1016/j.eswa.2023.121112
10.1109/TSMC.2020.3003224
10.1109/TCYB.2020.3014240
10.1109/TNNLS.2016.2642128
10.1109/TAES.2023.3283237
10.1109/TCSII.2021.3112787
10.1109/JAS.2023.123675
10.1109/TCYB.2021.3103820
10.1016/j.jfranklin.2023.10.035
10.1016/j.jfranklin.2022.02.034
10.1007/s00773-022-00905-6
10.1109/LRA.2022.3204367
10.1016/j.eswa.2024.123547
10.1109/LRA.2022.3161710
10.1109/JIOT.2023.3289221
10.1109/TCYB.2021.3086223
10.1109/JIOT.2021.3049239
10.1002/rnc.6387
10.1016/j.oceaneng.2022.111148
10.1109/tits.2024.3384431
10.1109/TNSE.2023.3321419
10.1109/TCSII.2022.3197328
10.1109/TFUZZ.2021.3120206
10.1109/TIE.2012.2235391
10.1109/TCYB.2021.3125318
10.1109/TVT.2021.3111692
10.1109/TCSII.2021.3115487
10.1109/TCYB.2020.3037321
10.1109/TSMC.2022.3215474
10.1109/TNSE.2022.3198818
10.1109/TCYB.2021.3110645
10.1109/TIA.2021.3110936
10.1109/TCSII.2023.3235060
10.1109/TVT.2023.3297994
10.1109/TCYB.2020.2984952
10.1109/TNNLS.2022.3191673
10.3390/math12070954
10.1016/j.neucom.2020.02.032
10.1109/JIOT.2020.3026355
10.1109/JIOT.2023.3262707
10.1109/TNNLS.2021.3104839
10.1109/TRO.2019.2955321
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2024.3497979
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 7621
ExternalDocumentID 10_1109_JIOT_2024_3497979
10753353
Genre orig-research
GrantInformation_xml – fundername: Outstanding Youth Fund of Shanxi Province
  grantid: 202203021224008
  funderid: 10.13039/501100010035
– fundername: National Natural Science Foundation of China
  grantid: 62173312
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c224t-edec2706771c38c46c554de3e870025c9b9b2fea63064e5f906c6a4ed93e9da23
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001441748300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Mon Jun 30 07:47:35 EDT 2025
Sat Nov 29 08:10:30 EST 2025
Tue Nov 18 22:23:51 EST 2025
Wed Aug 27 01:43:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c224t-edec2706771c38c46c554de3e870025c9b9b2fea63064e5f906c6a4ed93e9da23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1128-8201
0000-0002-7968-3523
0009-0004-2357-3749
0000-0002-6187-4575
PQID 3174879388
PQPubID 2040421
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JIOT_2024_3497979
proquest_journals_3174879388
ieee_primary_10753353
crossref_primary_10_1109_JIOT_2024_3497979
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref37
  doi: 10.1016/j.ast.2021.107127
– ident: ref25
  doi: 10.1016/j.eswa.2023.121112
– ident: ref36
  doi: 10.1109/TSMC.2020.3003224
– ident: ref8
  doi: 10.1109/TCYB.2020.3014240
– ident: ref33
  doi: 10.1109/TNNLS.2016.2642128
– ident: ref16
  doi: 10.1109/TAES.2023.3283237
– ident: ref15
  doi: 10.1109/TCSII.2021.3112787
– ident: ref18
  doi: 10.1109/JAS.2023.123675
– ident: ref27
  doi: 10.1109/TCYB.2021.3103820
– ident: ref30
  doi: 10.1016/j.jfranklin.2023.10.035
– ident: ref32
  doi: 10.1016/j.jfranklin.2022.02.034
– ident: ref19
  doi: 10.1007/s00773-022-00905-6
– ident: ref20
  doi: 10.1109/LRA.2022.3204367
– ident: ref6
  doi: 10.1016/j.eswa.2024.123547
– ident: ref21
  doi: 10.1109/LRA.2022.3161710
– ident: ref3
  doi: 10.1109/JIOT.2023.3289221
– ident: ref28
  doi: 10.1109/TCYB.2021.3086223
– ident: ref4
  doi: 10.1109/JIOT.2021.3049239
– ident: ref23
  doi: 10.1002/rnc.6387
– ident: ref11
  doi: 10.1016/j.oceaneng.2022.111148
– ident: ref14
  doi: 10.1109/tits.2024.3384431
– ident: ref43
  doi: 10.1109/TNSE.2023.3321419
– ident: ref41
  doi: 10.1109/TCSII.2022.3197328
– ident: ref42
  doi: 10.1109/TFUZZ.2021.3120206
– ident: ref13
  doi: 10.1109/TIE.2012.2235391
– ident: ref34
  doi: 10.1109/TCYB.2021.3125318
– ident: ref26
  doi: 10.1109/TVT.2021.3111692
– ident: ref7
  doi: 10.1109/TCSII.2021.3115487
– ident: ref40
  doi: 10.1109/TCYB.2020.3037321
– ident: ref5
  doi: 10.1109/TSMC.2022.3215474
– ident: ref12
  doi: 10.1109/TNSE.2022.3198818
– ident: ref9
  doi: 10.1109/TCYB.2021.3110645
– ident: ref24
  doi: 10.1109/TIA.2021.3110936
– ident: ref38
  doi: 10.1109/TCSII.2023.3235060
– ident: ref10
  doi: 10.1109/TVT.2023.3297994
– ident: ref39
  doi: 10.1109/TCYB.2020.2984952
– ident: ref29
  doi: 10.1109/TNNLS.2022.3191673
– ident: ref17
  doi: 10.3390/math12070954
– ident: ref22
  doi: 10.1016/j.neucom.2020.02.032
– ident: ref1
  doi: 10.1109/JIOT.2020.3026355
– ident: ref2
  doi: 10.1109/JIOT.2023.3262707
– ident: ref31
  doi: 10.1109/TNNLS.2021.3104839
– ident: ref35
  doi: 10.1109/TRO.2019.2955321
SSID ssj0001105196
Score 2.3661437
Snippet This article presents a concurrent learning-based adaptive critic formation for multirobots under safety constraints, which comprises of an initial formation...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7610
SubjectTerms Adaptive critic formation
Artificial neural networks
Automation
Collision avoidance
concurrent learning
Constraints
Convergence
Dynamic programming
Formation control
Graph theory
Instruments
Internet of Things
Learning
Moving obstacles
Multiple robots
multirobots
Optimal control
Penalty function
Real time
Robot kinematics
Safety
safety constraints
Safety critical
Vectors
Title Concurrent-Learning-Based Adaptive Critic Formation for Multirobots Under Safety Constraints
URI https://ieeexplore.ieee.org/document/10753353
https://www.proquest.com/docview/3174879388
Volume 12
WOSCitedRecordID wos001441748300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uePDi_DFxOiUHT0Jm1985zuFQkSk4YQehpMmrCNKOtRP8781LUx2IgrceUgj9-vK-l-R9HyFnjit10ssiFqqIM19wydJQBkw4ArsGlJtmxrXkLppO4_mcP9hmddMLAwDm8hkM8NGc5atCrnCrTEe4Jtde4LVIK4rCulnre0NliGwktCeXQ4df3N7cz3QF6PoDz-cRx9taa7nHmKn8WIFNWpl0_jmhHbJt-SMd1YDvkg3I90in8WagNlT3yfO4yGWtvcSshuoLu9QpS9GREgtc5Ghtc0AnTf8i1QSWmo7cZZEWVUmNKRJ9FBlUHxStPY2hRFV2ydPkaja-ZtZJgUmdoisGCqQboVjcUHqx9DUaga_AAx2tmvRInvLUzUCEWI9AkHEnlKHwQXEPuBKud0DaeZHDIaEchnr9zNIMlecBhJCaQnFX-ZCiwlHaI07zjRNpZcZxcm-JKTccniAsCcKSWFh65PzrlUWtsfHX4C7isDawhqBH-g2SiQ3DMtHkSBdk3Ivjo19eOyZbLjr64g29oE_a1XIFJ2RTvlev5fLU_GGfOUDQ-g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH50bWG9tGvXsvTHpkNPA2W2LNvRsS0N6ZalhWWQw8DI0nMpjDgkTmH__fRkpQ2MFXrzQQbhz0_ve5Le9wGcR8K4pFflPLO54lIrw8vMpFxHmroGrCgr71oyzEej3mSi7kKzuu-FQUR_-Qy79OjP8m1tlrRV5iLckeskTd7AViqliNp2rectlZj4SBbOLuNIffl6czt2NaCQ3USqXNF9rbXs4-1U_lmDfWLp771ySu9gNzBIdtFCvg8bOD2AvZU7AwvB-h5-XdVT06ov8aCies8vXdKy7MLqGS1zrDU6YP1VByNzFJb5ntx5XdbNgnlbJPZDV9j8YWTu6S0lmsUh_Oxfj68GPHgpcOOSdMPRohE5ycXFJukZ6fBIpcUEXbw62mNUqUpRoc6oIsG0UlFmMi3RqgSV1SI5gs1pPcUPwBTGbgWtyoq05xG1No5EKWEllqRxVHYgWn3jwgShcZrc78IXHJEqCJaCYCkCLB34_PTKrFXZeGnwIeGwNrCFoAOnKySLEIiLwtEjV5KppNc7_s9rn-DtYPx9WAxvRt9OYEeQvy_d10tPYbOZL_EMts1j87CYf_R_2189q9RB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concurrent-Learning-Based+Adaptive+Critic+Formation+for+Multirobots+Under+Safety+Constraints&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Cheng%2C+Yunjie&rft.au=Shao%2C+Xingling&rft.au=Li%2C+Jiangmiao&rft.au=Liu%2C+Jun&rft.date=2025-03-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=12&rft.issue=6&rft.spage=7610&rft_id=info:doi/10.1109%2FJIOT.2024.3497979&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon