Concurrent-Learning-Based Adaptive Critic Formation for Multirobots Under Safety Constraints
This article presents a concurrent learning-based adaptive critic formation for multirobots under safety constraints, which comprises of an initial formation consensus item and a collision-free adaptive critic policy. First, based on directed graph communication, an initial formation consensus item...
Saved in:
| Published in: | IEEE internet of things journal Vol. 12; no. 6; pp. 7610 - 7621 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
15.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2327-4662, 2327-4662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article presents a concurrent learning-based adaptive critic formation for multirobots under safety constraints, which comprises of an initial formation consensus item and a collision-free adaptive critic policy. First, based on directed graph communication, an initial formation consensus item is designed to maintain the velocity agreement under a leader-follower setting. Particularly, a collision-free adaptive critic policy is developed that enables robots to preserve formation configuration with the minimum cost while excluding collisions caused by inter-robots and static/moving obstacles, wherein safety constraints encoded by an elegantly devised penalty function are enforced by converting constrained optimal control into unconstrained optimal control issue. Furthermore, by revisiting real-time and historical information, a concurrent weight learning rule is elaborated under a critic-only adaptive dynamic programming, improving the weight convergence without demanding the persistence excitation conditions. The remarkable benefits outperforming existing outcomes are safety-critical coordination with energy-saving performances is assured under a computationally efficient optimal learning paradigm. Involved errors are theoretically proved to be convergent. Finally, the values and superiorities are verified through extensive simulations on 2-D and 3-D multirobots. |
|---|---|
| AbstractList | This article presents a concurrent learning-based adaptive critic formation for multirobots under safety constraints, which comprises of an initial formation consensus item and a collision-free adaptive critic policy. First, based on directed graph communication, an initial formation consensus item is designed to maintain the velocity agreement under a leader-follower setting. Particularly, a collision-free adaptive critic policy is developed that enables robots to preserve formation configuration with the minimum cost while excluding collisions caused by inter-robots and static/moving obstacles, wherein safety constraints encoded by an elegantly devised penalty function are enforced by converting constrained optimal control into unconstrained optimal control issue. Furthermore, by revisiting real-time and historical information, a concurrent weight learning rule is elaborated under a critic-only adaptive dynamic programming, improving the weight convergence without demanding the persistence excitation conditions. The remarkable benefits outperforming existing outcomes are safety-critical coordination with energy-saving performances is assured under a computationally efficient optimal learning paradigm. Involved errors are theoretically proved to be convergent. Finally, the values and superiorities are verified through extensive simulations on 2-D and 3-D multirobots. |
| Author | Zhang, Qingzhen Shao, Xingling Liu, Jun Cheng, Yunjie Li, Jiangmiao |
| Author_xml | – sequence: 1 givenname: Yunjie orcidid: 0009-0004-2357-3749 surname: Cheng fullname: Cheng, Yunjie email: sz202206072@st.nuc.edu.cn organization: School of Instrument and Electronics and the State Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China, Taiyuan, China – sequence: 2 givenname: Xingling orcidid: 0000-0002-6187-4575 surname: Shao fullname: Shao, Xingling email: shaoxl@nuc.edu.cn organization: School of Instrument and Electronics and the State Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China, Taiyuan, China – sequence: 3 givenname: Jiangmiao surname: Li fullname: Li, Jiangmiao organization: School of Instrument and Electronics and the State Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China, Taiyuan, China – sequence: 4 givenname: Jun orcidid: 0000-0002-1128-8201 surname: Liu fullname: Liu, Jun organization: School of Instrument and Electronics and the State Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China, Taiyuan, China – sequence: 5 givenname: Qingzhen orcidid: 0000-0002-7968-3523 surname: Zhang fullname: Zhang, Qingzhen email: zhangqz@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China |
| BookMark | eNp9kE1LAzEQhoNUsNb-AMHDguet2SSbbI51sVqp9GB7E5Y0OyspbVKTVOi_d9f2UDzIDMwc3mc-3mvUs84CQrcZHmUZlg-v0_liRDBhI8qkaOMC9QklImWck95Zf4WGIawxxi2WZ5L30UfprN57DzamM1DeGvuZPqoAdTKu1S6ab0hKb6LRycT5rYrG2aRxPnnbb6LxbuViSJa2Bp-8qwbiIWkHhuiVsTHcoMtGbQIMT3WAlpOnRfmSzubP03I8SzUhLKZQgyYCcyEyTQvNuM5zVgOFQmBMci1XckUaUJxiziBvJOaaKwa1pCBrRegA3R_n7rz72kOI1drtvW1XVjQTrBCSFkWrEkeV9i4ED02lTfx9qDt3U2W46tysOjerzs3q5GZLZn_InTdb5Q__MndHxgDAmV7klLb5A-RxgxY |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_3390_drones9080558 crossref_primary_10_1007_s11071_025_11594_2 crossref_primary_10_1109_TAES_2025_3542345 |
| Cites_doi | 10.1016/j.ast.2021.107127 10.1016/j.eswa.2023.121112 10.1109/TSMC.2020.3003224 10.1109/TCYB.2020.3014240 10.1109/TNNLS.2016.2642128 10.1109/TAES.2023.3283237 10.1109/TCSII.2021.3112787 10.1109/JAS.2023.123675 10.1109/TCYB.2021.3103820 10.1016/j.jfranklin.2023.10.035 10.1016/j.jfranklin.2022.02.034 10.1007/s00773-022-00905-6 10.1109/LRA.2022.3204367 10.1016/j.eswa.2024.123547 10.1109/LRA.2022.3161710 10.1109/JIOT.2023.3289221 10.1109/TCYB.2021.3086223 10.1109/JIOT.2021.3049239 10.1002/rnc.6387 10.1016/j.oceaneng.2022.111148 10.1109/tits.2024.3384431 10.1109/TNSE.2023.3321419 10.1109/TCSII.2022.3197328 10.1109/TFUZZ.2021.3120206 10.1109/TIE.2012.2235391 10.1109/TCYB.2021.3125318 10.1109/TVT.2021.3111692 10.1109/TCSII.2021.3115487 10.1109/TCYB.2020.3037321 10.1109/TSMC.2022.3215474 10.1109/TNSE.2022.3198818 10.1109/TCYB.2021.3110645 10.1109/TIA.2021.3110936 10.1109/TCSII.2023.3235060 10.1109/TVT.2023.3297994 10.1109/TCYB.2020.2984952 10.1109/TNNLS.2022.3191673 10.3390/math12070954 10.1016/j.neucom.2020.02.032 10.1109/JIOT.2020.3026355 10.1109/JIOT.2023.3262707 10.1109/TNNLS.2021.3104839 10.1109/TRO.2019.2955321 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2024.3497979 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 7621 |
| ExternalDocumentID | 10_1109_JIOT_2024_3497979 10753353 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Outstanding Youth Fund of Shanxi Province grantid: 202203021224008 funderid: 10.13039/501100010035 – fundername: National Natural Science Foundation of China grantid: 62173312 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c224t-edec2706771c38c46c554de3e870025c9b9b2fea63064e5f906c6a4ed93e9da23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001441748300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Mon Jun 30 07:47:35 EDT 2025 Sat Nov 29 08:10:30 EST 2025 Tue Nov 18 22:23:51 EST 2025 Wed Aug 27 01:43:38 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c224t-edec2706771c38c46c554de3e870025c9b9b2fea63064e5f906c6a4ed93e9da23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1128-8201 0000-0002-7968-3523 0009-0004-2357-3749 0000-0002-6187-4575 |
| PQID | 3174879388 |
| PQPubID | 2040421 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_JIOT_2024_3497979 proquest_journals_3174879388 ieee_primary_10753353 crossref_primary_10_1109_JIOT_2024_3497979 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-15 |
| PublicationDateYYYYMMDD | 2025-03-15 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref37 doi: 10.1016/j.ast.2021.107127 – ident: ref25 doi: 10.1016/j.eswa.2023.121112 – ident: ref36 doi: 10.1109/TSMC.2020.3003224 – ident: ref8 doi: 10.1109/TCYB.2020.3014240 – ident: ref33 doi: 10.1109/TNNLS.2016.2642128 – ident: ref16 doi: 10.1109/TAES.2023.3283237 – ident: ref15 doi: 10.1109/TCSII.2021.3112787 – ident: ref18 doi: 10.1109/JAS.2023.123675 – ident: ref27 doi: 10.1109/TCYB.2021.3103820 – ident: ref30 doi: 10.1016/j.jfranklin.2023.10.035 – ident: ref32 doi: 10.1016/j.jfranklin.2022.02.034 – ident: ref19 doi: 10.1007/s00773-022-00905-6 – ident: ref20 doi: 10.1109/LRA.2022.3204367 – ident: ref6 doi: 10.1016/j.eswa.2024.123547 – ident: ref21 doi: 10.1109/LRA.2022.3161710 – ident: ref3 doi: 10.1109/JIOT.2023.3289221 – ident: ref28 doi: 10.1109/TCYB.2021.3086223 – ident: ref4 doi: 10.1109/JIOT.2021.3049239 – ident: ref23 doi: 10.1002/rnc.6387 – ident: ref11 doi: 10.1016/j.oceaneng.2022.111148 – ident: ref14 doi: 10.1109/tits.2024.3384431 – ident: ref43 doi: 10.1109/TNSE.2023.3321419 – ident: ref41 doi: 10.1109/TCSII.2022.3197328 – ident: ref42 doi: 10.1109/TFUZZ.2021.3120206 – ident: ref13 doi: 10.1109/TIE.2012.2235391 – ident: ref34 doi: 10.1109/TCYB.2021.3125318 – ident: ref26 doi: 10.1109/TVT.2021.3111692 – ident: ref7 doi: 10.1109/TCSII.2021.3115487 – ident: ref40 doi: 10.1109/TCYB.2020.3037321 – ident: ref5 doi: 10.1109/TSMC.2022.3215474 – ident: ref12 doi: 10.1109/TNSE.2022.3198818 – ident: ref9 doi: 10.1109/TCYB.2021.3110645 – ident: ref24 doi: 10.1109/TIA.2021.3110936 – ident: ref38 doi: 10.1109/TCSII.2023.3235060 – ident: ref10 doi: 10.1109/TVT.2023.3297994 – ident: ref39 doi: 10.1109/TCYB.2020.2984952 – ident: ref29 doi: 10.1109/TNNLS.2022.3191673 – ident: ref17 doi: 10.3390/math12070954 – ident: ref22 doi: 10.1016/j.neucom.2020.02.032 – ident: ref1 doi: 10.1109/JIOT.2020.3026355 – ident: ref2 doi: 10.1109/JIOT.2023.3262707 – ident: ref31 doi: 10.1109/TNNLS.2021.3104839 – ident: ref35 doi: 10.1109/TRO.2019.2955321 |
| SSID | ssj0001105196 |
| Score | 2.3661437 |
| Snippet | This article presents a concurrent learning-based adaptive critic formation for multirobots under safety constraints, which comprises of an initial formation... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7610 |
| SubjectTerms | Adaptive critic formation Artificial neural networks Automation Collision avoidance concurrent learning Constraints Convergence Dynamic programming Formation control Graph theory Instruments Internet of Things Learning Moving obstacles Multiple robots multirobots Optimal control Penalty function Real time Robot kinematics Safety safety constraints Safety critical Vectors |
| Title | Concurrent-Learning-Based Adaptive Critic Formation for Multirobots Under Safety Constraints |
| URI | https://ieeexplore.ieee.org/document/10753353 https://www.proquest.com/docview/3174879388 |
| Volume | 12 |
| WOSCitedRecordID | wos001441748300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uePDi_DFxOiUHT0Ln2qQ_cpzDoSJTcMIOQmmTVxGkHWsn-N_7kqY6EAWhhx4SCP368r6XvPc-Qs6k1Nl-buSAblbJ_QQcoXzXSVgoWZh5gqemUPgunE6j-Vw82GJ1UwsDACb5DAb61dzlq0Ku9FEZWjiSa-azFmmFYVAXa30fqLiajQT25hJXcHF7cz_DCNDjA8ZFKHS21prvMWIqP3Zg41YmnX8uaIdsW_5IRzXgu2QD8j3SabQZqDXVffI8LnJZ915ybA_VF-cSXZaiI5Us9CZHa5kDOmnqFykSWGoqcpdFWlQlNaJI9DHJoPqgWtrTCEpUZZc8Ta5m42vHKik4El105YAC6YW6WZwrWSR5IJFFKGCA1oqkR4pUpF4GSaDjEfAzMQxkkHBQgoFQiccOSDsvcjgkNOVKcACkMVnKkW2mDEf6-GTIFXw_65Fh841jaduM68W9xSbcGIpYwxJrWGILS4-cf01Z1D02_hrc1TisDawh6JF-g2RszbCMkRxhQCZYFB39Mu2YbHla0Vdn6Pl90q6WKzghm_K9ei2Xp-YP-wQpdtAy |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gV5cn7g-c_AkVHebpG2Oq7j4WFfBFTwIpU2mIshWdqvgv3eSZlUQBaGHHhII_TqZb5KZ-QD2tbbZfu0kQNusUsgMA2VkO8h4rHlchErkrlC4F_f7yf29uvHF6q4WBhFd8hke2ld3l29K_WqPysjCiVxzyadhVgoRtupyra8jlbblI5G_u6Q1HF2cXw8oBgzFIRcqVjZf65v3cXIqP_Zg51i6jX8uaQkWPYNknRryZZjC4Qo0JuoMzBvrKjyclENdd18KfBfVx-CYnJZhHZO92G2O1UIHrDupYGREYZmryR2VeVmNmZNFYrdZgdU7s-KeTlKiGq_BXfd0cHIWeC2FQJOTrgI0qMPYtotra55oEWniEQY5kr0S7dEqV3lYYBbZiARloVqRjjKBRnFUJgv5OswMyyFuAMuFUQKRiEyRC-KbOaeRkp6C2IKURRNak2-cat9o3C7uOXUBR0ulFpbUwpJ6WJpw8Dnlpe6y8dfgNYvDt4E1BE3YniCZekMcp0SPKCRTPEk2f5m2B_Nng6te2jvvX27BQmj1fW2-ntyGmWr0ijswp9-qp_Fo1_1tHyQR03k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concurrent-Learning-Based+Adaptive+Critic+Formation+for+Multirobots+Under+Safety+Constraints&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Cheng%2C+Yunjie&rft.au=Shao%2C+Xingling&rft.au=Li%2C+Jiangmiao&rft.au=Liu%2C+Jun&rft.date=2025-03-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=12&rft.issue=6&rft.spage=7610&rft.epage=7621&rft_id=info:doi/10.1109%2FJIOT.2024.3497979&rft.externalDocID=10753353 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |