An indoor thermal comfort model for group thermal comfort prediction based on K-means++ algorithm

•K-means++ algorithm was first used to build a thermal comfort model without occupants’ feedback.•Even with small dataset, the proposed model achieved high accurancy.•Mahalanobis distance algorithm was used for outlier test, reducing errors and avoiding excessive reduction of data set.•The model cou...

Full description

Saved in:
Bibliographic Details
Published in:Energy and buildings Vol. 327; p. 115000
Main Authors: Liu, Ying, Li, Xiangru, Sun, Cheng, Dong, Qi, Yin, Qing, Yan, Bin
Format: Journal Article
Language:English
Published: Elsevier B.V 15.01.2025
Subjects:
ISSN:0378-7788
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •K-means++ algorithm was first used to build a thermal comfort model without occupants’ feedback.•Even with small dataset, the proposed model achieved high accurancy.•Mahalanobis distance algorithm was used for outlier test, reducing errors and avoiding excessive reduction of data set.•The model could effectively predict group thermal comfort by using only three parameters: Clo, Ta, and RH. Predicting indoor thermal comfort plays an essential role in controlling energy consumption in buildings. Existing studies have used supervised machine learning to predict thermal comfort, which were more accurate than traditional models. However, these models required occupants’ subjective feedback for model training, which reduced the accuracy of the model. In this study, a prediction model that didn’t require feedback was proposed for the first time using the K-means++ algorithm based on the ASHRAE Global Thermal Comfort Database II. Firstly, the data quality was improved through feature selection, dimensional processing, and feature weighting. Then the influence of different outlier judgment methods, feature weight and data set size on model accuracy were compared. Finally, the K-means++ algorithm was applied for thermal comfort clustering analysis. The result showed that the model with an accuracy higher than 90 % could be constructed using only three factors (CLO, TA, RH), and the proposed model could predict indoor group thermal comfort reliably, and provide a foundation for the indoor thermal sensation evaluation.
AbstractList •K-means++ algorithm was first used to build a thermal comfort model without occupants’ feedback.•Even with small dataset, the proposed model achieved high accurancy.•Mahalanobis distance algorithm was used for outlier test, reducing errors and avoiding excessive reduction of data set.•The model could effectively predict group thermal comfort by using only three parameters: Clo, Ta, and RH. Predicting indoor thermal comfort plays an essential role in controlling energy consumption in buildings. Existing studies have used supervised machine learning to predict thermal comfort, which were more accurate than traditional models. However, these models required occupants’ subjective feedback for model training, which reduced the accuracy of the model. In this study, a prediction model that didn’t require feedback was proposed for the first time using the K-means++ algorithm based on the ASHRAE Global Thermal Comfort Database II. Firstly, the data quality was improved through feature selection, dimensional processing, and feature weighting. Then the influence of different outlier judgment methods, feature weight and data set size on model accuracy were compared. Finally, the K-means++ algorithm was applied for thermal comfort clustering analysis. The result showed that the model with an accuracy higher than 90 % could be constructed using only three factors (CLO, TA, RH), and the proposed model could predict indoor group thermal comfort reliably, and provide a foundation for the indoor thermal sensation evaluation.
ArticleNumber 115000
Author Dong, Qi
Yan, Bin
Yin, Qing
Liu, Ying
Li, Xiangru
Sun, Cheng
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0002-5175-0202
  surname: Liu
  fullname: Liu, Ying
  email: liuying8361@163.com
  organization: School of Architecture and Design, Harbin Institute of Technology, Harbin 150006, Heilongjiang, People's Republic of China
– sequence: 2
  givenname: Xiangru
  surname: Li
  fullname: Li, Xiangru
  email: lixiangru620237@163.com
  organization: School of Architecture and Design, Harbin Institute of Technology, Harbin 150006, Heilongjiang, People's Republic of China
– sequence: 3
  givenname: Cheng
  orcidid: 0000-0003-1365-2780
  surname: Sun
  fullname: Sun, Cheng
  email: suncheng@hit.edu.cn
  organization: School of Architecture and Design, Harbin Institute of Technology, Harbin 150006, Heilongjiang, People's Republic of China
– sequence: 4
  givenname: Qi
  orcidid: 0000-0001-6587-8074
  surname: Dong
  fullname: Dong, Qi
  email: dongqi@hit.edu.cn
  organization: School of Architecture and Design, Harbin Institute of Technology, Harbin 150006, Heilongjiang, People's Republic of China
– sequence: 5
  givenname: Qing
  surname: Yin
  fullname: Yin, Qing
  email: hityin@126.com
  organization: School of Architecture and Design, Harbin Institute of Technology, Harbin 150006, Heilongjiang, People's Republic of China
– sequence: 6
  givenname: Bin
  surname: Yan
  fullname: Yan, Bin
  email: byan@gsd.Harvard.edu
  organization: Graduate School of Design, Harvard University, Cambridge 021382, MA, United States of America
BookMark eNqFkEtLAzEUhbOoYFv9CUL2ZcZkOo8EF1KKLyy40XXIJDdtykxSklTw3ztlutJFV-dwL-fA-WZo4rwDhO4oySmh9f0-B9cebafzghRlTmlFCJmgKVk2LGsaxq7RLMb9cKyrhk6RXDlsnfY-4LSD0MsOK98bHxLuvYYODxZvgz8e_v0PAbRVyXqHWxlB48G8Zz1IFxcLLLutDzbt-ht0ZWQX4fasc_T1_PS5fs02Hy9v69UmU0VRpgw4cF5zaYzRVWWaihS1agpCy0ElKxXlulWEAWurtuGMUDC0lrwwlLZKk-UcVWOvCj7GAEYcgu1l-BGUiBMbsRdnNuLERoxshtzDn5yySZ5mpSBtdzH9OKZhmPZtIYioLDg1oAmgktDeXmj4Bad0iM8
CitedBy_id crossref_primary_10_1002_met_70091
crossref_primary_10_1016_j_csite_2025_106721
crossref_primary_10_1016_j_uclim_2025_102518
crossref_primary_10_1016_j_landusepol_2025_107654
crossref_primary_10_1016_j_buildenv_2025_113311
crossref_primary_10_1016_j_jobe_2025_113047
crossref_primary_10_1016_j_ast_2025_110631
Cites_doi 10.1016/j.buildenv.2017.12.011
10.1111/j.1749-6632.2011.06400.x
10.1111/j.1600-0668.2004.00278.x
10.1016/S0378-7788(96)00988-7
10.1016/j.enbuild.2019.02.009
10.1007/s40572-015-0063-y
10.1016/j.buildenv.2021.108026
10.1016/S0378-7788(02)00018-X
10.1016/j.enconman.2004.12.007
10.1016/0022-510X(94)90069-8
10.1016/j.buildenv.2019.106163
10.1023/A:1009769707641
10.1016/j.buildenv.2019.106231
10.1016/j.buildenv.2016.10.020
10.1016/j.buildenv.2017.03.009
10.1016/j.buildenv.2019.106281
10.1016/j.buildenv.2018.04.040
10.1016/j.buildenv.2017.10.004
10.1016/j.jobe.2019.101120
10.1016/j.buildenv.2023.109981
10.1016/j.enbuild.2007.02.013
10.1080/096132199369615
10.1016/j.enbuild.2020.109776
10.1111/j.1600-0668.2011.00745.x
10.1016/j.buildenv.2021.108056
10.1016/j.enbuild.2013.04.019
10.1016/S0003-6870(72)80074-7
10.3390/su152115489
10.1016/j.buildenv.2009.04.002
10.1016/j.buildenv.2016.01.022
10.1016/S0378-7788(02)00013-0
10.1111/j.1600-0668.1999.t01-1-00003.x
10.1016/j.buildenv.2013.11.008
10.1016/j.buildenv.2018.11.017
10.1098/rstl.1775.0013
10.1016/j.buildenv.2018.12.011
10.1016/j.enbuild.2004.12.003
10.1016/B978-1-4832-3053-5.50013-2
10.1111/j.1600-0668.1997.t01-1-00002.x
10.1016/j.buildenv.2019.01.055
10.1016/j.buildenv.2013.09.009
10.1016/j.enbuild.2017.07.060
10.1007/s00421-014-2875-0
10.1016/j.buildenv.2018.06.022
10.1016/j.enbuild.2018.05.031
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.enbuild.2024.115000
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enbuild_2024_115000
S0378778824011162
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
LY7
R2-
RPZ
SAC
SET
WUQ
ZMT
ZY4
~HD
ID FETCH-LOGICAL-c224t-e9e9969afffd55f75026c7201426ca84c19dbc08e8b5b79801ef16a92f11bcd03
ISSN 0378-7788
IngestDate Sat Nov 29 06:27:56 EST 2025
Tue Nov 18 22:10:45 EST 2025
Sat Dec 21 16:00:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ANN
K-means++ clustering algorithm
CLO
Prediction model
KNN
WGBT
HR
DBI
SVM
DT
SC
Indoor thermal comfort
CC
SSE
TOA
IQR
EEM
TA
TSK
TC
NB
RF
RH
RI
Machine learning
VEL
TP
MET
TR
TS
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c224t-e9e9969afffd55f75026c7201426ca84c19dbc08e8b5b79801ef16a92f11bcd03
ORCID 0000-0002-5175-0202
0000-0003-1365-2780
0000-0001-6587-8074
ParticipantIDs crossref_primary_10_1016_j_enbuild_2024_115000
crossref_citationtrail_10_1016_j_enbuild_2024_115000
elsevier_sciencedirect_doi_10_1016_j_enbuild_2024_115000
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy and buildings
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kenawy, Elkadi (b0250) 2021; 195
Marc, Gail, Richard (b0240) 1996; 24
Allen, MacNaughton, Laurent, Flanigan, Eitland, Spengler (b0015) 2015; 2
Cosma, Simha (b0120) 2019; 160
Luo, Xie, Yan, Ke, Yu, Wang, Zhang (b0230) 2020; 210
Wyon (b0040) 2004; 14
Cheung, Schiavon, Parkinson, Li, Brager (b0090) 2019; 153
Martins, Soebarto, Williamson (b0050) 2022; 207
Ortiz, Kurvers, Bluyssen (b0150) 2017; 152
Jiang, Yao (b0205) 2016; 99
Zhou, Xu, Zhang, Niu, Luo, Zhou, Zhang (b0055) 2020; 221
Atthajariyakul, Leephakpreeda (b0160) 2005; 46
Fisk, Rosenfeld (b0010) 1997; 7
Huang (b0265) 1998; 2
McCartney, Nicol (b0115) 2002; 34
Lee, Bilionis, Karava, Tzempelikos (b0130) 2017; 118
Farhan, Pattipati, Wang, Luh (b0215) 2015
Tham, Willem (b0045) 2010; 45
Wu, Li, Peng, Cui, Liu, Li, Li (b0155) 2018; 173
Ličina, Cheung, Zhang, Dear, Parkinson, Arens, Chun, Schiavon, Luo, Brager, Li, Kaam, Adebamowo, Andamon, Babich, Bouden, Bukovianska, Candido, Bin, Zhou (b0225) 2018; 142
Ashrae (b0075) 2017
Bratman, Hamilton, Daily, Ostfeld, Schlesinger (b0005) 2012; 1249
Castilla, Alvarez, Ortega, Arahal (b0220) 2013; 59
Wang, Wang, He, Liu, Lin, Hong (b0235) 2020; 29
Andrei, Rahul (b0065) 2019; 148
Iso (b0080) 2005
Zhao, Zhao, Wang, Wang, Jiang, Zhang (b0135) 2014; 72
Leaman, Bordass (b0030) 1999; 27
Zheng, Wei, Yue, Li (b0190) 2023; 230
Chen, Dai, Meng (b0180) 2023; 15
Bouden, Ghrab (b0105) 2005; 37
Gerrett, Ouzzahra, Coleby, Hobbs, Redortier, Voelcker, Havenith (b0280) 2014; 114
Frontczak, Schiavon, Goins, Arens, Zhang, Wargocki (b0025) 2012; 22
Blagden (b0070) 1775; 65
Fanger, P. O. (1970). Thermal comfort Analysis and applications in environmental engineering. 225-240. Doi: 10.1016/S0003-6870(72)80074-7.
Nicol, Humphreys (b0100) 1973; 6
Xiaoyun, Le, Bo, Boze, Xue (b0245) 2020; 172
Kim, Zhou, Schiavon, Raftery, Brager (b0170) 2018; 129
Meh, Denišlicˇ (b0285) 1994; 127
Zhou, Liu, Luo (b0275) 2019; 188
Gnedenko, Belyayev, Solovyev (b0305) 1969; 363–453
Karmann, Schiavon, Bauman (b0270) 2016; 111
Holopainen, Tuomaala, Hernandez, Häkkinen, Piira, Piippo (b0295) 2014; 71
Xiong, Yao (b0195) 2021; 202
Li, Menassa, Kamat (b0210) 2017; 126
Johnston (b0260) 1984
Ana, Inaiele, Iasmin, Evandro (b0185) 2023; 233
Zahra, Zahra, Sepideh (b0145) 2022; 256
Nan, Liang, Jian, Paris, William (b0060) 2021; 198
Jiao, Yu, Yu, Wang, Wei (b0140) 2020; 215
Humphreys, Nicol (b0095) 2002; 34
Wargocki, Wyon, Baik, Clausen, Fanger (b0035) 1999; 9
LóPEZ-PéREZ, Flores-Prieto, Ríos-Rojas (b0110) 2019; 150
Wangner, Gossauer, Moosmann, Gropp, Leonhart (b0020) 2007; 39
Liu, Schiavon, Das, Jin, Spanos (b0125) 2019; 162
Brik, Esseghir, Merghem-Boulahia, Snoussi (b0200) 2021; 203
Rana, Kusy, Jurdak, Wall, Hu (b0165) 2013; 64
Zhe, Richard, Maohui, Borong, Yingdong, Ali, Yingxin (b0175) 2018; 138
Altman (b0255) 1992
Wang, Yu, Luo, Wang, Zhang, Jiao (b0290) 2019; 161
Nkechinyere E M., IheagwaraAndrew I., & Idochi O. (2015). Comparison of Different Methods of Outlier Detection in Univariate Time Series Data.
Allen (10.1016/j.enbuild.2024.115000_b0015) 2015; 2
Martins (10.1016/j.enbuild.2024.115000_b0050) 2022; 207
Huang (10.1016/j.enbuild.2024.115000_b0265) 1998; 2
Zhou (10.1016/j.enbuild.2024.115000_b0055) 2020; 221
Farhan (10.1016/j.enbuild.2024.115000_b0215) 2015
Liu (10.1016/j.enbuild.2024.115000_b0125) 2019; 162
Wyon (10.1016/j.enbuild.2024.115000_b0040) 2004; 14
Jiang (10.1016/j.enbuild.2024.115000_b0205) 2016; 99
Humphreys (10.1016/j.enbuild.2024.115000_b0095) 2002; 34
Kenawy (10.1016/j.enbuild.2024.115000_b0250) 2021; 195
LóPEZ-PéREZ (10.1016/j.enbuild.2024.115000_b0110) 2019; 150
Bratman (10.1016/j.enbuild.2024.115000_b0005) 2012; 1249
McCartney (10.1016/j.enbuild.2024.115000_b0115) 2002; 34
Chen (10.1016/j.enbuild.2024.115000_b0180) 2023; 15
Meh (10.1016/j.enbuild.2024.115000_b0285) 1994; 127
Blagden (10.1016/j.enbuild.2024.115000_b0070) 1775; 65
Cosma (10.1016/j.enbuild.2024.115000_b0120) 2019; 160
Iso (10.1016/j.enbuild.2024.115000_b0080) 2005
Xiaoyun (10.1016/j.enbuild.2024.115000_b0245) 2020; 172
Fisk (10.1016/j.enbuild.2024.115000_b0010) 1997; 7
Ana (10.1016/j.enbuild.2024.115000_b0185) 2023; 233
Gerrett (10.1016/j.enbuild.2024.115000_b0280) 2014; 114
Wangner (10.1016/j.enbuild.2024.115000_b0020) 2007; 39
Leaman (10.1016/j.enbuild.2024.115000_b0030) 1999; 27
Zhou (10.1016/j.enbuild.2024.115000_b0275) 2019; 188
Brik (10.1016/j.enbuild.2024.115000_b0200) 2021; 203
10.1016/j.enbuild.2024.115000_b0085
Ličina (10.1016/j.enbuild.2024.115000_b0225) 2018; 142
Kim (10.1016/j.enbuild.2024.115000_b0170) 2018; 129
Wang (10.1016/j.enbuild.2024.115000_b0235) 2020; 29
Castilla (10.1016/j.enbuild.2024.115000_b0220) 2013; 59
Altman (10.1016/j.enbuild.2024.115000_b0255) 1992
Zhe (10.1016/j.enbuild.2024.115000_b0175) 2018; 138
Tham (10.1016/j.enbuild.2024.115000_b0045) 2010; 45
Holopainen (10.1016/j.enbuild.2024.115000_b0295) 2014; 71
Marc (10.1016/j.enbuild.2024.115000_b0240) 1996; 24
Johnston (10.1016/j.enbuild.2024.115000_b0260) 1984
Zhao (10.1016/j.enbuild.2024.115000_b0135) 2014; 72
Lee (10.1016/j.enbuild.2024.115000_b0130) 2017; 118
Zheng (10.1016/j.enbuild.2024.115000_b0190) 2023; 230
Nicol (10.1016/j.enbuild.2024.115000_b0100) 1973; 6
Zahra (10.1016/j.enbuild.2024.115000_b0145) 2022; 256
Wu (10.1016/j.enbuild.2024.115000_b0155) 2018; 173
Ortiz (10.1016/j.enbuild.2024.115000_b0150) 2017; 152
Ashrae (10.1016/j.enbuild.2024.115000_b0075) 2017
Frontczak (10.1016/j.enbuild.2024.115000_b0025) 2012; 22
Wargocki (10.1016/j.enbuild.2024.115000_b0035) 1999; 9
Jiao (10.1016/j.enbuild.2024.115000_b0140) 2020; 215
Wang (10.1016/j.enbuild.2024.115000_b0290) 2019; 161
Andrei (10.1016/j.enbuild.2024.115000_b0065) 2019; 148
Xiong (10.1016/j.enbuild.2024.115000_b0195) 2021; 202
Bouden (10.1016/j.enbuild.2024.115000_b0105) 2005; 37
Cheung (10.1016/j.enbuild.2024.115000_b0090) 2019; 153
Gnedenko (10.1016/j.enbuild.2024.115000_b0305) 1969; 363–453
Nan (10.1016/j.enbuild.2024.115000_b0060) 2021; 198
Li (10.1016/j.enbuild.2024.115000_b0210) 2017; 126
10.1016/j.enbuild.2024.115000_b0300
Atthajariyakul (10.1016/j.enbuild.2024.115000_b0160) 2005; 46
Karmann (10.1016/j.enbuild.2024.115000_b0270) 2016; 111
Rana (10.1016/j.enbuild.2024.115000_b0165) 2013; 64
Luo (10.1016/j.enbuild.2024.115000_b0230) 2020; 210
References_xml – volume: 1249
  start-page: 118
  year: 2012
  end-page: 136
  ident: b0005
  article-title: The impacts of nature experience on human cognitive function and mental health
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 150
  start-page: 181
  year: 2019
  end-page: 194
  ident: b0110
  article-title: Adaptive thermal comfort model for educational buildings in a hot-humid climate
  publication-title: Build. Environ.
– volume: 173
  start-page: 117
  year: 2018
  end-page: 127
  ident: b0155
  article-title: Using an ensemble machine learning methodology-Bagging to predict occupants’ thermal comfort in buildings
  publication-title: Energ. Buildings
– start-page: 1984
  year: 1984
  ident: b0260
  article-title: Econometric methods
– volume: 148
  start-page: 372
  year: 2019
  end-page: 383
  ident: b0065
  article-title: Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions
  publication-title: Build. Environ.
– volume: 118
  start-page: 323
  year: 2017
  end-page: 343
  ident: b0130
  article-title: A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings
  publication-title: Build. Environ.
– volume: 160
  year: 2019
  ident: b0120
  article-title: Using the contrast within a single face heat map to assess personal thermal comfort
  publication-title: Build. Environ.
– volume: 207
  year: 2022
  ident: b0050
  article-title: A systematic review of personal thermal comfort models
  publication-title: Build. Environ.
– volume: 64
  start-page: 17
  year: 2013
  end-page: 25
  ident: b0165
  article-title: Feasibility analysis of using humidex as an indoor thermal comfort predictor
  publication-title: Energ. Buildings
– volume: 129
  start-page: 96
  year: 2018
  end-page: 106
  ident: b0170
  article-title: Personal comfort models: predicting individuals’ thermal preference using occupant heating and cooling behavior and machine learning
  publication-title: Build. Environ.
– volume: 142
  start-page: 502
  year: 2018
  end-page: 512
  ident: b0225
  article-title: Development of the ASHRAE Global Thermal Comfort Database II
  publication-title: Build. Environ.
– volume: 126
  start-page: 304
  year: 2017
  end-page: 317
  ident: b0210
  article-title: Personalized human comfort in indoor building environments under diverse conditioning modes
  publication-title: Build. Environ.
– reference: Fanger, P. O. (1970). Thermal comfort Analysis and applications in environmental engineering. 225-240. Doi: 10.1016/S0003-6870(72)80074-7.
– volume: 256
  year: 2022
  ident: b0145
  article-title: Application of machine learning in thermal comfort studies: A review of methods, performance and challenges
  publication-title: Energ. Buildings
– volume: 195
  year: 2021
  ident: b0250
  article-title: Effects of cultural diversity and climatic background on outdoor thermal perception in Melbourne city
  publication-title: Australia. Building and Environment
– year: 2005
  ident: b0080
  article-title: Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria
  publication-title: Technical Committee ISO/TC, and Subcommittee SC
– volume: 233
  year: 2023
  ident: b0185
  article-title: Hierarchical and K-means clustering to assess thermal dissatisfaction and productivity in university classrooms
  publication-title: Build. Environ.
– volume: 9
  start-page: 165
  year: 1999
  end-page: 179
  ident: b0035
  article-title: Perceived air quality, sick building syndrome(SBS) symptoms and productivity in an office with two different pollution loads
  publication-title: Indoor Air
– volume: 34
  start-page: 623
  year: 2002
  end-page: 635
  ident: b0115
  article-title: Developing an adaptive control algorithm for Europe
  publication-title: Energ. Buildings
– year: 1992
  ident: b0255
  article-title: Practical Statistics for Medical Research
  publication-title: Chapman and Hall
– volume: 37
  start-page: 952
  year: 2005
  end-page: 963
  ident: b0105
  article-title: An adaptive thermal comfort model for the Tunisian context: a field study results
  publication-title: Energ. Buildings
– volume: 7
  start-page: 158
  year: 1997
  end-page: 172
  ident: b0010
  article-title: Estimates of improved productivity and health from better indoor environments
  publication-title: Indoor Air
– reference: Nkechinyere E M., IheagwaraAndrew I., & Idochi O. (2015). Comparison of Different Methods of Outlier Detection in Univariate Time Series Data.
– volume: 221
  year: 2020
  ident: b0055
  article-title: Data-driven thermal comfort model via support vector machine algorithms: Insights from ASHRAE RP-884 database
  publication-title: Energ. Buildings
– volume: 99
  start-page: 98
  year: 2016
  end-page: 106
  ident: b0205
  article-title: Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm
  publication-title: Build. Environ.
– volume: 6
  start-page: 191
  year: 1973
  end-page: 197
  ident: b0100
  article-title: Thermal Comfort as Part of a Self-Regulating System
  publication-title: Building Research and Practice
– volume: 111
  start-page: 123
  year: 2016
  end-page: 131
  ident: b0270
  article-title: Thermal comfort in buildings using radiant vs. all-air systems: A critical literature review
  publication-title: Build. Environ.
– volume: 363–453
  year: 1969
  ident: b0305
  article-title: Statistical Methods of Quality Control and Reliability of Mass Production
  publication-title: Mathematical Methods of Reliability Theory
– volume: 2
  start-page: 250
  year: 2015
  end-page: 258
  ident: b0015
  article-title: Green buildings and health
  publication-title: Curr. Environ. Health Rep.
– volume: 188
  start-page: 98
  year: 2019
  end-page: 110
  ident: b0275
  article-title: Thermal comfort under radiant asymmetries of floor cooling system in 2h and 8h exposure durations
  publication-title: Energ. Buildings
– volume: 14
  start-page: 92
  year: 2004
  end-page: 101
  ident: b0040
  article-title: The effects of indoor air quality on performance and productivity
  publication-title: Indoor Air
– volume: 215
  year: 2020
  ident: b0140
  article-title: Adaptive thermal comfort models for homes for older people in Shanghai
  publication-title: China. Energy and Buildings
– volume: 172
  year: 2020
  ident: b0245
  article-title: Cross-cultural differences in thermal comfort in campus open spaces: A longitudinal field survey in China's cold region
  publication-title: Build. Environ.
– volume: 72
  start-page: 309
  year: 2014
  end-page: 318
  ident: b0135
  article-title: A data-driven method to describe the personalized dynamic thermal comfort in ordinary office environment: From model to application
  publication-title: Build. Environ.
– volume: 45
  start-page: 40
  year: 2010
  end-page: 44
  ident: b0045
  article-title: Room air temperature affects occupants’ physiology, perceptions and mental alertness
  publication-title: Build. Environ.
– volume: 203
  year: 2021
  ident: b0200
  article-title: An IoT-based deep learning approach to analyse indoor thermal comfort of disabled people
  publication-title: Build. Environ.
– volume: 24
  start-page: 179
  year: 1996
  end-page: 182
  ident: b0240
  article-title: Expectations of indoor climate control
  publication-title: Energ. Buildings
– volume: 202
  year: 2021
  ident: b0195
  article-title: Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm
  publication-title: Build. Environ.
– volume: 59
  year: 2013
  ident: b0220
  article-title: Neural network and polynomial approximated thermal comfort models for HVAC systems
  publication-title: Build. Environ.
– year: 2015
  ident: b0215
  article-title: Predicting individual thermal comfort using machine learning algorithms
  publication-title: Conference on Automation Science and Engineering IEEE
– volume: 152
  start-page: 323
  year: 2017
  end-page: 335
  ident: b0150
  article-title: A review of comfort, health, and energy use : Understanding daily energy use and wellbeing for the development of a new approach to study comfort
  publication-title: Energ. Buildings
– volume: 2
  start-page: 283
  year: 1998
  end-page: 304
  ident: b0265
  article-title: Extensions to the K-means algorithm for clustering large data sets with categorical values
  publication-title: Data Min. Knowl. Disc.
– volume: 22
  start-page: 119
  year: 2012
  end-page: 131
  ident: b0025
  article-title: Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environment quality and building design
  publication-title: Indoor Air
– volume: 15
  start-page: 15489
  year: 2023
  ident: b0180
  article-title: Smart Building Thermal Management: A Data-Driven Approach Based on Dynamic and Consensus Clustering
  publication-title: Sustainability
– volume: 114
  start-page: 1451
  year: 2014
  end-page: 1462
  ident: b0280
  article-title: Thermal sensitivity to warmth during rest and exercise: a sex comparison
  publication-title: Eur. J. Appl. Physiol.
– volume: 71
  start-page: 60
  year: 2014
  end-page: 70
  ident: b0295
  article-title: Comfort assessment in the context of sustainable buildings: Comparison of simplified and detailed human thermal sensation methods
  publication-title: Build. Environ.
– volume: 34
  start-page: 667
  year: 2002
  end-page: 684
  ident: b0095
  article-title: The validity of ISO-PMV for predicting comfort votes in every-day life
  publication-title: Energ. Buildings
– year: 2017
  ident: b0075
  article-title: ASHRAE standard 55–2017: Thermal environmental conditions for human occupancy
– volume: 153
  start-page: 205
  year: 2019
  end-page: 217
  ident: b0090
  article-title: Analysis of the accuracy on PMV–PPD model using the ASHRAE Global Thermal Comfort Database II
  publication-title: Build. Environ.
– volume: 29
  year: 2020
  ident: b0235
  article-title: Dimension analysis of subjective thermal comfort metrics based on ASHRAE Global Thermal Comfort Database using machine learning
  publication-title: Journal of Building Engineering
– volume: 127
  start-page: 164
  year: 1994
  end-page: 169
  ident: b0285
  article-title: Quantitative assessment of thermal and pain sensitivity
  publication-title: J. Neurol. Sci.
– volume: 39
  start-page: 758
  year: 2007
  end-page: 769
  ident: b0020
  article-title: Thermal comfort and workplace occupant satisfaction - Results of field studies in German low energy office buildings
  publication-title: Energ. Buildings
– volume: 210
  year: 2020
  ident: b0230
  article-title: Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II
  publication-title: Energ. Buildings
– volume: 65
  start-page: 111
  year: 1775
  end-page: 123
  ident: b0070
  article-title: XII. Experiments and observations in an heated room
  publication-title: M.D.F.R.S Philos. Trans
– volume: 162
  year: 2019
  ident: b0125
  article-title: Personal thermal comfort models with wearable sensors
  publication-title: Build. Environ.
– volume: 46
  start-page: 2553
  year: 2005
  end-page: 2565
  ident: b0160
  article-title: Neural computing thermal comfort index for HVAC systems
  publication-title: Energ. Conver. Manage.
– volume: 138
  start-page: 181
  year: 2018
  end-page: 193
  ident: b0175
  article-title: Individual difference in thermal comfort: A literature review
  publication-title: Build. Environ.
– volume: 230
  year: 2023
  ident: b0190
  article-title: Application of hierarchical cluster analysis in age segmentation for thermal comfort differentiation of elderly people in summer
  publication-title: Build. Environ.
– volume: 198
  year: 2021
  ident: b0060
  article-title: Adaptive behavior and different thermal experiences of real people: A Bayesian neural network approach to thermal preference prediction and classification
  publication-title: Build. Environ.
– volume: 161
  year: 2019
  ident: b0290
  article-title: Predicting older people's thermal sensation in building environment through a machine learning approach: Modelling, interpretation, and application
  publication-title: Build. Environ.
– volume: 27
  start-page: 4
  year: 1999
  end-page: 19
  ident: b0030
  article-title: Productivity in buildings:the ‘killer’ variables
  publication-title: Build. Res. Inf.
– volume: 129
  start-page: 96
  year: 2018
  ident: 10.1016/j.enbuild.2024.115000_b0170
  article-title: Personal comfort models: predicting individuals’ thermal preference using occupant heating and cooling behavior and machine learning
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.12.011
– volume: 1249
  start-page: 118
  year: 2012
  ident: 10.1016/j.enbuild.2024.115000_b0005
  article-title: The impacts of nature experience on human cognitive function and mental health
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2011.06400.x
– volume: 14
  start-page: 92
  issue: 7
  year: 2004
  ident: 10.1016/j.enbuild.2024.115000_b0040
  article-title: The effects of indoor air quality on performance and productivity
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.2004.00278.x
– volume: 24
  start-page: 179
  issue: 3
  year: 1996
  ident: 10.1016/j.enbuild.2024.115000_b0240
  article-title: Expectations of indoor climate control
  publication-title: Energ. Buildings
  doi: 10.1016/S0378-7788(96)00988-7
– volume: 188
  start-page: 98
  year: 2019
  ident: 10.1016/j.enbuild.2024.115000_b0275
  article-title: Thermal comfort under radiant asymmetries of floor cooling system in 2h and 8h exposure durations
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2019.02.009
– volume: 256
  year: 2022
  ident: 10.1016/j.enbuild.2024.115000_b0145
  article-title: Application of machine learning in thermal comfort studies: A review of methods, performance and challenges
  publication-title: Energ. Buildings
– volume: 2
  start-page: 250
  issue: 3
  year: 2015
  ident: 10.1016/j.enbuild.2024.115000_b0015
  article-title: Green buildings and health
  publication-title: Curr. Environ. Health Rep.
  doi: 10.1007/s40572-015-0063-y
– volume: 221
  year: 2020
  ident: 10.1016/j.enbuild.2024.115000_b0055
  article-title: Data-driven thermal comfort model via support vector machine algorithms: Insights from ASHRAE RP-884 database
  publication-title: Energ. Buildings
– volume: 202
  year: 2021
  ident: 10.1016/j.enbuild.2024.115000_b0195
  article-title: Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108026
– year: 1992
  ident: 10.1016/j.enbuild.2024.115000_b0255
  article-title: Practical Statistics for Medical Research
  publication-title: Chapman and Hall
– volume: 34
  start-page: 667
  issue: 6
  year: 2002
  ident: 10.1016/j.enbuild.2024.115000_b0095
  article-title: The validity of ISO-PMV for predicting comfort votes in every-day life
  publication-title: Energ. Buildings
  doi: 10.1016/S0378-7788(02)00018-X
– volume: 46
  start-page: 2553
  issue: 15–16
  year: 2005
  ident: 10.1016/j.enbuild.2024.115000_b0160
  article-title: Neural computing thermal comfort index for HVAC systems
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2004.12.007
– volume: 127
  start-page: 164
  year: 1994
  ident: 10.1016/j.enbuild.2024.115000_b0285
  article-title: Quantitative assessment of thermal and pain sensitivity
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(94)90069-8
– volume: 195
  year: 2021
  ident: 10.1016/j.enbuild.2024.115000_b0250
  article-title: Effects of cultural diversity and climatic background on outdoor thermal perception in Melbourne city
  publication-title: Australia. Building and Environment
– volume: 160
  year: 2019
  ident: 10.1016/j.enbuild.2024.115000_b0120
  article-title: Using the contrast within a single face heat map to assess personal thermal comfort
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106163
– start-page: 1984
  year: 1984
  ident: 10.1016/j.enbuild.2024.115000_b0260
– volume: 198
  year: 2021
  ident: 10.1016/j.enbuild.2024.115000_b0060
  article-title: Adaptive behavior and different thermal experiences of real people: A Bayesian neural network approach to thermal preference prediction and classification
  publication-title: Build. Environ.
– ident: 10.1016/j.enbuild.2024.115000_b0300
– volume: 2
  start-page: 283
  issue: 3
  year: 1998
  ident: 10.1016/j.enbuild.2024.115000_b0265
  article-title: Extensions to the K-means algorithm for clustering large data sets with categorical values
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1023/A:1009769707641
– volume: 161
  year: 2019
  ident: 10.1016/j.enbuild.2024.115000_b0290
  article-title: Predicting older people's thermal sensation in building environment through a machine learning approach: Modelling, interpretation, and application
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106231
– volume: 111
  start-page: 123
  year: 2016
  ident: 10.1016/j.enbuild.2024.115000_b0270
  article-title: Thermal comfort in buildings using radiant vs. all-air systems: A critical literature review
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.10.020
– volume: 118
  start-page: 323
  year: 2017
  ident: 10.1016/j.enbuild.2024.115000_b0130
  article-title: A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.03.009
– year: 2005
  ident: 10.1016/j.enbuild.2024.115000_b0080
  article-title: Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria
– volume: 162
  year: 2019
  ident: 10.1016/j.enbuild.2024.115000_b0125
  article-title: Personal thermal comfort models with wearable sensors
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106281
– volume: 138
  start-page: 181
  year: 2018
  ident: 10.1016/j.enbuild.2024.115000_b0175
  article-title: Individual difference in thermal comfort: A literature review
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.04.040
– volume: 233
  year: 2023
  ident: 10.1016/j.enbuild.2024.115000_b0185
  article-title: Hierarchical and K-means clustering to assess thermal dissatisfaction and productivity in university classrooms
  publication-title: Build. Environ.
– volume: 126
  start-page: 304
  year: 2017
  ident: 10.1016/j.enbuild.2024.115000_b0210
  article-title: Personalized human comfort in indoor building environments under diverse conditioning modes
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.10.004
– volume: 29
  year: 2020
  ident: 10.1016/j.enbuild.2024.115000_b0235
  article-title: Dimension analysis of subjective thermal comfort metrics based on ASHRAE Global Thermal Comfort Database using machine learning
  publication-title: Journal of Building Engineering
  doi: 10.1016/j.jobe.2019.101120
– volume: 230
  year: 2023
  ident: 10.1016/j.enbuild.2024.115000_b0190
  article-title: Application of hierarchical cluster analysis in age segmentation for thermal comfort differentiation of elderly people in summer
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2023.109981
– volume: 172
  year: 2020
  ident: 10.1016/j.enbuild.2024.115000_b0245
  article-title: Cross-cultural differences in thermal comfort in campus open spaces: A longitudinal field survey in China's cold region
  publication-title: Build. Environ.
– volume: 59
  issue: 3
  year: 2013
  ident: 10.1016/j.enbuild.2024.115000_b0220
  article-title: Neural network and polynomial approximated thermal comfort models for HVAC systems
  publication-title: Build. Environ.
– volume: 39
  start-page: 758
  issue: 7
  year: 2007
  ident: 10.1016/j.enbuild.2024.115000_b0020
  article-title: Thermal comfort and workplace occupant satisfaction - Results of field studies in German low energy office buildings
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2007.02.013
– volume: 27
  start-page: 4
  issue: 1
  year: 1999
  ident: 10.1016/j.enbuild.2024.115000_b0030
  article-title: Productivity in buildings:the ‘killer’ variables
  publication-title: Build. Res. Inf.
  doi: 10.1080/096132199369615
– volume: 210
  year: 2020
  ident: 10.1016/j.enbuild.2024.115000_b0230
  article-title: Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2020.109776
– volume: 22
  start-page: 119
  issue: 2
  year: 2012
  ident: 10.1016/j.enbuild.2024.115000_b0025
  article-title: Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environment quality and building design
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.2011.00745.x
– volume: 6
  start-page: 191
  issue: 3
  year: 1973
  ident: 10.1016/j.enbuild.2024.115000_b0100
  article-title: Thermal Comfort as Part of a Self-Regulating System
  publication-title: Building Research and Practice
– volume: 207
  year: 2022
  ident: 10.1016/j.enbuild.2024.115000_b0050
  article-title: A systematic review of personal thermal comfort models
  publication-title: Build. Environ.
– volume: 203
  year: 2021
  ident: 10.1016/j.enbuild.2024.115000_b0200
  article-title: An IoT-based deep learning approach to analyse indoor thermal comfort of disabled people
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108056
– volume: 64
  start-page: 17
  year: 2013
  ident: 10.1016/j.enbuild.2024.115000_b0165
  article-title: Feasibility analysis of using humidex as an indoor thermal comfort predictor
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2013.04.019
– ident: 10.1016/j.enbuild.2024.115000_b0085
  doi: 10.1016/S0003-6870(72)80074-7
– volume: 15
  start-page: 15489
  issue: 21
  year: 2023
  ident: 10.1016/j.enbuild.2024.115000_b0180
  article-title: Smart Building Thermal Management: A Data-Driven Approach Based on Dynamic and Consensus Clustering
  publication-title: Sustainability
  doi: 10.3390/su152115489
– volume: 45
  start-page: 40
  issue: 1
  year: 2010
  ident: 10.1016/j.enbuild.2024.115000_b0045
  article-title: Room air temperature affects occupants’ physiology, perceptions and mental alertness
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.04.002
– volume: 99
  start-page: 98
  year: 2016
  ident: 10.1016/j.enbuild.2024.115000_b0205
  article-title: Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.01.022
– volume: 34
  start-page: 623
  issue: 6
  year: 2002
  ident: 10.1016/j.enbuild.2024.115000_b0115
  article-title: Developing an adaptive control algorithm for Europe
  publication-title: Energ. Buildings
  doi: 10.1016/S0378-7788(02)00013-0
– volume: 9
  start-page: 165
  issue: 3
  year: 1999
  ident: 10.1016/j.enbuild.2024.115000_b0035
  article-title: Perceived air quality, sick building syndrome(SBS) symptoms and productivity in an office with two different pollution loads
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.1999.t01-1-00003.x
– year: 2015
  ident: 10.1016/j.enbuild.2024.115000_b0215
  article-title: Predicting individual thermal comfort using machine learning algorithms
  publication-title: Conference on Automation Science and Engineering IEEE
– year: 2017
  ident: 10.1016/j.enbuild.2024.115000_b0075
– volume: 72
  start-page: 309
  year: 2014
  ident: 10.1016/j.enbuild.2024.115000_b0135
  article-title: A data-driven method to describe the personalized dynamic thermal comfort in ordinary office environment: From model to application
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.11.008
– volume: 148
  start-page: 372
  year: 2019
  ident: 10.1016/j.enbuild.2024.115000_b0065
  article-title: Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.11.017
– volume: 65
  start-page: 111
  year: 1775
  ident: 10.1016/j.enbuild.2024.115000_b0070
  article-title: XII. Experiments and observations in an heated room
  publication-title: M.D.F.R.S Philos. Trans
  doi: 10.1098/rstl.1775.0013
– volume: 215
  year: 2020
  ident: 10.1016/j.enbuild.2024.115000_b0140
  article-title: Adaptive thermal comfort models for homes for older people in Shanghai
  publication-title: China. Energy and Buildings
– volume: 150
  start-page: 181
  year: 2019
  ident: 10.1016/j.enbuild.2024.115000_b0110
  article-title: Adaptive thermal comfort model for educational buildings in a hot-humid climate
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.12.011
– volume: 37
  start-page: 952
  issue: 9
  year: 2005
  ident: 10.1016/j.enbuild.2024.115000_b0105
  article-title: An adaptive thermal comfort model for the Tunisian context: a field study results
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2004.12.003
– volume: 363–453
  year: 1969
  ident: 10.1016/j.enbuild.2024.115000_b0305
  article-title: Statistical Methods of Quality Control and Reliability of Mass Production
  publication-title: Mathematical Methods of Reliability Theory
  doi: 10.1016/B978-1-4832-3053-5.50013-2
– volume: 7
  start-page: 158
  issue: 3
  year: 1997
  ident: 10.1016/j.enbuild.2024.115000_b0010
  article-title: Estimates of improved productivity and health from better indoor environments
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.1997.t01-1-00002.x
– volume: 153
  start-page: 205
  year: 2019
  ident: 10.1016/j.enbuild.2024.115000_b0090
  article-title: Analysis of the accuracy on PMV–PPD model using the ASHRAE Global Thermal Comfort Database II
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.01.055
– volume: 71
  start-page: 60
  year: 2014
  ident: 10.1016/j.enbuild.2024.115000_b0295
  article-title: Comfort assessment in the context of sustainable buildings: Comparison of simplified and detailed human thermal sensation methods
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.09.009
– volume: 152
  start-page: 323
  year: 2017
  ident: 10.1016/j.enbuild.2024.115000_b0150
  article-title: A review of comfort, health, and energy use : Understanding daily energy use and wellbeing for the development of a new approach to study comfort
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2017.07.060
– volume: 114
  start-page: 1451
  year: 2014
  ident: 10.1016/j.enbuild.2024.115000_b0280
  article-title: Thermal sensitivity to warmth during rest and exercise: a sex comparison
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-014-2875-0
– volume: 142
  start-page: 502
  year: 2018
  ident: 10.1016/j.enbuild.2024.115000_b0225
  article-title: Development of the ASHRAE Global Thermal Comfort Database II
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.06.022
– volume: 173
  start-page: 117
  year: 2018
  ident: 10.1016/j.enbuild.2024.115000_b0155
  article-title: Using an ensemble machine learning methodology-Bagging to predict occupants’ thermal comfort in buildings
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2018.05.031
SSID ssj0006571
Score 2.4504557
Snippet •K-means++ algorithm was first used to build a thermal comfort model without occupants’ feedback.•Even with small dataset, the proposed model achieved high...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115000
SubjectTerms Indoor thermal comfort
K-means++ clustering algorithm
Machine learning
Prediction model
Title An indoor thermal comfort model for group thermal comfort prediction based on K-means++ algorithm
URI https://dx.doi.org/10.1016/j.enbuild.2024.115000
Volume 327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-7788
  databaseCode: AIEXJ
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006571
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELXKcoADYhW7fOBWpSRpU8fHsolNCCSQeoscx4aiNq1Civh8xkuSQhHLAamKLCd2rM7L-I09M0bogBIB1jGTDnNVSA5lrsMoaTowOQiwRxIWuDpQ-Jrc3ITdLr2t1cZFLMxrn6Rp-PZGR_8qaqgDYavQ2T-Iu-wUKqAMQocriB2uvxJ8R_kuJkPjPQhqV-X_GAA1zc2pN9qvUMdyTN0fZWrXRgNCTW6J2ki4cgZCc-0j-NVZ_3GY9fKnwYcFfRM-qFbgY3vIdknUr3tjreSLCVJXqZouwPIxG1d7UnbzX1QPnlhv4bve5NKEr7wAHROcWYRkgYlKiDm3r1C3TZMLwCpMRUh1qtJpXW6WFZ4bKgcEDB5seb_VqJ7_mDv705xWehoWTmzPke0mUt1EppsZNOeTgIIynOtcnHYvyym8HWhLvRx_Ffp1-OV4viY1E0TlfhktWQsDdwwyVlBNpKtocSLv5BpinRQbjGCLAWwxgDVGMBSxxsjU_QojWGMEQ8FipF7HJT7W0cPZ6f3xuWPP2nA4kLjcEVSA5UuZlDIJAgk80m9zAuwQGBxnYYt7NIm5G4owDmJCgdcI6bUZ9aXnxTxxmxtoNh2mYhPhRDShrkVkLAP4-D3KXSbiIAyZ8BhjZAu1ij8r4jYRvToPpR99K6wt1CibjUwmlp8ahIUkIksnDU2MAGHfN93-67t20EL1Aeyi2Twbiz00z1_z3ku2b-H1DqOwmVE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+indoor+thermal+comfort+model+for+group+thermal+comfort+prediction+based+on+K-means%2B%2B+algorithm&rft.jtitle=Energy+and+buildings&rft.au=Liu%2C+Ying&rft.au=Li%2C+Xiangru&rft.au=Sun%2C+Cheng&rft.au=Dong%2C+Qi&rft.date=2025-01-15&rft.issn=0378-7788&rft.volume=327&rft.spage=115000&rft_id=info:doi/10.1016%2Fj.enbuild.2024.115000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2024_115000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon