Polynomial Representations of Symmetric Partial Boolean Functions

For Boolean polynomials in $\mathbb{Z}_p$ of sufficiently low degree we derive a relation expressing their values on one level set in terms of their values on another level set. We use this relation to derive linear upper and lower bounds, tight to within constant factor, on the degrees of various a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on discrete mathematics Ročník 19; číslo 2; s. 481 - 488
Hlavní autori: de Graaf, Mart, Valiant, Paul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Society for Industrial and Applied Mathematics 01.01.2005
Predmet:
ISSN:0895-4801, 1095-7146
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:For Boolean polynomials in $\mathbb{Z}_p$ of sufficiently low degree we derive a relation expressing their values on one level set in terms of their values on another level set. We use this relation to derive linear upper and lower bounds, tight to within constant factor, on the degrees of various approximate majority functions, namely, functions that take the value 0 on one level set, the value 1 on a different level set, and arbitrary 0-1 values on other Boolean inputs. We show sublinear upper bounds in the case of moduli that are not prime powers.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0895-4801
1095-7146
DOI:10.1137/S0895480103433562