A Bayesian index of association: comparison with other measures and performance
The article discusses a Bayesian measure of association, B-index, and compares it with the other existing measures of agreement, association, and similarity, both chance-corrected and non-corrected: Scott’s π, Krippendorff’s α, Cohen’s κ, Bennett, Alpert & Goldstein’s S, Cosine similarity, and t...
Saved in:
| Published in: | Quality & quantity Vol. 58; no. 1; pp. 277 - 305 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.02.2024
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0033-5177, 1573-7845 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The article discusses a Bayesian measure of association, B-index, and compares it with the other existing measures of agreement, association, and similarity, both chance-corrected and non-corrected: Scott’s π, Krippendorff’s α, Cohen’s κ, Bennett, Alpert & Goldstein’s S, Cosine similarity, and the Jaccard similarity coefficient. PageRank adapted to particularities of annotation is also added to this list. Two versions of B-index are considered: with the informative and non-informative priors. An algorithm for calculating B-index written in pseudocode is provided. Particular attention is devoted to the uses of those measures in content analysis, communication studies, computational linguistics, psychology, computer science and network science. Real-world data gathered using an online platform for content analysis allowed comparing the behavior of all eight measures included in the scope of analysis. Three short texts (164 data points/sentences in total) were coded by 66 annotators. The behaviors of B-index with the non-informative prior and Bennett, Alpert & Goldstein’s S have some common patterns. |
|---|---|
| AbstractList | The article discusses a Bayesian measure of association, B-index, and compares it with the other existing measures of agreement, association, and similarity, both chance-corrected and non-corrected: Scott’s π, Krippendorff’s α, Cohen’s κ, Bennett, Alpert & Goldstein’s S, Cosine similarity, and the Jaccard similarity coefficient. PageRank adapted to particularities of annotation is also added to this list. Two versions of B-index are considered: with the informative and non-informative priors. An algorithm for calculating B-index written in pseudocode is provided. Particular attention is devoted to the uses of those measures in content analysis, communication studies, computational linguistics, psychology, computer science and network science. Real-world data gathered using an online platform for content analysis allowed comparing the behavior of all eight measures included in the scope of analysis. Three short texts (164 data points/sentences in total) were coded by 66 annotators. The behaviors of B-index with the non-informative prior and Bennett, Alpert & Goldstein’s S have some common patterns. The article discusses a Bayesian measure of association, B-index, and compares it with the other existing measures of agreement, association, and similarity, both chance-corrected and non-corrected: Scott's [pi], Krippendorff's [alpha], Cohen's [kappa], Bennett, Alpert & Goldstein's S, Cosine similarity, and the Jaccard similarity coefficient. PageRank adapted to particularities of annotation is also added to this list. Two versions of B-index are considered: with the informative and non-informative priors. An algorithm for calculating B-index written in pseudocode is provided. Particular attention is devoted to the uses of those measures in content analysis, communication studies, computational linguistics, psychology, computer science and network science. Real-world data gathered using an online platform for content analysis allowed comparing the behavior of all eight measures included in the scope of analysis. Three short texts (164 data points/sentences in total) were coded by 66 annotators. The behaviors of B-index with the non-informative prior and Bennett, Alpert & Goldstein's S have some common patterns. |
| Audience | Academic |
| Author | Oleinik, Anton |
| Author_xml | – sequence: 1 givenname: Anton orcidid: 0000-0002-5229-1052 surname: Oleinik fullname: Oleinik, Anton email: aoleynik@mun.ca organization: Memorial University of Newfoundland and Memorial |
| BookMark | eNp9kE9PwyAYh4mZiZv6BTyReO4E3ra03ubiv2TJLnomlMLGskKFLrpvL7Mm3gwHAvk9v_fNM0MT551G6IaSOSWE30VKKRQZYZARWkKdsTM0pQWHjFd5MUFTQgCygnJ-gWYx7ghJWM6naL3AD_Koo5UOW9fqL-wNljF6ZeVgvbvHyne9DDZ6hz_tsMV-2OqAOy3jIeiIpWtxr4PxoZNO6St0buQ-6uvf-xK9Pz2-LV-y1fr5dblYZYqxnGWtkRI4lGVdcaiaqqSmSG8FecFUw1otc1o3UPBSkwaYYUVZEs4oACU5ZRIu0e3Y2wf_cdBxEDt_CC6NFKymZarmHFJqPqY2cq-FdcYPQap0Wt1ZlRQam_4XnNd1nXScADYCKvgYgzaiD7aT4SgoESfTYjQtkmnxY1qwBMEIxRR2Gx3-dvmH-gbfb4CI |
| Cites_doi | 10.1162/COLI_a_00296 10.1007/s11280-018-0593-y 10.1057/ejis.2010.61 10.1080/01621459.1971.10482356 10.1007/s11336-014-9409-x 10.1016/j.jal.2007.11.007 10.1016/j.knosys.2018.02.024 10.1007/s00607-018-0627-4 10.1007/BF02301413 10.1016/j.jbi.2004.10.001 10.1007/978-0-387-71265-9 10.1177/002224378902600201 10.2200/S00298ED1V01Y201009DMK003 10.1007/s11135-010-9399-4 10.1007/s11135-004-8107-7 10.1111/j.1540-5907.2009.00428.x 10.1002/9780470061572.eqr089 10.1177/1094428112457829 10.1007/s11634-009-0057-4 10.1007/s13222-014-0174-x 10.1016/j.poetic.2013.08.004 10.1201/9781420083439 10.1017/S0003055416000058 10.1017/CBO9780511790423 10.1162/089120105774321109 10.1007/s11135-021-01125-7 10.1086/266577 10.1111/j.0006-341X.2000.00577.x 10.1080/19312458.2020.1861592 10.1007/BF02295184 10.1002/asi.22689 10.1177/2053951716652159 10.1111/j.1740-1461.2007.00113.x 10.1007/s00357-017-9244-8 10.1086/256963 10.1016/j.jal.2013.03.003 10.1177/1525822X07303502 10.1007/s11135-011-9545-7 10.1162/COLI_a_00227 10.1007/s00180-020-01034-7 10.1007/s42979-020-00129-8 10.1186/s12874-022-01707-5 10.1007/s11135-009-9249-4 10.1007/BF01908075 10.1177/2053951715602908 10.1162/coli.07-034-R2 10.1007/s00357-018-9289-3 10.1080/19312450709336664 10.1080/1369118X.2016.1182197 10.1007/s11336-008-9059-y 10.1007/s11135-005-1093-6 10.1016/j.physrep.2009.11.002 10.1093/pan/mps028 10.1086/266520 10.1137/140976649 10.1007/s11042-011-0844-8 10.1007/s00357-018-9257-y 10.1007/s11135-013-9919-0 10.2307/2580486 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer |
| DBID | AAYXX CITATION 0-V 3V. 7U4 7WY 7WZ 7XB 87Z 88G 88J 8BJ 8FI 8FJ 8FK 8FL 8G5 ABUWG AFKRA ALSLI AZQEC BENPR BEZIV BHHNA CCPQU DWI DWQXO FQK FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HEHIP JBE K60 K6~ L.- M0C M2M M2O M2R M2S MBDVC PHGZM PHGZT PKEHL POGQB PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U WZK |
| DOI | 10.1007/s11135-023-01639-2 |
| DatabaseName | CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Sociological Abstracts (pre-2017) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Psychology Database (Alumni) Social Science Database (Alumni Edition) International Bibliography of the Social Sciences (IBSS) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection (F) ProQuest Central Essentials ProQuest Central Business Premium Collection Sociological Abstracts ProQuest One Community College Sociological Abstracts ProQuest Central Korea International Bibliography of the Social Sciences Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Sociology Collection (OCUL) International Bibliography of the Social Sciences ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global Psychology Database Research Library Social Science Database Sociology Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic Sociological Abstracts (Ovid) |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Research Library Prep ProQuest Central Student ProQuest Central Essentials Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete Health Research Premium Collection ProQuest Central (New) ProQuest Sociology Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Hospital Collection Sociology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business ProQuest Sociology & Social Sciences Collection ProQuest One Academic Middle East (New) ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea ProQuest Research Library ProQuest Sociology Collection ABI/INFORM Complete (Alumni Edition) ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Psychology Journals (Alumni) Sociological Abstracts (pre-2017) ProQuest Psychology Journals Sociological Abstracts ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Philosophy Social Sciences (General) Computer Science Psychology |
| EISSN | 1573-7845 |
| EndPage | 305 |
| ExternalDocumentID | A779990473 10_1007_s11135_023_01639_2 |
| GroupedDBID | --Z -51 -5C -5G -BR -EM -Y2 -~C .86 .VR 0-V 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 7WY 8FI 8FJ 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANTL AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHQT ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACYUM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZJE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASOEW ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HEHIP HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ INS IPY ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW LAK LLZTM M0C M2M M2O M2R M2S M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OVD P19 P9Q PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 Q2X QOK QOS R-Y R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDA SDH SDM SHS SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 YLTOR Z45 Z5O Z7R Z81 Z83 Z86 Z8M Z8U Z8W Z92 ZMTXR ZWUKE ZXP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT POGQB PRQQA 7U4 7XB 8BJ 8FK BHHNA DWI FQK JBE L.- MBDVC PKEHL PQEST PQUKI PRINS Q9U WZK |
| ID | FETCH-LOGICAL-c2242-dfaa3736698738b861f5373c3452cb2dea419b3576e0b32f256607213310412a3 |
| IEDL.DBID | RSV |
| ISSN | 0033-5177 |
| IngestDate | Sun Nov 16 05:40:51 EST 2025 Sat Nov 29 10:35:22 EST 2025 Sat Nov 29 03:38:27 EST 2025 Fri Feb 21 02:41:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Measures of inter-coder agreement Classification Measures of similarity PageRank Annotation Consensus Content analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2242-dfaa3736698738b861f5373c3452cb2dea419b3576e0b32f256607213310412a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5229-1052 |
| PQID | 2916736773 |
| PQPubID | 54128 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_2916736773 gale_infotracacademiconefile_A779990473 crossref_primary_10_1007_s11135_023_01639_2 springer_journals_10_1007_s11135_023_01639_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20240200 2024-02-00 20240201 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | International Journal of Methodology |
| PublicationTitle | Quality & quantity |
| PublicationTitleAbbrev | Qual Quant |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | ScottWAReliability of content analysis: the case of nominal scale codingPublic Opin. q.195519332132510.1086/266577 DiMaggioPAdapting computational text analysis to social science (and vice versa)Big Data Soc.2015221510.1177/2053951715602908 DijkstraLVan EijnattenFMAgreement and consensus in a Q-mode research design: an empirical comparison of measures, and an applicationQual. Quant.200943575777110.1007/s11135-009-9249-4 HutterMLloydJWNgKSUtherWTBProbabilities on sentences in an expressive logicJ. Appl. Log.201311438642010.1016/j.jal.2013.03.003 SimonHARationality as process and as product of thoughtAm. Econ. Rev.1978682216 BenoitKConwayDLauderdaleBELaverMMikhaylovSCrowd-sourced text analysis: reproducible and agile production of political dataAm. Polit. Sci. Rev.2016110227829510.1017/S0003055416000058 HenryTRBanksDOwens-OasDChaiCModeling community structure and topics in dynamic text networksJ. Classif.201936232234910.1007/s00357-018-9289-3 MathetYThe agreement measure γcat a complement to γ focused on categorization of a continuumComput. Linguist.201743366168110.1162/COLI_a_00296 WangXTaoTSunJ-TShakeryAZhaiCDirichletRank: solving the zero-one gap problem of pagerankACM Transact. Inform. Syst.2008262art10 Oleinik, A.: Detection of opinion communities with the help of chance-corrected measures of agreement. SN Comput. Sci. 1, 136 (2020) LeivaFMRíosFJMMartínezTLAssessment of interjudge reliability in the open-ended questions coding processQual. Quant.200640451953710.1007/s11135-005-1093-6 LotmanYUniverse of the Mind: A Semiotic Theory of Culture1990BloomingtonIndiana University Press ArtsteinRPoesioMInter-coder agreement for computational linguisticComput. Linguist.200834455559610.1162/coli.07-034-R2 BarabásiA-LNetwork Science2016CambridgeCambridge University Press LabatutVGeneralized measures for the evaluation of community detection methodsInt. J. Soc. Netw. Anal. Min. SNAM2015214463 Tang, L., Liu, H.: Community Detection and Mining in Social Media. Morgan & Claypool, San Rafael, CA (2010) MurphyKPMachine Learning: A Probabilistic Perspective2012CambridgeMIT Press CooilBRustRTReliability and expected loss: a unifying principlePsychometrika199459220321610.1007/BF02295184 BennettEAlpertRGoldsteinACCommunications through limited-response questioningPublic Opin. q.195418330330810.1086/266520 SavoyJText representation strategies: an example with the state of the union addressesJ. Am. Soc. Inf. Sci.201667818581870 GoodmanLAKruskalWHMeasures of association for cross classificationsJ. Am. Stat. Assoc.195449268732764 BolstadWMCurranJMIntroduction to Bayesian statistics20173Hoboken, NJWiley GreenNA Bayesian network coding scheme for annotating biomedical information presented to genetic counseling clientsJ. Biomed. Inform.200538213014410.1016/j.jbi.2004.10.001 KruschkeJKAguinisHJooHThe time has come: Bayesian methods for data analysis in the organizational sciencesOrgan. Res. Methods201215472275210.1177/1094428112457829 PerraultWDLeighLEReliability of nominal data based on qualitative judgmentsJ. Mark. Res.198926213514810.1177/002224378902600201 BroemelingLDBayesian Methods for Measures of Agreement2009Boca Raton, FLChapman & Hall/CRC10.1201/9781420083439 YounessGSaportaGComparing partitions of two sets of units based on the same variablesAdv. Data Anal. Classif.201041536410.1007/s11634-009-0057-4 EvangelopoulosNZhangXPrybutokVRLatent semantic analysis: five methodological recommendationsEur. J. Inf. Syst.2012211708610.1057/ejis.2010.61 EvansMMcIntoshWLinJCatesCRecounting the courts? Applying automated content analysis to enhance empirical legal researchJ. Empir. Leg. Stud.2007441007103910.1111/j.1740-1461.2007.00113.x HubertLArabiePComparing partitionsJ. Classif.19852119321810.1007/BF01908075 VinhNXEppsJBaileyJInformation theoretic measures for clusterings comparison: variants, properties, normalization and correction for chanceJ. Mach. Learn. Res.2010119528372854 BermanJJPrinciples of Big Data: Preparing, Sharing, and Analyzing Complex Information2013Waltham, MAMorgan Kaufmann Jurafsky, D., Martin, J.H.: Speech and Language Processing, draft of 3rd edition (forthcoming). https://web.stanford.edu/~jurafsky/slp3 SprengerJStatistics between inductive logic and empirical scienceJ. Appl. Log.20097223925010.1016/j.jal.2007.11.007 BarabásiA-LLinked2002Cambridge, MAPerseus HanLZhangGYongBHeQFengFZhouQStatistical study of characteristics of online reading behavior networks in university digital libraryWorld Wide Web20192231175118710.1007/s11280-018-0593-y WangGHeXIshugaCIHAR-SI: A novel hybrid article recommendation approach integrating with social information in scientific social networkKnowl.-Based Syst.2018148859910.1016/j.knosys.2018.02.024 Ketler, R.: Analysis of type I and II error rates of Bayesian and frequentist parametric and nonparametric two-sample hypothesis tests under preliminary assessment of normality. Comput. Stat. (2020) KrippendorffKMeasuring the reliability of qualitative text analysis dataQual. Quant.200438678780010.1007/s11135-004-8107-7 WarnerRMApplied Statistics: From Bivariate Through Multivariate Techniques20132Thousand Oaks, CASage Ben-Gal, I.: Bayesian networks. In: Ruggeri, F., Kenett, R.S., Faltin, F.W. (eds.) Encyclopedia of statistics in quality and reliability. Wiley (2008) Oleinik, A.: Relevance in Web search: between content, authority and popularity. Qual. Quant. 56, 173–194 (2022) MertonRKThe thomas theorem and the Matthew effectSoc. Forces199574237942410.2307/2580486 BernardHRSocial Research Methods20132Thousand Oaks, CASage LeTClarkeBOn the interpretation of ensemble classifiers in terms of Bayes classifiersJ. Classif.201835219822910.1007/s00357-018-9257-y Van der LindenWLewisCBayesian checks on cheating on testsPsychometrika201580368970610.1007/s11336-014-9409-x WarrensMJOn similarity coefficients for 2×2 tables and correction for chancePsychometrika200873348750210.1007/s11336-008-9059-y SiegelSCastellanNJNonparametric Statistics for the Behavioural Sciences19882New YorkMcGraw Hill ScharkowMThematic content analysis using supervised machine learning: an empirical evaluation using German online newsQual. Quant.201347276177310.1007/s11135-011-9545-7 GrimmerJStewartBMText as data: the promise and pitfalls of automatic content analysis methods for political textsPolit. Anal.201321326729710.1093/pan/mps028 RandWMObjective criteria for the evaluation of clustering methodsJ. Am. Stat. Assoc.19716633684685010.1080/01621459.1971.10482356 MathetYWidlöcherAMétivierJ-PThe unified and holistic method gamma (γ) for inter-annotator agreement measure and alignmentComput. Linguist.201541343747910.1162/COLI_a_00227 ZhaoXFengGCAoSHLiuPLInterrater reliability estimators tested against true interrater reliabilitiesBMC Med. Res. Methodol.202222123210.1186/s12874-022-01707-5 Oleinik, A., Popova, I., Kirdina, S., Shatalova, T.: On the choice of measures of reliability and validity in the content-analysis of texts. Qual. Quant. 48(5), 2703–2718 (2014) JaynesETProbability Theory: The logic of Science2003CambridgeCambridge University Press10.1017/CBO9780511790423 BrinSMotwaniRPageLWinogradTWhat can you do with a web in your pocket?Bull. IEEE Comput. Soc. Tech. Comm. Data Eng.1998213747 KrippendorffKContent Analysis: An Introduction to Its Methodology20042Thousand Oaks, CASage KruschkeJKDoing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan20152LondonElsevier DiMaggioPNagMBleiD«Exploiting affinities between topic modeling and the sociological perspective on culture: application to newspaper coverage of U.S. government arts fundingPoetics201341657060610.1016/j.poetic.2013.08.004 YangQA novel recommendation system based on semantics and context awarenessComputing2018100880982310.1007/s00607-018-0627-4 CooilBRustRTGeneral estimators for the reliability of qualitative dataPsychometrika199560219922010.1007/BF02301413 DouradoÍCGalanteRGonçalvesMATorresRSBag of textual graphs (BoTG): a general graph-based text representation modelJ. Am. Soc. Inf. Sci.2019708817829 JaccardPThe distribution of the flora in the Alpine zoneNew Phytol.191223205219 HopkinsDJKingGA method of automated nonparametric content analysis for social scienceAm. J. Polit. Sci.201054122924710.1111/j.1540-5907.2009.00428.x ThelwallMKoushaKGoodreads: a social network site for book readersJ. Am. Soc. Inf. Sci.2017684972983 ClarkeBSunDReference priors under the chi-squared distanceSankhyā Indian J Stat Ser A1997592215231 SuLY-FCacciatoreMALiangXBrossardDScheufeleDAXenosMAAnalyzing public sentiments online: combining human- and computer-based content analysisInf. Commun. Soc.201720340642710.1080/1369118X.2016.1182197 VellinoAAlbertsIAssisting the appraisal of e-mail records with automatic classificationRec. Manag. J.2016263293313 HuangLMilneDFrankEWittenIHLearning a concept-based document similarity measureJ. Am. Soc. Inform. Sci. Technol.20126381593160810.1002/asi.22689 HayesAFKrippendorffKAnswering the call for a standard reliability measure for coding dataCommun. Methods Meas.200711778910.1080/19312450709336664 CraggsRMcGee WoodMEvaluating discourse and dialogue coding schemesComput. Linguist.200531328929610.1162/089120105774321109 LemkeMNieklerASchaalGSWiedemannGContent analysis between quality and quantityDatenbank-Spektrum201515171410.1007/s13222-014-0174-x GleichDFPageRank beyond the webSIAM Rev.201557332136310.1137/140976649 Amati, G.: Frequentist and Bayesian approach to information retrieval. In: Lalmas, M., MacFarlane, A., Rüger, S., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.), Advances in Information Retrieval: 28th European Conference on IR Research (ECIR 2006), London, UK, April 10–12, 2006. Proceedings, pp. 13–24. Springer (2006) BasuSBanerjeeMSenABayesian inference for kappa from single and multiple studiesBiometrics200056257758210.1111/j.0006-341X.2000.00577.x ZhaiCMassungSText Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining2016New YorkACM Books and Morgan & Claypool Publishers JimmyJLLoeKFZhangHJRobust face detection in airportsEURASIP J. Appl. Signal Pro WA Scott (1639_CR64) 1955; 19 L Dijkstra (1639_CR20) 2009; 43 X Zhao (1639_CR84) 2022; 22 JL Jimmy (1639_CR40) 2004; 4 1639_CR83 DJ Hopkins (1639_CR34) 2010; 54 L Huang (1639_CR35) 2012; 63 RM Warner (1639_CR77) 2013 FM Leiva (1639_CR50) 2006; 40 WM Rand (1639_CR61) 1971; 66 E Mannens (1639_CR55) 2013; 63 K Krippendorff (1639_CR43) 2004 X Wang (1639_CR75) 2008; 26 A-L Barabási (1639_CR5) 2016 R Ligtvoet (1639_CR52) 2017; 34 A-L Barabási (1639_CR4) 2002 S Siegel (1639_CR65) 1988 K Krippendorff (1639_CR45) 2021; 15 MJ Warrens (1639_CR78) 2008; 73 B Cooil (1639_CR18) 1995; 60 SC Weller (1639_CR79) 2007; 19 RK Merton (1639_CR58) 1995; 74 DF Gleich (1639_CR27) 2015; 57 1639_CR93 A Vellino (1639_CR73) 2016; 26 S Basu (1639_CR6) 2000; 56 M Evans (1639_CR25) 2007; 4 1639_CR92 M Thelwall (1639_CR70) 2017; 68 1639_CR1 ET Jaynes (1639_CR39) 2003 1639_CR91 1639_CR90 G Youness (1639_CR81) 2010; 4 LY-F Su (1639_CR68) 2017; 20 L Han (1639_CR31) 2019; 22 1639_CR7 1639_CR42 1639_CR41 NX Vinh (1639_CR74) 2010; 11 K Krippendorff (1639_CR44) 2004; 38 M Scharkow (1639_CR63) 2013; 47 I Van Rooij (1639_CR72) 2011; 5 L Hubert (1639_CR36) 1985; 2 KP Murphy (1639_CR59) 2012 P Jaccard (1639_CR38) 1912; 2 V Labatut (1639_CR48) 2015; 2 P DiMaggio (1639_CR22) 2013; 41 AF Hayes (1639_CR32) 2007; 1 W Van der Linden (1639_CR71) 2015; 80 R Artstein (1639_CR3) 2008; 34 TR Henry (1639_CR33) 2019; 36 M Lemke (1639_CR51) 2015; 15 1639_CR12 WD Perrault (1639_CR60) 1989; 26 S Brin (1639_CR14) 1998; 21 S Fortunato (1639_CR26) 2010; 486 E Bennett (1639_CR8) 1954; 18 N Evangelopoulos (1639_CR24) 2012; 21 J Grimmer (1639_CR30) 2013; 21 Y Mathet (1639_CR57) 2015; 41 JK Kruschke (1639_CR47) 2012; 15 HR Bernard (1639_CR11) 2013 WM Bolstad (1639_CR13) 2017 P DiMaggio (1639_CR21) 2015; 2 M Hutter (1639_CR37) 2013; 11 J Savoy (1639_CR62) 2016; 67 HA Simon (1639_CR66) 1978; 68 C Zhai (1639_CR82) 2016 KJ Arrow (1639_CR2) 1950; 58 Y Mathet (1639_CR56) 2017; 43 T Le (1639_CR49) 2018; 35 SM Lynch (1639_CR54) 2007 G Wang (1639_CR76) 2018; 148 B Clarke (1639_CR16) 1997; 59 Y Lotman (1639_CR53) 1990 1639_CR69 LD Broemeling (1639_CR15) 2009 ÍC Dourado (1639_CR23) 2019; 70 LA Goodman (1639_CR28) 1954; 49 J Sprenger (1639_CR67) 2009; 7 N Green (1639_CR29) 2005; 38 R Craggs (1639_CR19) 2005; 31 JK Kruschke (1639_CR46) 2015 B Cooil (1639_CR17) 1994; 59 Q Yang (1639_CR80) 2018; 100 JJ Berman (1639_CR10) 2013 K Benoit (1639_CR9) 2016; 110 |
| References_xml | – reference: HuangLMilneDFrankEWittenIHLearning a concept-based document similarity measureJ. Am. Soc. Inform. Sci. Technol.20126381593160810.1002/asi.22689 – reference: WarnerRMApplied Statistics: From Bivariate Through Multivariate Techniques20132Thousand Oaks, CASage – reference: GoodmanLAKruskalWHMeasures of association for cross classificationsJ. Am. Stat. Assoc.195449268732764 – reference: YounessGSaportaGComparing partitions of two sets of units based on the same variablesAdv. Data Anal. Classif.201041536410.1007/s11634-009-0057-4 – reference: ArrowKJA difficulty in the concept of social welfareJ Polit. Econ.195058432834610.1086/256963 – reference: BasuSBanerjeeMSenABayesian inference for kappa from single and multiple studiesBiometrics200056257758210.1111/j.0006-341X.2000.00577.x – reference: HanLZhangGYongBHeQFengFZhouQStatistical study of characteristics of online reading behavior networks in university digital libraryWorld Wide Web20192231175118710.1007/s11280-018-0593-y – reference: Oleinik, A.: Mixing quantitative and qualitative content analysis: triangulation at work. Qual. Quant. 45(4), 859–873 (2011) – reference: SprengerJStatistics between inductive logic and empirical scienceJ. Appl. Log.20097223925010.1016/j.jal.2007.11.007 – reference: Zhang, M., Wang, W., Li, X.: A Paper recommender for scientific literatures based on semantic concept similarity. In: Buchanan, G., Masoodian, M., Cunningham S.J. (eds.), Digital Libraries: Universal and Ubiquitous Access to Information. 11th International Conference on Asian Digital Libraries, ICADL 2008, Bali, Indonesia, December 2–5, 2008. Proceedings, 359–cx362 (2008) – reference: HenryTRBanksDOwens-OasDChaiCModeling community structure and topics in dynamic text networksJ. Classif.201936232234910.1007/s00357-018-9289-3 – reference: KruschkeJKDoing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan20152LondonElsevier – reference: WellerSCCultural consensus theory: applications and frequently asked questionsField Methods200719433936810.1177/1525822X07303502 – reference: GleichDFPageRank beyond the webSIAM Rev.201557332136310.1137/140976649 – reference: LeivaFMRíosFJMMartínezTLAssessment of interjudge reliability in the open-ended questions coding processQual. Quant.200640451953710.1007/s11135-005-1093-6 – reference: BermanJJPrinciples of Big Data: Preparing, Sharing, and Analyzing Complex Information2013Waltham, MAMorgan Kaufmann – reference: ZhaiCMassungSText Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining2016New YorkACM Books and Morgan & Claypool Publishers – reference: LeTClarkeBOn the interpretation of ensemble classifiers in terms of Bayes classifiersJ. Classif.201835219822910.1007/s00357-018-9257-y – reference: ThelwallMKoushaKGoodreads: a social network site for book readersJ. Am. Soc. Inf. Sci.2017684972983 – reference: HayesAFKrippendorffKAnswering the call for a standard reliability measure for coding dataCommun. Methods Meas.200711778910.1080/19312450709336664 – reference: SavoyJText representation strategies: an example with the state of the union addressesJ. Am. Soc. Inf. Sci.201667818581870 – reference: BenoitKConwayDLauderdaleBELaverMMikhaylovSCrowd-sourced text analysis: reproducible and agile production of political dataAm. Polit. Sci. Rev.2016110227829510.1017/S0003055416000058 – reference: SimonHARationality as process and as product of thoughtAm. Econ. Rev.1978682216 – reference: Bilić, P.: Search algorithms, hidden labour and information control. Big Data Soc 3(1) (2016) – reference: Amati, G.: Frequentist and Bayesian approach to information retrieval. In: Lalmas, M., MacFarlane, A., Rüger, S., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.), Advances in Information Retrieval: 28th European Conference on IR Research (ECIR 2006), London, UK, April 10–12, 2006. Proceedings, pp. 13–24. Springer (2006) – reference: KrippendorffKA quadrilogy for (big) data reliabilitiesCommun. Methods Meas.202115316518910.1080/19312458.2020.1861592 – reference: BarabásiA-LNetwork Science2016CambridgeCambridge University Press – reference: DijkstraLVan EijnattenFMAgreement and consensus in a Q-mode research design: an empirical comparison of measures, and an applicationQual. Quant.200943575777110.1007/s11135-009-9249-4 – reference: CooilBRustRTReliability and expected loss: a unifying principlePsychometrika199459220321610.1007/BF02295184 – reference: Van RooijIKwisthoutJBlokpoelMSzymanikJWarehamTToniIIntentional communication: computationally easy or difficult?Front. Neurosci.20115art.52 – reference: KruschkeJKAguinisHJooHThe time has come: Bayesian methods for data analysis in the organizational sciencesOrgan. Res. Methods201215472275210.1177/1094428112457829 – reference: VellinoAAlbertsIAssisting the appraisal of e-mail records with automatic classificationRec. Manag. J.2016263293313 – reference: ClarkeBSunDReference priors under the chi-squared distanceSankhyā Indian J Stat Ser A1997592215231 – reference: MurphyKPMachine Learning: A Probabilistic Perspective2012CambridgeMIT Press – reference: Oleinik, A.: Relevance in Web search: between content, authority and popularity. Qual. Quant. 56, 173–194 (2022) – reference: FortunatoSCommunity detection in graphsPhys. Rep.20104863–57517410.1016/j.physrep.2009.11.002 – reference: HopkinsDJKingGA method of automated nonparametric content analysis for social scienceAm. J. Polit. Sci.201054122924710.1111/j.1540-5907.2009.00428.x – reference: VinhNXEppsJBaileyJInformation theoretic measures for clusterings comparison: variants, properties, normalization and correction for chanceJ. Mach. Learn. Res.2010119528372854 – reference: JaynesETProbability Theory: The logic of Science2003CambridgeCambridge University Press10.1017/CBO9780511790423 – reference: BernardHRSocial Research Methods20132Thousand Oaks, CASage – reference: PerraultWDLeighLEReliability of nominal data based on qualitative judgmentsJ. Mark. Res.198926213514810.1177/002224378902600201 – reference: YangQA novel recommendation system based on semantics and context awarenessComputing2018100880982310.1007/s00607-018-0627-4 – reference: JimmyJLLoeKFZhangHJRobust face detection in airportsEURASIP J. Appl. Signal Process.20044503509 – reference: MertonRKThe thomas theorem and the Matthew effectSoc. Forces199574237942410.2307/2580486 – reference: BolstadWMCurranJMIntroduction to Bayesian statistics20173Hoboken, NJWiley – reference: HubertLArabiePComparing partitionsJ. Classif.19852119321810.1007/BF01908075 – reference: GrimmerJStewartBMText as data: the promise and pitfalls of automatic content analysis methods for political textsPolit. Anal.201321326729710.1093/pan/mps028 – reference: Tang, L., Liu, H.: Community Detection and Mining in Social Media. Morgan & Claypool, San Rafael, CA (2010) – reference: Ben-Gal, I.: Bayesian networks. In: Ruggeri, F., Kenett, R.S., Faltin, F.W. (eds.) Encyclopedia of statistics in quality and reliability. Wiley (2008) – reference: WangGHeXIshugaCIHAR-SI: A novel hybrid article recommendation approach integrating with social information in scientific social networkKnowl.-Based Syst.2018148859910.1016/j.knosys.2018.02.024 – reference: EvansMMcIntoshWLinJCatesCRecounting the courts? Applying automated content analysis to enhance empirical legal researchJ. Empir. Leg. Stud.2007441007103910.1111/j.1740-1461.2007.00113.x – reference: LotmanYUniverse of the Mind: A Semiotic Theory of Culture1990BloomingtonIndiana University Press – reference: GreenNA Bayesian network coding scheme for annotating biomedical information presented to genetic counseling clientsJ. Biomed. Inform.200538213014410.1016/j.jbi.2004.10.001 – reference: MannensECoppensSDe PessemierTDacquinHVan DeursenDDe SutterRVan de WalleRAutomatic news recommendations via aggregated profilingMultimed. Tools Appl.201363240742510.1007/s11042-011-0844-8 – reference: RandWMObjective criteria for the evaluation of clustering methodsJ. Am. Stat. Assoc.19716633684685010.1080/01621459.1971.10482356 – reference: ScharkowMThematic content analysis using supervised machine learning: an empirical evaluation using German online newsQual. Quant.201347276177310.1007/s11135-011-9545-7 – reference: LigtvoetRExact one-sided Bayes factors for 2 by 2 contingency tablesJ. Classif.201734346547210.1007/s00357-017-9244-8 – reference: LabatutVGeneralized measures for the evaluation of community detection methodsInt. J. Soc. Netw. Anal. Min. SNAM2015214463 – reference: DouradoÍCGalanteRGonçalvesMATorresRSBag of textual graphs (BoTG): a general graph-based text representation modelJ. Am. Soc. Inf. Sci.2019708817829 – reference: Ketler, R.: Analysis of type I and II error rates of Bayesian and frequentist parametric and nonparametric two-sample hypothesis tests under preliminary assessment of normality. Comput. Stat. (2020) – reference: CooilBRustRTGeneral estimators for the reliability of qualitative dataPsychometrika199560219922010.1007/BF02301413 – reference: DiMaggioPAdapting computational text analysis to social science (and vice versa)Big Data Soc.2015221510.1177/2053951715602908 – reference: DiMaggioPNagMBleiD«Exploiting affinities between topic modeling and the sociological perspective on culture: application to newspaper coverage of U.S. government arts fundingPoetics201341657060610.1016/j.poetic.2013.08.004 – reference: SiegelSCastellanNJNonparametric Statistics for the Behavioural Sciences19882New YorkMcGraw Hill – reference: CraggsRMcGee WoodMEvaluating discourse and dialogue coding schemesComput. Linguist.200531328929610.1162/089120105774321109 – reference: HutterMLloydJWNgKSUtherWTBProbabilities on sentences in an expressive logicJ. Appl. Log.201311438642010.1016/j.jal.2013.03.003 – reference: WarrensMJOn similarity coefficients for 2×2 tables and correction for chancePsychometrika200873348750210.1007/s11336-008-9059-y – reference: Oleinik, A.: Detection of opinion communities with the help of chance-corrected measures of agreement. SN Comput. Sci. 1, 136 (2020) – reference: WangXTaoTSunJ-TShakeryAZhaiCDirichletRank: solving the zero-one gap problem of pagerankACM Transact. Inform. Syst.2008262art10 – reference: BarabásiA-LLinked2002Cambridge, MAPerseus – reference: Jurafsky, D., Martin, J.H.: Speech and Language Processing, draft of 3rd edition (forthcoming). https://web.stanford.edu/~jurafsky/slp3/ – reference: BrinSMotwaniRPageLWinogradTWhat can you do with a web in your pocket?Bull. IEEE Comput. Soc. Tech. Comm. Data Eng.1998213747 – reference: SuLY-FCacciatoreMALiangXBrossardDScheufeleDAXenosMAAnalyzing public sentiments online: combining human- and computer-based content analysisInf. Commun. Soc.201720340642710.1080/1369118X.2016.1182197 – reference: LemkeMNieklerASchaalGSWiedemannGContent analysis between quality and quantityDatenbank-Spektrum201515171410.1007/s13222-014-0174-x – reference: EvangelopoulosNZhangXPrybutokVRLatent semantic analysis: five methodological recommendationsEur. J. Inf. Syst.2012211708610.1057/ejis.2010.61 – reference: Oleinik, A., Popova, I., Kirdina, S., Shatalova, T.: On the choice of measures of reliability and validity in the content-analysis of texts. Qual. Quant. 48(5), 2703–2718 (2014) – reference: MathetYWidlöcherAMétivierJ-PThe unified and holistic method gamma (γ) for inter-annotator agreement measure and alignmentComput. Linguist.201541343747910.1162/COLI_a_00227 – reference: ZhaoXFengGCAoSHLiuPLInterrater reliability estimators tested against true interrater reliabilitiesBMC Med. Res. Methodol.202222123210.1186/s12874-022-01707-5 – reference: ArtsteinRPoesioMInter-coder agreement for computational linguisticComput. Linguist.200834455559610.1162/coli.07-034-R2 – reference: MathetYThe agreement measure γcat a complement to γ focused on categorization of a continuumComput. Linguist.201743366168110.1162/COLI_a_00296 – reference: LynchSMIntroduction to Applied Bayesian Statistics and Estimation for Social Scientists2007New YorkSpringer10.1007/978-0-387-71265-9 – reference: BennettEAlpertRGoldsteinACCommunications through limited-response questioningPublic Opin. q.195418330330810.1086/266520 – reference: KrippendorffKContent Analysis: An Introduction to Its Methodology20042Thousand Oaks, CASage – reference: BroemelingLDBayesian Methods for Measures of Agreement2009Boca Raton, FLChapman & Hall/CRC10.1201/9781420083439 – reference: KrippendorffKMeasuring the reliability of qualitative text analysis dataQual. Quant.200438678780010.1007/s11135-004-8107-7 – reference: ScottWAReliability of content analysis: the case of nominal scale codingPublic Opin. q.195519332132510.1086/266577 – reference: JaccardPThe distribution of the flora in the Alpine zoneNew Phytol.191223205219 – reference: Van der LindenWLewisCBayesian checks on cheating on testsPsychometrika201580368970610.1007/s11336-014-9409-x – volume: 43 start-page: 661 issue: 3 year: 2017 ident: 1639_CR56 publication-title: Comput. Linguist. doi: 10.1162/COLI_a_00296 – volume: 22 start-page: 1175 issue: 3 year: 2019 ident: 1639_CR31 publication-title: World Wide Web doi: 10.1007/s11280-018-0593-y – volume: 21 start-page: 70 issue: 1 year: 2012 ident: 1639_CR24 publication-title: Eur. J. Inf. Syst. doi: 10.1057/ejis.2010.61 – ident: 1639_CR41 – volume: 66 start-page: 846 issue: 336 year: 1971 ident: 1639_CR61 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1971.10482356 – volume: 80 start-page: 689 issue: 3 year: 2015 ident: 1639_CR71 publication-title: Psychometrika doi: 10.1007/s11336-014-9409-x – volume: 2 start-page: 44 issue: 1 year: 2015 ident: 1639_CR48 publication-title: Int. J. Soc. Netw. Anal. Min. SNAM – volume: 7 start-page: 239 issue: 2 year: 2009 ident: 1639_CR67 publication-title: J. Appl. Log. doi: 10.1016/j.jal.2007.11.007 – volume: 148 start-page: 85 year: 2018 ident: 1639_CR76 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.02.024 – volume: 100 start-page: 809 issue: 8 year: 2018 ident: 1639_CR80 publication-title: Computing doi: 10.1007/s00607-018-0627-4 – volume: 60 start-page: 199 issue: 2 year: 1995 ident: 1639_CR18 publication-title: Psychometrika doi: 10.1007/BF02301413 – ident: 1639_CR1 – volume: 38 start-page: 130 issue: 2 year: 2005 ident: 1639_CR29 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2004.10.001 – volume-title: Introduction to Applied Bayesian Statistics and Estimation for Social Scientists year: 2007 ident: 1639_CR54 doi: 10.1007/978-0-387-71265-9 – volume: 26 start-page: 135 issue: 2 year: 1989 ident: 1639_CR60 publication-title: J. Mark. Res. doi: 10.1177/002224378902600201 – ident: 1639_CR69 doi: 10.2200/S00298ED1V01Y201009DMK003 – ident: 1639_CR92 doi: 10.1007/s11135-010-9399-4 – volume: 38 start-page: 787 issue: 6 year: 2004 ident: 1639_CR44 publication-title: Qual. Quant. doi: 10.1007/s11135-004-8107-7 – volume-title: Universe of the Mind: A Semiotic Theory of Culture year: 1990 ident: 1639_CR53 – ident: 1639_CR83 – volume-title: Applied Statistics: From Bivariate Through Multivariate Techniques year: 2013 ident: 1639_CR77 – volume: 54 start-page: 229 issue: 1 year: 2010 ident: 1639_CR34 publication-title: Am. J. Polit. Sci. doi: 10.1111/j.1540-5907.2009.00428.x – ident: 1639_CR7 doi: 10.1002/9780470061572.eqr089 – volume-title: Linked year: 2002 ident: 1639_CR4 – volume: 68 start-page: 972 issue: 4 year: 2017 ident: 1639_CR70 publication-title: J. Am. Soc. Inf. Sci. – volume-title: Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information year: 2013 ident: 1639_CR10 – volume: 26 start-page: art10 issue: 2 year: 2008 ident: 1639_CR75 publication-title: ACM Transact. Inform. Syst. – volume: 15 start-page: 722 issue: 4 year: 2012 ident: 1639_CR47 publication-title: Organ. Res. Methods doi: 10.1177/1094428112457829 – volume: 4 start-page: 53 issue: 1 year: 2010 ident: 1639_CR81 publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-009-0057-4 – volume: 15 start-page: 7 issue: 1 year: 2015 ident: 1639_CR51 publication-title: Datenbank-Spektrum doi: 10.1007/s13222-014-0174-x – volume: 41 start-page: 570 issue: 6 year: 2013 ident: 1639_CR22 publication-title: Poetics doi: 10.1016/j.poetic.2013.08.004 – volume-title: Bayesian Methods for Measures of Agreement year: 2009 ident: 1639_CR15 doi: 10.1201/9781420083439 – volume: 110 start-page: 278 issue: 2 year: 2016 ident: 1639_CR9 publication-title: Am. Polit. Sci. Rev. doi: 10.1017/S0003055416000058 – volume-title: Probability Theory: The logic of Science year: 2003 ident: 1639_CR39 doi: 10.1017/CBO9780511790423 – volume: 31 start-page: 289 issue: 3 year: 2005 ident: 1639_CR19 publication-title: Comput. Linguist. doi: 10.1162/089120105774321109 – volume-title: Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan year: 2015 ident: 1639_CR46 – ident: 1639_CR90 doi: 10.1007/s11135-021-01125-7 – volume: 19 start-page: 321 issue: 3 year: 1955 ident: 1639_CR64 publication-title: Public Opin. q. doi: 10.1086/266577 – volume: 11 start-page: 2837 issue: 95 year: 2010 ident: 1639_CR74 publication-title: J. Mach. Learn. Res. – volume: 56 start-page: 577 issue: 2 year: 2000 ident: 1639_CR6 publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00577.x – volume: 4 start-page: 503 year: 2004 ident: 1639_CR40 publication-title: EURASIP J. Appl. Signal Process. – volume: 15 start-page: 165 issue: 3 year: 2021 ident: 1639_CR45 publication-title: Commun. Methods Meas. doi: 10.1080/19312458.2020.1861592 – volume-title: Nonparametric Statistics for the Behavioural Sciences year: 1988 ident: 1639_CR65 – volume-title: Social Research Methods year: 2013 ident: 1639_CR11 – volume: 59 start-page: 203 issue: 2 year: 1994 ident: 1639_CR17 publication-title: Psychometrika doi: 10.1007/BF02295184 – volume: 63 start-page: 1593 issue: 8 year: 2012 ident: 1639_CR35 publication-title: J. Am. Soc. Inform. Sci. Technol. doi: 10.1002/asi.22689 – volume: 2 start-page: 205 issue: 3 year: 1912 ident: 1639_CR38 publication-title: New Phytol. – ident: 1639_CR12 doi: 10.1177/2053951716652159 – volume-title: Content Analysis: An Introduction to Its Methodology year: 2004 ident: 1639_CR43 – volume: 4 start-page: 1007 issue: 4 year: 2007 ident: 1639_CR25 publication-title: J. Empir. Leg. Stud. doi: 10.1111/j.1740-1461.2007.00113.x – volume: 34 start-page: 465 issue: 3 year: 2017 ident: 1639_CR52 publication-title: J. Classif. doi: 10.1007/s00357-017-9244-8 – volume: 58 start-page: 328 issue: 4 year: 1950 ident: 1639_CR2 publication-title: J Polit. Econ. doi: 10.1086/256963 – volume-title: Network Science year: 2016 ident: 1639_CR5 – volume: 11 start-page: 386 issue: 4 year: 2013 ident: 1639_CR37 publication-title: J. Appl. Log. doi: 10.1016/j.jal.2013.03.003 – volume: 19 start-page: 339 issue: 4 year: 2007 ident: 1639_CR79 publication-title: Field Methods doi: 10.1177/1525822X07303502 – volume-title: Introduction to Bayesian statistics year: 2017 ident: 1639_CR13 – volume: 47 start-page: 761 issue: 2 year: 2013 ident: 1639_CR63 publication-title: Qual. Quant. doi: 10.1007/s11135-011-9545-7 – volume: 41 start-page: 437 issue: 3 year: 2015 ident: 1639_CR57 publication-title: Comput. Linguist. doi: 10.1162/COLI_a_00227 – volume-title: Machine Learning: A Probabilistic Perspective year: 2012 ident: 1639_CR59 – ident: 1639_CR42 doi: 10.1007/s00180-020-01034-7 – volume: 68 start-page: 2 issue: 2 year: 1978 ident: 1639_CR66 publication-title: Am. Econ. Rev. – volume: 49 start-page: 732 issue: 268 year: 1954 ident: 1639_CR28 publication-title: J. Am. Stat. Assoc. – ident: 1639_CR91 doi: 10.1007/s42979-020-00129-8 – volume: 67 start-page: 1858 issue: 8 year: 2016 ident: 1639_CR62 publication-title: J. Am. Soc. Inf. Sci. – volume: 22 start-page: 232 issue: 1 year: 2022 ident: 1639_CR84 publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-022-01707-5 – volume: 43 start-page: 757 issue: 5 year: 2009 ident: 1639_CR20 publication-title: Qual. Quant. doi: 10.1007/s11135-009-9249-4 – volume: 2 start-page: 193 issue: 1 year: 1985 ident: 1639_CR36 publication-title: J. Classif. doi: 10.1007/BF01908075 – volume: 70 start-page: 817 issue: 8 year: 2019 ident: 1639_CR23 publication-title: J. Am. Soc. Inf. Sci. – volume: 2 start-page: 1 issue: 2 year: 2015 ident: 1639_CR21 publication-title: Big Data Soc. doi: 10.1177/2053951715602908 – volume-title: Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining year: 2016 ident: 1639_CR82 – volume: 34 start-page: 555 issue: 4 year: 2008 ident: 1639_CR3 publication-title: Comput. Linguist. doi: 10.1162/coli.07-034-R2 – volume: 21 start-page: 37 year: 1998 ident: 1639_CR14 publication-title: Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. – volume: 36 start-page: 322 issue: 2 year: 2019 ident: 1639_CR33 publication-title: J. Classif. doi: 10.1007/s00357-018-9289-3 – volume: 1 start-page: 77 issue: 1 year: 2007 ident: 1639_CR32 publication-title: Commun. Methods Meas. doi: 10.1080/19312450709336664 – volume: 20 start-page: 406 issue: 3 year: 2017 ident: 1639_CR68 publication-title: Inf. Commun. Soc. doi: 10.1080/1369118X.2016.1182197 – volume: 73 start-page: 487 issue: 3 year: 2008 ident: 1639_CR78 publication-title: Psychometrika doi: 10.1007/s11336-008-9059-y – volume: 40 start-page: 519 issue: 4 year: 2006 ident: 1639_CR50 publication-title: Qual. Quant. doi: 10.1007/s11135-005-1093-6 – volume: 26 start-page: 293 issue: 3 year: 2016 ident: 1639_CR73 publication-title: Rec. Manag. J. – volume: 486 start-page: 75 issue: 3–5 year: 2010 ident: 1639_CR26 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2009.11.002 – volume: 21 start-page: 267 issue: 3 year: 2013 ident: 1639_CR30 publication-title: Polit. Anal. doi: 10.1093/pan/mps028 – volume: 5 start-page: art.52 year: 2011 ident: 1639_CR72 publication-title: Front. Neurosci. – volume: 18 start-page: 303 issue: 3 year: 1954 ident: 1639_CR8 publication-title: Public Opin. q. doi: 10.1086/266520 – volume: 57 start-page: 321 issue: 3 year: 2015 ident: 1639_CR27 publication-title: SIAM Rev. doi: 10.1137/140976649 – volume: 59 start-page: 215 issue: 2 year: 1997 ident: 1639_CR16 publication-title: Sankhyā Indian J Stat Ser A – volume: 63 start-page: 407 issue: 2 year: 2013 ident: 1639_CR55 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-011-0844-8 – volume: 35 start-page: 198 issue: 2 year: 2018 ident: 1639_CR49 publication-title: J. Classif. doi: 10.1007/s00357-018-9257-y – ident: 1639_CR93 doi: 10.1007/s11135-013-9919-0 – volume: 74 start-page: 379 issue: 2 year: 1995 ident: 1639_CR58 publication-title: Soc. Forces doi: 10.2307/2580486 |
| SSID | ssj0010047 |
| Score | 2.3310168 |
| Snippet | The article discusses a Bayesian measure of association, B-index, and compares it with the other existing measures of agreement, association, and similarity,... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 277 |
| SubjectTerms | Algorithms Analysis Associations Bayesian analysis Computational linguistics Computer mediated communication Computer science Content analysis Indexes Information management Language processing Methodology of the Social Sciences Natural language interfaces Psychology Social Sciences |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B4dBLvwAR2iIfKlEEFomdxEkv1VK16oXtHlqpN8uOnRvZ7aYg9d8zEzuNAMGlRytRnOiNZ17smTcARxQjKy8cr2pneW7SghuRWl7YonV5KbK2CM0m1Hxe3d7Wi7jh1se0ytEnDo7aLRvaI_8ikMcoWSolT1d3nLpG0elqbKHxHF4Qs6GUvm_p2eMpAkkhBllGyYtMqVg0E0rnskxSbTJlE2GU5uK3wPSne_7rnHQIPxfbT33xHdiKxJPNgqXswjPf7cH22NSBxTW-B5uLsbnBAw1G_4iDJJTyjrf27DhqVn_EG4m0Bs3nV3A1Y1_Ng6fyTDaoMbJly8xkByeseex-yGgjmA1lYOx72K_smekcW00VDa_h5uL8-uySx8YNvEFGILhrjZH4zWVdKVnZqkTEcdzIvBCNFc6bPKutxF8dn1opWqRdJem0SeSaeSaMfAMb3bLzb4FVCvmHlcY6b5HrpdZVDr2US6UvVFsWCXwaUdOroM-hJyVmwlgjxnrAWIsEPhCwmhbv_do0JtYg4Fwkg6VnSiFhRquRCRyMaOq4qns9QZnA59Eepsv_nvfd_5-2D5sCuVJIBj-Ajfv1D38IL5ufCNz6_WDTvwBUKPkk priority: 102 providerName: ProQuest |
| Title | A Bayesian index of association: comparison with other measures and performance |
| URI | https://link.springer.com/article/10.1007/s11135-023-01639-2 https://www.proquest.com/docview/2916736773 |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7845 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010047 issn: 0033-5177 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT8QgFH5xO3hxN47LhIOJGiVpoS2Mt9FovDhO3D0RKPTmjJlRE_-9D9rauB30QkIhXXjA-wp83wPY9j5SOmap7FhDEx2lVLPI0NSkhU0yFhdpGWxC9Hry_r7Tr0hh4_q0e70lGWbqhuwWx9yzif35H_SrFCfeaXR30gdsuLy6_dg78AKIpRgjp2ksREWV-fken9zR10n52-5ocDqn8_973QWYq0Am6Za9YhEm3GAJZvt11IK3JWiVtFxSDe0x2a30p_ewogegpX7zMlx0yZF-c55qSYKyIhkWRDc2PST5RyRD4hd1SaB0kcdy7XFM9MCSp4adsAI3pyfXx2e0CsJAc_TujNpCay54lnWk4NLIDK2H-ZwnKcsNs04nccdw_G1xkeGsQAiVec01jrgxiZnmqzA1GA7cGhApEEsYro11BnFbZKy0OOPYiLtUFFnagv3aFuqp1NpQjaqyb06FzalCcyrWgh1vLuUH4vNI57riE-CzvKSV6gqB4Bf7Am_BZm1RVY3QsWKIi_GzhC8-qC3YFP_-3PW_Vd-AWYY4qDzovQlTz6MXtwUz-SsactSGSXH30Ibpo5Ne_xJz59GxT9l5SC9CGq6zq3bo5e8gzOvA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgkQvFAqogRZ8AAGiVhM7ibOVEFoKVauWpYci9Wbs2Lmxu-y2Rfun-hs7E8eNAMGtB45WIidKnmeeP94bgBeUIysvHK8GzvLcpAU3IrW8sEXj8lJkTRGKTajRqDo9HRwvwWXUwtCxyhgT20DtJjWtkW8L5DFKlkrJ99MfnKpG0e5qLKERYHHoFz9xyjZ_d_AR_-9LIfY-nezu866qAK8xXQnuGmMk9lTibFtWtirxdbBdy7wQtRXOmzwbWIk83KdWigY5QUkmYhKJUJ4JI7HfW3A7z3F40FHBdPd614KsF4MNpORFplQn0glSvSyTpIWm00vICrj4JRH-ng7-2Jdt093e6v_2oe7DvY5Ys2EYCQ9gyY_XYDUWrWBdDFuDleNYvGFBjRj_sZEEqXK8dc5ed57cb_BGIuXB0_ohfBmyD2bhSX7KWrdJNmmY6XG-w-rr6o6MFrpZK3Nj38N67JyZsWPTXrHxCL7eyJd5DMvjydivA6sU8isrjXXeIpdNrascRmGXSl-opiwSeBtRoqfBf0T3TtOEKY2Y0i2mtEjgFQFJU3A6m5nadBoLfBbZfOmhUjghQJTKBDYienQXtea6h04CWxF__eW_P_fJv3t7Dnf3Tz4f6aOD0eFTWBHIC8PB9w1YPpud-024U1_gT5w9a8cTg283jcsrqnBQ3A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2VglAvFAqIlAI-gACB1cRO4mwlhJaWFVXRsgeQenPt2Lmxu90trfbX-LrOxHEjQHDrgaO1kbNKXmae7XlvAJ5Tjqy8cLwaOMtzkxbciNTywhaNy0uRNUVoNqHG4-r4eDBZg59RC0NllTEmtoHazWraI98VyGOULJWSu01XFjE5GL2fn3LqIEUnrbGdRoDIkV9d4PJt-e7wAN_1CyFGH7_uf-JdhwFeY-oS3DXGSJy1xJW3rGxV4l_DcS3zQtRWOG_ybGAlcnKfWika5AclGYpJJEV5JozEeW_ATZVj2qSywXT_6gSDbBiDJaTkRaZUJ9gJsr0sk6SLpkomZAhc_JIUf08Nf5zRtqlvtPk_P7S7cKcj3GwYvpB7sOanW7AZm1mwLrZtwcYkNnVY0SDmBRwkQcIcL12yV51X92u8kMh68Lq-D1-G7INZeZKlstaFks0aZnr877H6qusjow1w1srf2PewT7tkZurYvFdyPIBv1_JkHsL6dDb1j4BVCnmXlcY6b5HjptZVDqOzS6UvVFMWCbyJiNHz4EuiewdqwpdGfOkWX1ok8JJApSlonS1MbTrtBd6L7L_0UClcKCBiZQI7EUm6i2ZL3cMogbcRi_3Pf7_v9r9newa3EY768-H46DFsCKSLoR5-B9bPFj_8E7hVn-M7XDxtPy0GJ9cNy0ue5lmi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+index+of+association%3A+comparison+with+other+measures+and+performance&rft.jtitle=Quality+%26+quantity&rft.au=Oleinik%2C+Anton&rft.date=2024-02-01&rft.issn=0033-5177&rft.eissn=1573-7845&rft.volume=58&rft.issue=1&rft.spage=277&rft.epage=305&rft_id=info:doi/10.1007%2Fs11135-023-01639-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11135_023_01639_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-5177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-5177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-5177&client=summon |