Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation

With the current integration of distributed energy resources into the grid, the structure of distribution networks is becoming more complex. This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms. Consequently, tra...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy engineering Ročník 121; číslo 1; s. 187 - 201
Hlavní autori: Tao, Caixia, Yang, Shize, Li, Taiguo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Atlanta Tech Science Press 2024
Predmet:
ISSN:1546-0118, 0199-8595, 1546-0118
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the current integration of distributed energy resources into the grid, the structure of distribution networks is becoming more complex. This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms. Consequently, traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima. To tackle this issue, a more advanced particle swarm optimization algorithm is proposed. To address the varying emphases at different stages of the optimization process, a dynamic strategy is implemented to regulate the social and self-learning factors. The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions, thereby mitigating premature convergence in the population optimization process. The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities. The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions. A fuzzy membership function is employed for selecting the results. Simulation analysis is carried out on the restructuring of the distribution network, using the IEEE-33 node system and the IEEE-69 node system as examples, in conjunction with the integration of distributed energy resources. The findings demonstrate that, in comparison to other intelligent optimization algorithms, the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network. Furthermore, it enhances the amplitude of node voltages, thereby improving the stability of distribution network operations and power supply quality. Additionally, the algorithm exhibits a high level of generality and applicability.
AbstractList With the current integration of distributed energy resources into the grid, the structure of distribution networks is becoming more complex. This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms. Consequently, traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima. To tackle this issue, a more advanced particle swarm optimization algorithm is proposed. To address the varying emphases at different stages of the optimization process, a dynamic strategy is implemented to regulate the social and self-learning factors. The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions, thereby mitigating premature convergence in the population optimization process. The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities. The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions. A fuzzy membership function is employed for selecting the results. Simulation analysis is carried out on the restructuring of the distribution network, using the IEEE-33 node system and the IEEE-69 node system as examples, in conjunction with the integration of distributed energy resources. The findings demonstrate that, in comparison to other intelligent optimization algorithms, the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network. Furthermore, it enhances the amplitude of node voltages, thereby improving the stability of distribution network operations and power supply quality. Additionally, the algorithm exhibits a high level of generality and applicability.
Author Yang, Shize
Tao, Caixia
Li, Taiguo
Author_xml – sequence: 1
  givenname: Caixia
  surname: Tao
  fullname: Tao, Caixia
– sequence: 2
  givenname: Shize
  surname: Yang
  fullname: Yang, Shize
– sequence: 3
  givenname: Taiguo
  surname: Li
  fullname: Li, Taiguo
BookMark eNp1kE1LAzEQhoMo2FbPXoP3bfO5H8el1SoUK1bPIZtNanS7WZOU4r-37QqK4GkG5nmGmXcITlvXagCuMBpTkiI20XpMEKFjxAgj-AQMMGdpgjDOT3_152AYwhtCiOeoGABVdl1jlYzWtdAZOFuVj6slLJu18za-bqBt4cyG6G21PTIPOu6cf4dPWrnW2PXW9-5uT_-QuoZz3ep-dgHOjGyCvvyuI_Bye_M8vUsWy_n9tFwkihCGk9TwLNsfZojBFWdSKoaoqvMCF8RUMss5qhSXmPK0UDUnVc1lXfGKmkyluMjoCFz3ezvvPrY6ROF153wMguKiyHGK8AGa9JDyLgSvjei83Uj_KTASxyCF1uIQpOiD3Bv8j6FsPD4WvbTNv94Xecl5pQ
CitedBy_id crossref_primary_10_1080_1448837X_2025_2487342
crossref_primary_10_32604_ee_2024_054662
crossref_primary_10_1116_6_0003919
crossref_primary_10_3390_app15126423
crossref_primary_10_1016_j_epsr_2025_112101
crossref_primary_10_1088_1742_6596_2963_1_012009
Cites_doi 10.7498/aps.70.20202124
10.1016/j.amc.2007.12.053
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SP
7TB
7XB
88I
8AF
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L6V
L7M
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0X
DOI 10.32604/ee.2023.042421
DatabaseName CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
SIRS Editorial
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1546-0118
EndPage 201
ExternalDocumentID 10_32604_ee_2023_042421
GroupedDBID -~X
.7F
.DC
.QJ
29G
2DF
4.4
5VS
88I
8AF
8FE
8FG
8FW
8R4
8R5
AAENE
AAFWJ
AAIKC
AAKQS
AAMNW
AAYXX
ABCCY
ABFIM
ABHAV
ABJCF
ABJNI
ABPEM
ABTAI
ABUWG
ACGFS
ACGOD
ACIWK
ACTIO
ACTTO
ADCVX
ADDNK
AFBWG
AFFHD
AFION
AFKRA
AGMYJ
AGVKY
AGWUF
AI.
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALRRR
AQRUH
ARCSS
AVBZW
AZQEC
BENPR
BGLVJ
BLEHA
BPHCQ
BWMZZ
CAG
CCCUG
CCPQU
CE4
CITATION
COF
CS3
CYRSC
DAOYK
DGEBU
DKSSO
DWQXO
EBS
EJD
E~A
E~B
GNUQQ
GTTXZ
H13
HCIFZ
HF~
HZ~
H~9
H~P
J.P
KYCEM
L6V
LJTGL
M2P
M2Q
M4Z
M7S
MET
NA5
NEJ
O9-
OPCYK
P-O
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
Q2X
RDR
RTS
RWL
RXW
S-T
S0X
TAE
TDBHL
TFL
TFW
TN5
TWF
UT5
UU3
VH1
WH7
~S~
3V.
7SP
7TB
7XB
8FD
8FK
FR3
KR7
L7M
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2241-6f577000f2f1b54aac403cd89192fba7850bc5a13569cd52bd5adb5b3f7c61973
IEDL.DBID M2P
ISSN 1546-0118
0199-8595
IngestDate Wed Aug 27 18:20:32 EDT 2025
Sat Nov 29 08:16:50 EST 2025
Tue Nov 18 21:51:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2241-6f577000f2f1b54aac403cd89192fba7850bc5a13569cd52bd5adb5b3f7c61973
OpenAccessLink https://www.proquest.com/docview/3199816017?pq-origsite=%requestingapplication%
PQID 3199816017
PQPubID 7125269
PageCount 15
ParticipantIDs proquest_reports_3199816017
crossref_primary_10_32604_ee_2023_042421
crossref_citationtrail_10_32604_ee_2023_042421
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Atlanta
PublicationPlace_xml – name: Atlanta
PublicationTitle Energy engineering
PublicationYear 2024
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Zhang (ref13) 2021; 43
Liang (ref19) 2017; 29
Wei (ref9) 2023; 35
Pan (ref5) 2020; 48
Chen (ref11) 2021; 38
Si (ref1) 2020
Zhang (ref10) 2022; 50
Wu (ref6) 2023; 23
Zang (ref12) 2021; 70
Olamaei (ref15) 2008; 201
Chen (ref17) 2022; 41
Wang (ref2) 2015; 39
Zhou (ref3) 2021
Li (ref8) 2021; 28
Zheng (ref14) 2023; 51
Xu (ref18) 2017
Arya (ref16) 2011; 34
Li (ref7) 2019; 47
Wang (ref4) 2022; 39
References_xml – year: 2020
  ident: ref1
  publication-title: Research on distribution network reconstruction considering distributed power access (Master Thesis)
– volume: 39
  start-page: 56
  year: 2022
  ident: ref4
  article-title: Research on distribution network reconstruction with distributed power sources based on improved grey wolf algorithm
  publication-title: Modern Electric Power
– volume: 43
  start-page: 53
  year: 2021
  ident: ref13
  article-title: Application of improved particle swarm algorithm in power economic dispatch
  publication-title: Manufacturing Automation
– volume: 23
  start-page: 626
  year: 2023
  ident: ref6
  article-title: Optimization and reconstruction of distribution network with distributed power sources based on SA-CS algorithm
  publication-title: Science Technology and Engineering
– volume: 70
  start-page: 229
  year: 2021
  ident: ref12
  article-title: Distribution of nonuniform combustion field reconstruction based on improved simulated annealing algorithm
  publication-title: Acta Physica Sinica
  doi: 10.7498/aps.70.20202124
– volume: 48
  start-page: 102
  year: 2020
  ident: ref5
  article-title: Research on active distribution network reconstruction strategy with distributed power sources
  publication-title: Power System Protection and Control
– volume: 29
  start-page: 90
  year: 2017
  ident: ref19
  article-title: Application of improved harmony search algorithm in distribution network reconstruction
  publication-title: Proceedings of the CSEE
– volume: 47
  start-page: 30
  year: 2019
  ident: ref7
  article-title: Research on multi-objective active reconstruction of distribution network based on genetic algorithm with gated communities
  publication-title: Power System Protection and Control
– volume: 50
  start-page: 25
  year: 2022
  ident: ref10
  article-title: Reconstruction method for distribution network with ZIP load considering mixed integer linear programming
  publication-title: Power System Protection and Control
– year: 2021
  ident: ref3
  publication-title: Research on distribution network reconstruction with distributed generation of renewable energy (Master Thesis)
– volume: 51
  start-page: 38
  year: 2023
  ident: ref14
  article-title: Transformer fault diagnosis based on multi-strategy ISOA optimized SVM
  publication-title: Smart Grid
– volume: 39
  start-page: 1860
  year: 2015
  ident: ref2
  article-title: Multi-objective reactive power optimization considering multiple wind turbines connected to distribution networks
  publication-title: Power System Technology
– volume: 34
  start-page: 54
  year: 2011
  ident: ref16
  article-title: Reconfiguration of electric distribution network using modified particle swarm optimization
  publication-title: International Journal of Computer Applications
– volume: 35
  start-page: 30
  year: 2023
  ident: ref9
  article-title: Multi-objective distribution network reconstruction method based on discrete monkey algorithm
  publication-title: Proceedings of the CSEE
– volume: 38
  start-page: 245
  year: 2021
  ident: ref11
  article-title: Adaptive simulated annealing algorithm for solving traveling salesman problem
  publication-title: Control Theory and Applications
– year: 2017
  ident: ref18
  publication-title: Research on distribution network reconstruction with distributed power sources (Master Thesis)
– volume: 201
  start-page: 575
  year: 2008
  ident: ref15
  article-title: Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2007.12.053
– volume: 41
  start-page: 111
  year: 2022
  ident: ref17
  article-title: Optimization and reconstruction design of distribution network with distributed power sources based on GA-QPSO algorithm
  publication-title: Experimental Research and Exploration
– volume: 28
  start-page: 931
  year: 2021
  ident: ref8
  article-title: Research on optimal reconstruction method for distribution network with new energy sources connected
  publication-title: Control Engineering
SSID ssj0005809
Score 2.3040545
Snippet With the current integration of distributed energy resources into the grid, the structure of distribution networks is becoming more complex. This complexity...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 187
SubjectTerms Algorithms
Complexity
Convergence
Distributed generation
Electric power loss
Energy resources
Energy sources
Nodes
Optimization
Pareto optimum
Particle swarm optimization
Reconfiguration
Simulated annealing
Solution space
Title Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation
URI https://www.proquest.com/docview/3199816017
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1546-0118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005809
  issn: 1546-0118
  databaseCode: M7S
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-0118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005809
  issn: 1546-0118
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-0118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005809
  issn: 1546-0118
  databaseCode: PIMPY
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1546-0118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005809
  issn: 1546-0118
  databaseCode: M2P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1546-0118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005809
  issn: 1546-0118
  databaseCode: TFW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLa4Bhi4Ebc8MLAYGh-xM6FyCSQoEQUJpii241IJUqAtvx-_OKUwwMKSIT4U-T2953fk-xDaYzbhsaGOOGcLwhMWk5xLSoDWQdtI6YarWEuuZKulHh6StE649eu2ypFNrAy17RnIkR8y-Bks8uGDPHp9I8AaBdXVmkJjEk17z8Uh-Lqm6bjFQ4UWD7-UAI5XgPbxF5YGPywAI5OyAyj90einV_pplCtPc77w329cRPP1HRM3g1IsoYmiXEZz35AHV5BpjgvXuOfwabuZtm9w87nj9xs8veBuiU8BU7emw8Kt0C6OIVwtXbczDJqDIY87nllYHHCsYWwV3Z-f3Z1ckJpvgRhw5CR2Qkp_bI66SAue54Y3mLEq8bdAp3OpREMbkUdMxImxgmorcquFZk4aH4dJtoamyl5ZrCOsnIm1oVZaRzlzTlnLEmUEk8IoKcUGOhidd2ZqMHLgxHjOfFBSCSgrigwElAUBbaD9rwWvAYfj96lbI-lkdeElG0tm88_RLTTrd-Ihx7KNpgbvw2IHzZiPQbf_voumj89a6e1upWXwlG3_Lr28Th8_AWna2-U
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5BqEQ5tJSHSGmpD1TqxZD1Y-09oCpqiogIaSRAgtOyftFIsAESWvVP8Rtrx7tNOZQbh57ttbzrb2c8nvH3AWxTk7FUE4edMxazjKa4YILgIOugTCJVy01VS3qi35dnZ9lgDh7quzChrLK2iVNDbUY6nJHv0nAZLPHhg_h8c4uDalTIrtYSGhEWh_bXTx-yjfe6Hb--HwnZ_3ry5QBXqgJYB3eFU8eF8IbAEZcozopCsxbVRmZ-r-NUISRvKc2LhPI004YTZXhhFFfUCe2jDUH9uPOwwDzYZQMWBt2jwfmsqETGohI_WRyYwyKZkN8itdiuDaychO6EZCNJHvvBx25g6tv2X_9vX2UZXlW7aNSOsH8Dc7ZcgaW_uBVXQbdnqXk0cqhz3B4cf0Ptq0s__8n3azQsUSewBleCX6gfC-JRCMhLN7y8j_8GCifVs57WoMjUHdrW4PRZ3nIdGuWotBuApNOp0sQI4wijzkljaCY1p4JrKQRvwk69vrmu6NaD6sdV7sOuKSBya_MAiDwCogmf_jxwE5lG_t11s0ZDXqWW8hkS3j7Z-gEWD06Oenmv2z_chJd-VBZPlN5BY3J3b9_DC_1jMhzfbVXYRnDx3MD5DRtrNWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+DSAPSO+Algorithm+in+Distribution+Network+Reconfiguration+with+Distributed+Generation&rft.jtitle=Energy+engineering&rft.au=Tao%2C+Caixia&rft.au=Yang%2C+Shize&rft.au=Li%2C+Taiguo&rft.date=2024&rft.issn=1546-0118&rft.eissn=1546-0118&rft.volume=121&rft.issue=1&rft.spage=187&rft.epage=201&rft_id=info:doi/10.32604%2Fee.2023.042421&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_ee_2023_042421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-0118&client=summon