Trajectory Optimization for High-Speed Trains via a Mixed Integer Linear Programming Approach
This paper proposes a trajectory optimization approach for high-speed trains to reduce traction energy consumption and increase riding comfort. Besides, the proposed approach can also achieve energy-saving effects by optimizing the operation time between stations. First, an optimization model is dev...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on intelligent transportation systems Jg. 23; H. 10; S. 17666 - 17676 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1524-9050, 1558-0016 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper proposes a trajectory optimization approach for high-speed trains to reduce traction energy consumption and increase riding comfort. Besides, the proposed approach can also achieve energy-saving effects by optimizing the operation time between stations. First, an optimization model is developed by defining the objective function as a trade-off function of the traction energy consumption and riding comfort. In addition to constraints in the classic optimal train control model, three new factors-the discrete throttle settings, neutral zones, and sectionalized tunnel resistance-are considered. Then, the model is discretized and turned into a multi-step decision optimization problem. All the nonlinear constraints are approximated using piecewise affine (PWA) functions, and the trajectory optimization problem is turned into a mixed integer linear programming (MILP) problem which can be solved by existing solvers CPLEX and YALMIP. Finally, some case studies with real-world data sets are conducted to present the effectiveness of the proposed approach. The simulation results are compared with the practical running data of trains, which shows that the proposed model and the optimization approach save energy and improve the riding comfort. |
|---|---|
| AbstractList | This paper proposes a trajectory optimization approach for high-speed trains to reduce traction energy consumption and increase riding comfort. Besides, the proposed approach can also achieve energy-saving effects by optimizing the operation time between stations. First, an optimization model is developed by defining the objective function as a trade-off function of the traction energy consumption and riding comfort. In addition to constraints in the classic optimal train control model, three new factors-the discrete throttle settings, neutral zones, and sectionalized tunnel resistance-are considered. Then, the model is discretized and turned into a multi-step decision optimization problem. All the nonlinear constraints are approximated using piecewise affine (PWA) functions, and the trajectory optimization problem is turned into a mixed integer linear programming (MILP) problem which can be solved by existing solvers CPLEX and YALMIP. Finally, some case studies with real-world data sets are conducted to present the effectiveness of the proposed approach. The simulation results are compared with the practical running data of trains, which shows that the proposed model and the optimization approach save energy and improve the riding comfort. |
| Author | Zhang, Zixuan Su, Shuai Cao, Yuan Cheng, Fanglin |
| Author_xml | – sequence: 1 givenname: Yuan orcidid: 0000-0001-6631-4908 surname: Cao fullname: Cao, Yuan organization: National Engineering Research Center of Rail Transportation Operation Control System and the School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Zixuan orcidid: 0000-0003-3353-4351 surname: Zhang fullname: Zhang, Zixuan organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Fanglin surname: Cheng fullname: Cheng, Fanglin organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China – sequence: 4 givenname: Shuai orcidid: 0000-0001-8412-9853 surname: Su fullname: Su, Shuai email: shuaisu@bjtu.edu.cn organization: State Key Laboratory of Traffic Control and Safety, Beijing Jiaotong University, Beijing, China |
| BookMark | eNp9kMtKw0AUhgepYFt9AHEz4Dp1brnMshS1hUqFxqWEY3KSTmkuTlKxPr0TW1y4cHV-Dv8FvhEZVHWFhFxzNuGc6bt4Ea8nggkxkdz3AxGdkaETkccYDwa9FsrTzGcXZNS2W_dVPudD8hpb2GLa1fZAV01nSvMFnakrmteWzk2x8dYNYkadzVQt_TBAgT6ZT_daVB0WaOnSVAiWPtu6sFCWpirotGlsDenmkpznsGvx6nTH5OXhPp7NveXqcTGbLr1UCNl5gG95KDQAYM4AFCpfM45aYwRRgCwNowwlKCFEkEPgR6izXKYolM5CzHw5JrfHXjf7vse2S7b13lZuMhGhkK5MydC5-NGV2rptLeZJY00J9pBwlvQUk55i0lNMThRdJvyTSU33Q6hzRHb_Jm-OSYOIv0s6VFwFTH4DmjqCsA |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1016_j_jprocont_2023_103007 crossref_primary_10_1016_j_arcontrol_2025_100993 crossref_primary_10_1002_rnc_6227 crossref_primary_10_1049_itr2_70065 crossref_primary_10_1177_09596518241256145 crossref_primary_10_1177_09596518251324682 crossref_primary_10_1016_j_cam_2023_115297 crossref_primary_10_1016_j_trc_2024_104626 crossref_primary_10_1016_j_apenergy_2024_123111 crossref_primary_10_1109_TITS_2024_3404504 crossref_primary_10_1038_s41598_025_91891_3 crossref_primary_10_1177_01423312251328440 crossref_primary_10_1016_j_trc_2023_104348 crossref_primary_10_3390_math11204287 crossref_primary_10_1016_j_ijepes_2024_110123 crossref_primary_10_1002_rnc_7323 crossref_primary_10_1007_s00034_022_02285_z crossref_primary_10_1002_rnc_7705 crossref_primary_10_1016_j_cam_2023_115107 crossref_primary_10_1002_rnc_7307 crossref_primary_10_3390_en16124566 crossref_primary_10_1007_s00034_024_02730_1 crossref_primary_10_1007_s00034_024_02776_1 crossref_primary_10_1016_j_cam_2023_115104 crossref_primary_10_1016_j_automatica_2025_112529 crossref_primary_10_3390_eng5030086 crossref_primary_10_1109_TVT_2023_3345281 crossref_primary_10_1109_TIV_2024_3409693 crossref_primary_10_1080_00423114_2024_2424291 crossref_primary_10_1109_TSG_2024_3418331 crossref_primary_10_1002_acs_3669 crossref_primary_10_1016_j_cie_2023_109742 crossref_primary_10_1109_MITS_2023_3295376 crossref_primary_10_1016_j_cie_2023_109865 crossref_primary_10_1109_TVT_2024_3371676 crossref_primary_10_1177_03611981251337457 crossref_primary_10_1016_j_chaos_2024_115181 crossref_primary_10_3390_app14052037 crossref_primary_10_3390_su15118731 crossref_primary_10_1109_TITS_2025_3558735 crossref_primary_10_1049_itr2_12482 crossref_primary_10_1109_TITS_2024_3510412 crossref_primary_10_1016_j_ress_2023_109621 crossref_primary_10_1016_j_trc_2023_104202 crossref_primary_10_1109_TVT_2024_3483225 crossref_primary_10_1016_j_isatra_2024_11_048 crossref_primary_10_1002_rnc_7344 crossref_primary_10_1016_j_apm_2023_10_038 crossref_primary_10_1002_acs_3712 crossref_primary_10_1016_j_cam_2023_115724 crossref_primary_10_1080_0305215X_2023_2213640 crossref_primary_10_1007_s00034_025_03156_z crossref_primary_10_1002_acs_3550 crossref_primary_10_1109_TIV_2023_3301009 crossref_primary_10_1016_j_physa_2023_129428 crossref_primary_10_1016_j_conengprac_2025_106558 crossref_primary_10_1002_rnc_6917 crossref_primary_10_1007_s00034_024_02627_z crossref_primary_10_1016_j_cam_2023_115687 crossref_primary_10_1016_j_arcontrol_2024_100942 crossref_primary_10_3390_math11132945 crossref_primary_10_1016_j_aap_2024_107617 crossref_primary_10_1109_ACCESS_2023_3328769 crossref_primary_10_1007_s12555_024_0215_7 crossref_primary_10_1002_acs_3604 crossref_primary_10_1016_j_conengprac_2023_105630 crossref_primary_10_1016_j_chemolab_2023_104934 crossref_primary_10_1109_TVT_2023_3305603 crossref_primary_10_1007_s13177_025_00527_3 crossref_primary_10_1109_TIM_2025_3568076 crossref_primary_10_1007_s00034_023_02477_1 crossref_primary_10_1109_TTE_2025_3544112 crossref_primary_10_1016_j_sysconle_2024_105762 crossref_primary_10_1002_rnc_6951 crossref_primary_10_3389_fenrg_2022_963275 crossref_primary_10_1002_rnc_6796 crossref_primary_10_1016_j_ast_2025_110542 crossref_primary_10_3390_act13080301 crossref_primary_10_1109_TITS_2023_3275205 crossref_primary_10_1002_acs_3699 crossref_primary_10_3390_en16083555 crossref_primary_10_1002_rnc_6657 crossref_primary_10_3390_en16186712 crossref_primary_10_1109_TITS_2023_3289210 crossref_primary_10_1109_ACCESS_2023_3341225 crossref_primary_10_23919_cje_2023_00_258 crossref_primary_10_1515_pjbr_2022_0126 crossref_primary_10_1016_j_ast_2025_110950 crossref_primary_10_1080_23248378_2025_2529403 crossref_primary_10_1007_s11071_023_08259_3 crossref_primary_10_1002_acs_3865 crossref_primary_10_1002_acs_3904 crossref_primary_10_1002_oca_3158 crossref_primary_10_1002_oca_70029 crossref_primary_10_1109_TITS_2023_3264238 crossref_primary_10_1007_s00034_025_03068_y crossref_primary_10_1016_j_trb_2023_02_015 crossref_primary_10_1109_ACCESS_2024_3466971 crossref_primary_10_1080_00207721_2024_2375615 crossref_primary_10_1016_j_isatra_2024_01_035 crossref_primary_10_1007_s11071_023_08816_w crossref_primary_10_1177_09596518241280323 crossref_primary_10_1109_TASE_2022_3225288 crossref_primary_10_1016_j_amc_2024_129102 crossref_primary_10_1177_09596518241309132 crossref_primary_10_1049_itr2_70053 crossref_primary_10_1002_acs_3637 crossref_primary_10_1016_j_sysconle_2025_106094 crossref_primary_10_1002_acs_3753 crossref_primary_10_1016_j_aap_2023_107124 crossref_primary_10_1002_acs_3871 crossref_primary_10_1109_TIM_2023_3334370 crossref_primary_10_1016_j_trc_2024_104498 crossref_primary_10_1109_TITS_2023_3318981 crossref_primary_10_3390_fractalfract8020108 crossref_primary_10_1109_TITS_2025_3545480 crossref_primary_10_1109_TITS_2024_3386392 crossref_primary_10_1080_23249935_2025_2525274 crossref_primary_10_1002_rnc_7014 crossref_primary_10_1007_s11227_025_07513_2 |
| Cites_doi | 10.1016/0005-1098(92)90017-A 10.1007/978-1-4471-3084-0 10.1016/j.tra.2003.07.001 10.1016/j.trc.2013.01.007 10.1049/ip-epa:19970797 10.1016/j.trc.2020.102886 10.1109/TITS.2009.2018324 10.1109/9.262051 10.1243/0954409001531306 10.1109/TTE.2020.2983855 10.1109/TITS.2019.2939358 10.1016/j.trc.2021.103249 10.1146/annurev.fluid.33.1.371 10.1177/0954409716671546 10.1177/0954409713515648 10.1016/j.tre.2021.102323 10.1109/TITS.2013.2244885 10.1002/tee.20528 10.1016/j.jweia.2017.09.017 10.1002/tee.20479 10.1016/S0005-1098(98)00178-2 10.1093/imaman/10.2.89 10.1016/j.trb.2015.07.024 10.1016/j.trb.2015.07.023 10.1016/j.isatra.2021.04.036 10.1109/MITS.2019.2907681 10.1299/jsme1958.11.857 10.1023/A:1019235819716 10.1016/0005-1098(95)00184-0 10.1109/9.867018 10.1049/ip-epa:20000329 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2022.3155628 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 17676 |
| ExternalDocumentID | 10_1109_TITS_2022_3155628 9741460 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Fund for Excellent Young Scholars grantid: 52022010 funderid: 10.13039/501100014219 – fundername: China Academy of Railway Sciences funderid: 10.13039/501100015282 – fundername: Beijing Key Laboratory of Urban Rail Transit Automation and Control, National Natural Science Foundation of China grantid: 52172322; 62073024; U1934219 funderid: 10.13039/501100001809 – fundername: Beijing Natural Science Foundation grantid: L191015; L201004 funderid: 10.13039/501100004826 – fundername: Center of National Railway Intelligent Transportation System Engineering and Technology grantid: 2019YJ189 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c223t-aebf729aaaef0aa4e45901e99e8a86e0c78de3a42226fa658e9df3ce249d7ed53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 160 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777116000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Sun Nov 30 04:51:30 EST 2025 Sat Nov 29 06:35:00 EST 2025 Tue Nov 18 22:35:39 EST 2025 Wed Aug 27 02:18:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c223t-aebf729aaaef0aa4e45901e99e8a86e0c78de3a42226fa658e9df3ce249d7ed53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6631-4908 0000-0003-3353-4351 0000-0001-8412-9853 |
| PQID | 2723901437 |
| PQPubID | 75735 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2723901437 ieee_primary_9741460 crossref_citationtrail_10_1109_TITS_2022_3155628 crossref_primary_10_1109_TITS_2022_3155628 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref12 ref34 ref15 ref14 ref31 Atkinson (ref16) 1978 ref30 ref11 ref32 ref1 ref17 ref19 Howlett (ref2) 2000; 98 ref18 Howlett (ref10) 1995 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref7 Ko (ref13) 2004 ref9 ref4 ref3 ref6 ref5 Williams (ref33) 2013 Du (ref28) 2019 |
| References_xml | – ident: ref8 doi: 10.1016/0005-1098(92)90017-A – volume-title: Energy-Efficient Train Control year: 1995 ident: ref10 doi: 10.1007/978-1-4471-3084-0 – ident: ref4 doi: 10.1016/j.tra.2003.07.001 – ident: ref14 doi: 10.1016/j.trc.2013.01.007 – ident: ref22 doi: 10.1049/ip-epa:19970797 – ident: ref5 doi: 10.1016/j.trc.2020.102886 – ident: ref24 doi: 10.1109/TITS.2009.2018324 – ident: ref9 doi: 10.1109/9.262051 – ident: ref31 doi: 10.1243/0954409001531306 – ident: ref35 doi: 10.1109/TTE.2020.2983855 – ident: ref23 doi: 10.1109/TITS.2019.2939358 – start-page: 103 volume-title: Computing Railways year: 2004 ident: ref13 article-title: Application of dynamic programming to optimization of running profile of a train – ident: ref18 doi: 10.1016/j.trc.2021.103249 – ident: ref26 doi: 10.1146/annurev.fluid.33.1.371 – ident: ref19 doi: 10.1177/0954409716671546 – ident: ref21 doi: 10.1177/0954409713515648 – ident: ref25 doi: 10.1016/j.tre.2021.102323 – volume-title: Research on the method of determining the key aerodynamic coefficient of high speed train passing through tunnel year: 2019 ident: ref28 – ident: ref17 doi: 10.1109/TITS.2013.2244885 – ident: ref30 doi: 10.1002/tee.20528 – ident: ref34 doi: 10.1016/j.jweia.2017.09.017 – ident: ref29 doi: 10.1002/tee.20479 – ident: ref32 doi: 10.1016/S0005-1098(98)00178-2 – ident: ref12 doi: 10.1093/imaman/10.2.89 – volume-title: Model Building in Mathematical Programming year: 2013 ident: ref33 – ident: ref7 doi: 10.1016/j.trb.2015.07.024 – ident: ref6 doi: 10.1016/j.trb.2015.07.023 – volume-title: An Introduction to Numerical Analysis year: 1978 ident: ref16 – ident: ref27 doi: 10.1016/j.isatra.2021.04.036 – ident: ref20 doi: 10.1109/MITS.2019.2907681 – ident: ref1 doi: 10.1299/jsme1958.11.857 – volume: 98 start-page: 65 issue: 1 year: 2000 ident: ref2 article-title: The optimal control of a train publication-title: Ann. Oper. Res. doi: 10.1023/A:1019235819716 – ident: ref11 doi: 10.1016/0005-1098(95)00184-0 – ident: ref3 doi: 10.1109/9.867018 – ident: ref15 doi: 10.1049/ip-epa:20000329 |
| SSID | ssj0014511 |
| Score | 2.6638732 |
| Snippet | This paper proposes a trajectory optimization approach for high-speed trains to reduce traction energy consumption and increase riding comfort. Besides, the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17666 |
| SubjectTerms | Comfort Control systems Energy conservation Energy consumption Energy efficiency High speed rail high-speed railway Integer programming Linear programming Mathematical models MILP Mixed integer Optimal control Optimization Optimization models Rail transportation riding comfort Switches Traction train control Trajectory optimization |
| Title | Trajectory Optimization for High-Speed Trains via a Mixed Integer Linear Programming Approach |
| URI | https://ieeexplore.ieee.org/document/9741460 https://www.proquest.com/docview/2723901437 |
| Volume | 23 |
| WOSCitedRecordID | wos000777116000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCDrypWq-TgSYxuN9lucixiUdBaaIVeZEmTWanYB32h_95JdlsURfC2LElY8u1kvpnMg5Azzm1PRNIyrqxkIqpa1qtKYMKkqdZgapHxXUvu42ZTdruqVSAXq1wYAPDBZ3DpHv1dvh2ZuXOVXSH3RcFGA30tjuMsV2t1Y-DqbPnaqKFgKoiWN5jVQF117jpttATDEA3UCPW9_KaDfFOVHyexVy-N7f992A7ZymkkrWe475ICDPfI5pfigiXyjGro1fvkP-gjHgyDPOOSIk2lLryDtceoumjHNYmY0kVfU00f-u_4yrkJX2BC0VBFQaCtLIZrgMvSel6DfJ88NW4617csb6bADDKAGdPQS5FIawQgDbQWIFzWKSgFUssaBCaWFrh2HqFaqpGXgLIpN4DmmY3BRvyAFIejIRwSiiLPuVYCuOVCW9BRKlMrwsAgX9OSl0mw3N7E5JXGXcOLt8RbHIFKHCKJQyTJESmT89WUcVZm46_BJQfBamC--2VSWWKY5II4TcI4dF4dweOj32cdkw23dhafVyHF2WQOJ2TdLGb96eTU_2Of7tPQFw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9EBfXBb3F-5sEnMdo16Zo8iiiKcwpW8EVKllxlolO2Kfrfe0m7oSiCb6Ukbcmvl_vd5T4AdoRwbZkox4V2isuk7ni7rpBLWxTGoG0kNnQtaaatlrq91VdjsDfKhUHEEHyG-_4ynOW7Z_vqXWUHxH1JsMlAn0ikjOtlttbozMBX2grVUWPJdZQMzzDrkT7IzrJrsgXjmEzUhDS--qaFQluVH3txUDAnc__7tHmYrYgkOyyRX4Ax7C7CzJfygktwR4roIXjlP9glbQ1PVc4lI6LKfIAHv34h5cUy3yaiz946hhl20XmnW95ReI89RqYqiQK7KqO4nuix7LCqQr4MNyfH2dEpr9opcEscYMANtgui0oYgKCJjJEqfd4paozKqgZFNlUNhvE-oURhiJqhdISySgeZSdIlYgfHucxdXgZHQC2G0ROGENA5NUqjCyTiyxNiMEjWIhsub26rWuG958ZgHmyPSuUck94jkFSI12B1NeSkLbfw1eMlDMBpYrX4NNoYY5pUo9vM4jb1fR4p07fdZ2zB1ml008-ZZ63wdpv17ymi9DRgf9F5xEybt26DT722F_-0T6obTXg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Optimization+for+High-Speed+Trains+via+a+Mixed+Integer+Linear+Programming+Approach&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Cao%2C+Yuan&rft.au=Zhang%2C+Zixuan&rft.au=Cheng%2C+Fanglin&rft.au=Su%2C+Shuai&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=10&rft.spage=17666&rft.epage=17676&rft_id=info:doi/10.1109%2FTITS.2022.3155628&rft.externalDocID=9741460 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |