Trajectory Optimization for High-Speed Trains via a Mixed Integer Linear Programming Approach

This paper proposes a trajectory optimization approach for high-speed trains to reduce traction energy consumption and increase riding comfort. Besides, the proposed approach can also achieve energy-saving effects by optimizing the operation time between stations. First, an optimization model is dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems Jg. 23; H. 10; S. 17666 - 17676
Hauptverfasser: Cao, Yuan, Zhang, Zixuan, Cheng, Fanglin, Su, Shuai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1524-9050, 1558-0016
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes a trajectory optimization approach for high-speed trains to reduce traction energy consumption and increase riding comfort. Besides, the proposed approach can also achieve energy-saving effects by optimizing the operation time between stations. First, an optimization model is developed by defining the objective function as a trade-off function of the traction energy consumption and riding comfort. In addition to constraints in the classic optimal train control model, three new factors-the discrete throttle settings, neutral zones, and sectionalized tunnel resistance-are considered. Then, the model is discretized and turned into a multi-step decision optimization problem. All the nonlinear constraints are approximated using piecewise affine (PWA) functions, and the trajectory optimization problem is turned into a mixed integer linear programming (MILP) problem which can be solved by existing solvers CPLEX and YALMIP. Finally, some case studies with real-world data sets are conducted to present the effectiveness of the proposed approach. The simulation results are compared with the practical running data of trains, which shows that the proposed model and the optimization approach save energy and improve the riding comfort.
AbstractList This paper proposes a trajectory optimization approach for high-speed trains to reduce traction energy consumption and increase riding comfort. Besides, the proposed approach can also achieve energy-saving effects by optimizing the operation time between stations. First, an optimization model is developed by defining the objective function as a trade-off function of the traction energy consumption and riding comfort. In addition to constraints in the classic optimal train control model, three new factors-the discrete throttle settings, neutral zones, and sectionalized tunnel resistance-are considered. Then, the model is discretized and turned into a multi-step decision optimization problem. All the nonlinear constraints are approximated using piecewise affine (PWA) functions, and the trajectory optimization problem is turned into a mixed integer linear programming (MILP) problem which can be solved by existing solvers CPLEX and YALMIP. Finally, some case studies with real-world data sets are conducted to present the effectiveness of the proposed approach. The simulation results are compared with the practical running data of trains, which shows that the proposed model and the optimization approach save energy and improve the riding comfort.
Author Zhang, Zixuan
Su, Shuai
Cao, Yuan
Cheng, Fanglin
Author_xml – sequence: 1
  givenname: Yuan
  orcidid: 0000-0001-6631-4908
  surname: Cao
  fullname: Cao, Yuan
  organization: National Engineering Research Center of Rail Transportation Operation Control System and the School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Zixuan
  orcidid: 0000-0003-3353-4351
  surname: Zhang
  fullname: Zhang, Zixuan
  organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Fanglin
  surname: Cheng
  fullname: Cheng, Fanglin
  organization: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Shuai
  orcidid: 0000-0001-8412-9853
  surname: Su
  fullname: Su, Shuai
  email: shuaisu@bjtu.edu.cn
  organization: State Key Laboratory of Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
BookMark eNp9kMtKw0AUhgepYFt9AHEz4Dp1brnMshS1hUqFxqWEY3KSTmkuTlKxPr0TW1y4cHV-Dv8FvhEZVHWFhFxzNuGc6bt4Ea8nggkxkdz3AxGdkaETkccYDwa9FsrTzGcXZNS2W_dVPudD8hpb2GLa1fZAV01nSvMFnakrmteWzk2x8dYNYkadzVQt_TBAgT6ZT_daVB0WaOnSVAiWPtu6sFCWpirotGlsDenmkpznsGvx6nTH5OXhPp7NveXqcTGbLr1UCNl5gG95KDQAYM4AFCpfM45aYwRRgCwNowwlKCFEkEPgR6izXKYolM5CzHw5JrfHXjf7vse2S7b13lZuMhGhkK5MydC5-NGV2rptLeZJY00J9pBwlvQUk55i0lNMThRdJvyTSU33Q6hzRHb_Jm-OSYOIv0s6VFwFTH4DmjqCsA
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_jprocont_2023_103007
crossref_primary_10_1016_j_arcontrol_2025_100993
crossref_primary_10_1002_rnc_6227
crossref_primary_10_1049_itr2_70065
crossref_primary_10_1177_09596518241256145
crossref_primary_10_1177_09596518251324682
crossref_primary_10_1016_j_cam_2023_115297
crossref_primary_10_1016_j_trc_2024_104626
crossref_primary_10_1016_j_apenergy_2024_123111
crossref_primary_10_1109_TITS_2024_3404504
crossref_primary_10_1038_s41598_025_91891_3
crossref_primary_10_1177_01423312251328440
crossref_primary_10_1016_j_trc_2023_104348
crossref_primary_10_3390_math11204287
crossref_primary_10_1016_j_ijepes_2024_110123
crossref_primary_10_1002_rnc_7323
crossref_primary_10_1007_s00034_022_02285_z
crossref_primary_10_1002_rnc_7705
crossref_primary_10_1016_j_cam_2023_115107
crossref_primary_10_1002_rnc_7307
crossref_primary_10_3390_en16124566
crossref_primary_10_1007_s00034_024_02730_1
crossref_primary_10_1007_s00034_024_02776_1
crossref_primary_10_1016_j_cam_2023_115104
crossref_primary_10_1016_j_automatica_2025_112529
crossref_primary_10_3390_eng5030086
crossref_primary_10_1109_TVT_2023_3345281
crossref_primary_10_1109_TIV_2024_3409693
crossref_primary_10_1080_00423114_2024_2424291
crossref_primary_10_1109_TSG_2024_3418331
crossref_primary_10_1002_acs_3669
crossref_primary_10_1016_j_cie_2023_109742
crossref_primary_10_1109_MITS_2023_3295376
crossref_primary_10_1016_j_cie_2023_109865
crossref_primary_10_1109_TVT_2024_3371676
crossref_primary_10_1177_03611981251337457
crossref_primary_10_1016_j_chaos_2024_115181
crossref_primary_10_3390_app14052037
crossref_primary_10_3390_su15118731
crossref_primary_10_1109_TITS_2025_3558735
crossref_primary_10_1049_itr2_12482
crossref_primary_10_1109_TITS_2024_3510412
crossref_primary_10_1016_j_ress_2023_109621
crossref_primary_10_1016_j_trc_2023_104202
crossref_primary_10_1109_TVT_2024_3483225
crossref_primary_10_1016_j_isatra_2024_11_048
crossref_primary_10_1002_rnc_7344
crossref_primary_10_1016_j_apm_2023_10_038
crossref_primary_10_1002_acs_3712
crossref_primary_10_1016_j_cam_2023_115724
crossref_primary_10_1080_0305215X_2023_2213640
crossref_primary_10_1007_s00034_025_03156_z
crossref_primary_10_1002_acs_3550
crossref_primary_10_1109_TIV_2023_3301009
crossref_primary_10_1016_j_physa_2023_129428
crossref_primary_10_1016_j_conengprac_2025_106558
crossref_primary_10_1002_rnc_6917
crossref_primary_10_1007_s00034_024_02627_z
crossref_primary_10_1016_j_cam_2023_115687
crossref_primary_10_1016_j_arcontrol_2024_100942
crossref_primary_10_3390_math11132945
crossref_primary_10_1016_j_aap_2024_107617
crossref_primary_10_1109_ACCESS_2023_3328769
crossref_primary_10_1007_s12555_024_0215_7
crossref_primary_10_1002_acs_3604
crossref_primary_10_1016_j_conengprac_2023_105630
crossref_primary_10_1016_j_chemolab_2023_104934
crossref_primary_10_1109_TVT_2023_3305603
crossref_primary_10_1007_s13177_025_00527_3
crossref_primary_10_1109_TIM_2025_3568076
crossref_primary_10_1007_s00034_023_02477_1
crossref_primary_10_1109_TTE_2025_3544112
crossref_primary_10_1016_j_sysconle_2024_105762
crossref_primary_10_1002_rnc_6951
crossref_primary_10_3389_fenrg_2022_963275
crossref_primary_10_1002_rnc_6796
crossref_primary_10_1016_j_ast_2025_110542
crossref_primary_10_3390_act13080301
crossref_primary_10_1109_TITS_2023_3275205
crossref_primary_10_1002_acs_3699
crossref_primary_10_3390_en16083555
crossref_primary_10_1002_rnc_6657
crossref_primary_10_3390_en16186712
crossref_primary_10_1109_TITS_2023_3289210
crossref_primary_10_1109_ACCESS_2023_3341225
crossref_primary_10_23919_cje_2023_00_258
crossref_primary_10_1515_pjbr_2022_0126
crossref_primary_10_1016_j_ast_2025_110950
crossref_primary_10_1080_23248378_2025_2529403
crossref_primary_10_1007_s11071_023_08259_3
crossref_primary_10_1002_acs_3865
crossref_primary_10_1002_acs_3904
crossref_primary_10_1002_oca_3158
crossref_primary_10_1002_oca_70029
crossref_primary_10_1109_TITS_2023_3264238
crossref_primary_10_1007_s00034_025_03068_y
crossref_primary_10_1016_j_trb_2023_02_015
crossref_primary_10_1109_ACCESS_2024_3466971
crossref_primary_10_1080_00207721_2024_2375615
crossref_primary_10_1016_j_isatra_2024_01_035
crossref_primary_10_1007_s11071_023_08816_w
crossref_primary_10_1177_09596518241280323
crossref_primary_10_1109_TASE_2022_3225288
crossref_primary_10_1016_j_amc_2024_129102
crossref_primary_10_1177_09596518241309132
crossref_primary_10_1049_itr2_70053
crossref_primary_10_1002_acs_3637
crossref_primary_10_1016_j_sysconle_2025_106094
crossref_primary_10_1002_acs_3753
crossref_primary_10_1016_j_aap_2023_107124
crossref_primary_10_1002_acs_3871
crossref_primary_10_1109_TIM_2023_3334370
crossref_primary_10_1016_j_trc_2024_104498
crossref_primary_10_1109_TITS_2023_3318981
crossref_primary_10_3390_fractalfract8020108
crossref_primary_10_1109_TITS_2025_3545480
crossref_primary_10_1109_TITS_2024_3386392
crossref_primary_10_1080_23249935_2025_2525274
crossref_primary_10_1002_rnc_7014
crossref_primary_10_1007_s11227_025_07513_2
Cites_doi 10.1016/0005-1098(92)90017-A
10.1007/978-1-4471-3084-0
10.1016/j.tra.2003.07.001
10.1016/j.trc.2013.01.007
10.1049/ip-epa:19970797
10.1016/j.trc.2020.102886
10.1109/TITS.2009.2018324
10.1109/9.262051
10.1243/0954409001531306
10.1109/TTE.2020.2983855
10.1109/TITS.2019.2939358
10.1016/j.trc.2021.103249
10.1146/annurev.fluid.33.1.371
10.1177/0954409716671546
10.1177/0954409713515648
10.1016/j.tre.2021.102323
10.1109/TITS.2013.2244885
10.1002/tee.20528
10.1016/j.jweia.2017.09.017
10.1002/tee.20479
10.1016/S0005-1098(98)00178-2
10.1093/imaman/10.2.89
10.1016/j.trb.2015.07.024
10.1016/j.trb.2015.07.023
10.1016/j.isatra.2021.04.036
10.1109/MITS.2019.2907681
10.1299/jsme1958.11.857
10.1023/A:1019235819716
10.1016/0005-1098(95)00184-0
10.1109/9.867018
10.1049/ip-epa:20000329
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3155628
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 17676
ExternalDocumentID 10_1109_TITS_2022_3155628
9741460
Genre orig-research
GrantInformation_xml – fundername: National Science Fund for Excellent Young Scholars
  grantid: 52022010
  funderid: 10.13039/501100014219
– fundername: China Academy of Railway Sciences
  funderid: 10.13039/501100015282
– fundername: Beijing Key Laboratory of Urban Rail Transit Automation and Control, National Natural Science Foundation of China
  grantid: 52172322; 62073024; U1934219
  funderid: 10.13039/501100001809
– fundername: Beijing Natural Science Foundation
  grantid: L191015; L201004
  funderid: 10.13039/501100004826
– fundername: Center of National Railway Intelligent Transportation System Engineering and Technology
  grantid: 2019YJ189
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c223t-aebf729aaaef0aa4e45901e99e8a86e0c78de3a42226fa658e9df3ce249d7ed53
IEDL.DBID RIE
ISICitedReferencesCount 160
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777116000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Nov 30 04:51:30 EST 2025
Sat Nov 29 06:35:00 EST 2025
Tue Nov 18 22:35:39 EST 2025
Wed Aug 27 02:18:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-aebf729aaaef0aa4e45901e99e8a86e0c78de3a42226fa658e9df3ce249d7ed53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6631-4908
0000-0003-3353-4351
0000-0001-8412-9853
PQID 2723901437
PQPubID 75735
PageCount 11
ParticipantIDs proquest_journals_2723901437
ieee_primary_9741460
crossref_citationtrail_10_1109_TITS_2022_3155628
crossref_primary_10_1109_TITS_2022_3155628
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
ref14
ref31
Atkinson (ref16) 1978
ref30
ref11
ref32
ref1
ref17
ref19
Howlett (ref2) 2000; 98
ref18
Howlett (ref10) 1995
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
ref7
Ko (ref13) 2004
ref9
ref4
ref3
ref6
ref5
Williams (ref33) 2013
Du (ref28) 2019
References_xml – ident: ref8
  doi: 10.1016/0005-1098(92)90017-A
– volume-title: Energy-Efficient Train Control
  year: 1995
  ident: ref10
  doi: 10.1007/978-1-4471-3084-0
– ident: ref4
  doi: 10.1016/j.tra.2003.07.001
– ident: ref14
  doi: 10.1016/j.trc.2013.01.007
– ident: ref22
  doi: 10.1049/ip-epa:19970797
– ident: ref5
  doi: 10.1016/j.trc.2020.102886
– ident: ref24
  doi: 10.1109/TITS.2009.2018324
– ident: ref9
  doi: 10.1109/9.262051
– ident: ref31
  doi: 10.1243/0954409001531306
– ident: ref35
  doi: 10.1109/TTE.2020.2983855
– ident: ref23
  doi: 10.1109/TITS.2019.2939358
– start-page: 103
  volume-title: Computing Railways
  year: 2004
  ident: ref13
  article-title: Application of dynamic programming to optimization of running profile of a train
– ident: ref18
  doi: 10.1016/j.trc.2021.103249
– ident: ref26
  doi: 10.1146/annurev.fluid.33.1.371
– ident: ref19
  doi: 10.1177/0954409716671546
– ident: ref21
  doi: 10.1177/0954409713515648
– ident: ref25
  doi: 10.1016/j.tre.2021.102323
– volume-title: Research on the method of determining the key aerodynamic coefficient of high speed train passing through tunnel
  year: 2019
  ident: ref28
– ident: ref17
  doi: 10.1109/TITS.2013.2244885
– ident: ref30
  doi: 10.1002/tee.20528
– ident: ref34
  doi: 10.1016/j.jweia.2017.09.017
– ident: ref29
  doi: 10.1002/tee.20479
– ident: ref32
  doi: 10.1016/S0005-1098(98)00178-2
– ident: ref12
  doi: 10.1093/imaman/10.2.89
– volume-title: Model Building in Mathematical Programming
  year: 2013
  ident: ref33
– ident: ref7
  doi: 10.1016/j.trb.2015.07.024
– ident: ref6
  doi: 10.1016/j.trb.2015.07.023
– volume-title: An Introduction to Numerical Analysis
  year: 1978
  ident: ref16
– ident: ref27
  doi: 10.1016/j.isatra.2021.04.036
– ident: ref20
  doi: 10.1109/MITS.2019.2907681
– ident: ref1
  doi: 10.1299/jsme1958.11.857
– volume: 98
  start-page: 65
  issue: 1
  year: 2000
  ident: ref2
  article-title: The optimal control of a train
  publication-title: Ann. Oper. Res.
  doi: 10.1023/A:1019235819716
– ident: ref11
  doi: 10.1016/0005-1098(95)00184-0
– ident: ref3
  doi: 10.1109/9.867018
– ident: ref15
  doi: 10.1049/ip-epa:20000329
SSID ssj0014511
Score 2.6638732
Snippet This paper proposes a trajectory optimization approach for high-speed trains to reduce traction energy consumption and increase riding comfort. Besides, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17666
SubjectTerms Comfort
Control systems
Energy conservation
Energy consumption
Energy efficiency
High speed rail
high-speed railway
Integer programming
Linear programming
Mathematical models
MILP
Mixed integer
Optimal control
Optimization
Optimization models
Rail transportation
riding comfort
Switches
Traction
train control
Trajectory optimization
Title Trajectory Optimization for High-Speed Trains via a Mixed Integer Linear Programming Approach
URI https://ieeexplore.ieee.org/document/9741460
https://www.proquest.com/docview/2723901437
Volume 23
WOSCitedRecordID wos000777116000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCDrypWq-TgSYxuN9lucixiUdBaaIVeZEmTWanYB32h_95JdlsURfC2LElY8u1kvpnMg5Azzm1PRNIyrqxkIqpa1qtKYMKkqdZgapHxXUvu42ZTdruqVSAXq1wYAPDBZ3DpHv1dvh2ZuXOVXSH3RcFGA30tjuMsV2t1Y-DqbPnaqKFgKoiWN5jVQF117jpttATDEA3UCPW9_KaDfFOVHyexVy-N7f992A7ZymkkrWe475ICDPfI5pfigiXyjGro1fvkP-gjHgyDPOOSIk2lLryDtceoumjHNYmY0kVfU00f-u_4yrkJX2BC0VBFQaCtLIZrgMvSel6DfJ88NW4617csb6bADDKAGdPQS5FIawQgDbQWIFzWKSgFUssaBCaWFrh2HqFaqpGXgLIpN4DmmY3BRvyAFIejIRwSiiLPuVYCuOVCW9BRKlMrwsAgX9OSl0mw3N7E5JXGXcOLt8RbHIFKHCKJQyTJESmT89WUcVZm46_BJQfBamC--2VSWWKY5II4TcI4dF4dweOj32cdkw23dhafVyHF2WQOJ2TdLGb96eTU_2Of7tPQFw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9EBfXBb3F-5sEnMdo16Zo8iiiKcwpW8EVKllxlolO2Kfrfe0m7oSiCb6Ukbcmvl_vd5T4AdoRwbZkox4V2isuk7ni7rpBLWxTGoG0kNnQtaaatlrq91VdjsDfKhUHEEHyG-_4ynOW7Z_vqXWUHxH1JsMlAn0ikjOtlttbozMBX2grVUWPJdZQMzzDrkT7IzrJrsgXjmEzUhDS--qaFQluVH3txUDAnc__7tHmYrYgkOyyRX4Ax7C7CzJfygktwR4roIXjlP9glbQ1PVc4lI6LKfIAHv34h5cUy3yaiz946hhl20XmnW95ReI89RqYqiQK7KqO4nuix7LCqQr4MNyfH2dEpr9opcEscYMANtgui0oYgKCJjJEqfd4paozKqgZFNlUNhvE-oURhiJqhdISySgeZSdIlYgfHucxdXgZHQC2G0ROGENA5NUqjCyTiyxNiMEjWIhsub26rWuG958ZgHmyPSuUck94jkFSI12B1NeSkLbfw1eMlDMBpYrX4NNoYY5pUo9vM4jb1fR4p07fdZ2zB1ml008-ZZ63wdpv17ymi9DRgf9F5xEybt26DT722F_-0T6obTXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Optimization+for+High-Speed+Trains+via+a+Mixed+Integer+Linear+Programming+Approach&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Cao%2C+Yuan&rft.au=Zhang%2C+Zixuan&rft.au=Cheng%2C+Fanglin&rft.au=Su%2C+Shuai&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=10&rft.spage=17666&rft.epage=17676&rft_id=info:doi/10.1109%2FTITS.2022.3155628&rft.externalDocID=9741460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon