PLE: Power Line Extraction Algorithm for UAV-based Power Inspection

Power line detection plays an important role in automatic power inspection systems based on the vision sensor and UAV (Unmanned Aerial Vehicle). The positioning of the power line is essential to assist in planning and navigation along the power line during the UAV-based power inspection process. For...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 22; číslo 20; s. 1
Hlavní autoři: Shuang, Feng, Chen, Xingzhi, Li, Yong, Wang, Yuebin, Miao, Naipeng, Zhou, Zixuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Power line detection plays an important role in automatic power inspection systems based on the vision sensor and UAV (Unmanned Aerial Vehicle). The positioning of the power line is essential to assist in planning and navigation along the power line during the UAV-based power inspection process. For the along-line inspection problem of UAV power inspection, we developed a power line extraction algorithm based on parallel line detection and the straight line stretching. The proposed algorithm first extracts the image edges by Canny algorithm, and then constructs criterion functions for power line extraction based on power line feature information e.g. length, width and direction. Finally, the information on power line location, direction, width, etc. will be combined to get the exact power line regions. In order to effectively evaluate the accuracy and efficiency of the power line extraction algorithm, we constructed a power line dataset for UAV inspection and proposed a power line extraction effect evaluation method. The experimental results demonstrate that the proposed method can effectively reduce the influence of ground environment and other interference factors. Compared with other methods, the proposed algorithm is significantly better than the comparison methods in detecting power lines for the constructed data set. Moreover, it is still a higher detection accuracy than the comparison methods when the power line is far away from UAV.
AbstractList Power line detection plays an important role in automatic power inspection systems based on the vision sensor and unmanned aerial vehicle (UAV). The positioning of the power line is essential to assist in planning and navigation along the power line during the UAV-based power inspection process. For the along-line inspection problem of UAV power inspection, we developed a power line extraction (PLE) algorithm based on parallel line detection and straight line stretching. The proposed algorithm first extracts the image edges by the Canny algorithm and then constructs criterion functions for PLE based on power line feature information, e.g., length, width, and direction. Finally, the information on power line location, direction, width, and so on will be combined to get the exact power line regions. In order to effectively evaluate the accuracy and efficiency of the PLE algorithm, we constructed a power line dataset for UAV inspection and proposed a PLE effect evaluation method. The experimental results demonstrate that the proposed method can effectively reduce the influence of ground environment and other interference factors. Compared with other methods, the proposed algorithm is significantly better than the comparison methods in detecting power lines for the constructed dataset. Moreover, it is still a higher detection accuracy than the comparison methods when the power line is far away from UAV.
Power line detection plays an important role in automatic power inspection systems based on the vision sensor and UAV (Unmanned Aerial Vehicle). The positioning of the power line is essential to assist in planning and navigation along the power line during the UAV-based power inspection process. For the along-line inspection problem of UAV power inspection, we developed a power line extraction algorithm based on parallel line detection and the straight line stretching. The proposed algorithm first extracts the image edges by Canny algorithm, and then constructs criterion functions for power line extraction based on power line feature information e.g. length, width and direction. Finally, the information on power line location, direction, width, etc. will be combined to get the exact power line regions. In order to effectively evaluate the accuracy and efficiency of the power line extraction algorithm, we constructed a power line dataset for UAV inspection and proposed a power line extraction effect evaluation method. The experimental results demonstrate that the proposed method can effectively reduce the influence of ground environment and other interference factors. Compared with other methods, the proposed algorithm is significantly better than the comparison methods in detecting power lines for the constructed data set. Moreover, it is still a higher detection accuracy than the comparison methods when the power line is far away from UAV.
Author Miao, Naipeng
Chen, Xingzhi
Li, Yong
Shuang, Feng
Zhou, Zixuan
Wang, Yuebin
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-4733-4732
  surname: Shuang
  fullname: Shuang, Feng
  organization: School of Electrical Engineering, Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, Guangxi University, Guangxi, China
– sequence: 2
  givenname: Xingzhi
  surname: Chen
  fullname: Chen, Xingzhi
  organization: School of Electrical Engineering, Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, Guangxi University, Guangxi, China
– sequence: 3
  givenname: Yong
  orcidid: 0000-0002-7230-3196
  surname: Li
  fullname: Li, Yong
  organization: School of Electrical Engineering, Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, Guangxi University, Guangxi, China
– sequence: 4
  givenname: Yuebin
  orcidid: 0000-0002-6978-4558
  surname: Wang
  fullname: Wang, Yuebin
  organization: School of Land Science and Technology, China University of Geosciences, Beijing, China
– sequence: 5
  givenname: Naipeng
  surname: Miao
  fullname: Miao, Naipeng
  organization: School of Electrical Engineering, Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, Guangxi University, Guangxi, China
– sequence: 6
  givenname: Zixuan
  surname: Zhou
  fullname: Zhou, Zixuan
  organization: School of Electrical Engineering, Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, Guangxi University, Guangxi, China
BookMark eNp9kE9PwzAMxSM0JMbgAyAulTh3OH-6tNymqcBQBZNgiFuUpQ502pqRdAK-PS2bOHDgYvvwnp_9Oya92tVIyBmFIaWQXd495vdDBowNeVuB8wPSp0mSxlSKtNfNHGLB5csROQ5hCUAzmcg-mcyK_CqauQ_0UVHVGOWfjdemqVwdjVevzlfN2zqyzkfz8XO80AHLvXpahw3-CE_IodWrgKf7PiDz6_xpchsXDzfTybiIDWO8ibU0FhbWjDLgaK0GsFJzgSJNUsEwMzDKUAjb3lWWhqEGUUrgkmGCYATyAbnY7d14977F0Kil2_q6jVRMshGlAnjaquhOZbwLwaNVG1-ttf9SFFTHSnWsVMdK7Vm1HvnHY6pGd7-1MKrVv87znbNCxN-kLJVC0ox_A_Qed34
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_phycom_2025_102685
crossref_primary_10_3390_s25113551
crossref_primary_10_1007_s42452_024_06350_x
crossref_primary_10_1109_JSEN_2024_3446533
crossref_primary_10_1088_1402_4896_adbb2b
crossref_primary_10_1109_JSEN_2023_3317076
crossref_primary_10_3233_JIFS_234222
crossref_primary_10_1016_j_jksuci_2024_101936
crossref_primary_10_3390_rs14184575
crossref_primary_10_3390_electronics13173383
crossref_primary_10_1007_s11276_025_03975_7
crossref_primary_10_1109_ACCESS_2024_3513636
crossref_primary_10_3390_drones8100530
Cites_doi 10.3390/rs9080771
10.1109/MECO.2016.7525729
10.1109/ICUAS.2014.6842307
10.1109/ROBIO.2013.6739874
10.1109/CompComm.2017.8322913
10.1109/TGRS.2021.3076099
10.1016/j.eswa.2020.113895
10.1016/j.patrec.2011.06.001
10.1109/CISP.2010.5646922
10.1109/ICPES51309.2020.9349675
10.1109/ICICEE.2012.77
10.1109/MFI.2016.7849523
10.5201/ipol.2012.gjmr-lsd
10.1016/j.neucom.2013.09.023
10.1109/TPWRD.2020.2973505
10.1016/j.patcog.2015.07.004
10.1109/CVPR.2017.620
10.3390/rs61111267
10.1016/j.ijepes.2020.105862
10.1016/j.ijepes.2017.12.016
10.1109/ICUAS.2014.6842267
10.1109/ICIP.2016.7532456
10.1016/j.epsr.2013.09.002
10.3390/rs11111342
10.1109/TAES.2013.120444
10.3788/AOS201434.1015002
10.3788/aos201232.0315001
10.1109/LGRS.2019.2903217
10.1109/LGRS.2007.895714
10.3390/rs8010036
10.1109/TETCI.2018.2849414
10.1109/ICIP.2015.7350850
10.1016/j.isprsjprs.2016.04.011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3202033
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2022_3202033
9874719
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Grant No. 61720106009
  funderid: 10.13039/501100001809
– fundername: Hubei Key Labortory of Intelligent Robot
  grantid: Grant No.HBIR202108
– fundername: Middle-aged and Young Teachers' Basic Ability Promotion Project of Guangxi
  grantid: Grant No. 2021KY0015
  funderid: 10.13039/501100012434
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
ZY4
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c223t-a7cf0bfc6903effa00f7a34e485842e9c069e44f757ddc2ea04d70372e5e0c4e3
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000870341900085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:12:18 EDT 2025
Tue Nov 18 21:59:17 EST 2025
Sat Nov 29 06:39:20 EST 2025
Wed Aug 27 02:29:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-a7cf0bfc6903effa00f7a34e485842e9c069e44f757ddc2ea04d70372e5e0c4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4733-4732
0000-0002-6978-4558
0000-0002-7230-3196
PQID 2726114038
PQPubID 75733
PageCount 1
ParticipantIDs crossref_primary_10_1109_JSEN_2022_3202033
ieee_primary_9874719
crossref_citationtrail_10_1109_JSEN_2022_3202033
proquest_journals_2726114038
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Xiaoli (ref23) 2020; 41
ref24
ref26
ref25
ref20
ref22
ref21
Xu (ref7) 2017; 38
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.3390/rs9080771
– ident: ref22
  doi: 10.1109/MECO.2016.7525729
– ident: ref26
  doi: 10.1109/ICUAS.2014.6842307
– ident: ref16
  doi: 10.1109/ROBIO.2013.6739874
– ident: ref18
  doi: 10.1109/CompComm.2017.8322913
– ident: ref29
  doi: 10.1109/TGRS.2021.3076099
– ident: ref11
  doi: 10.1016/j.eswa.2020.113895
– ident: ref33
  doi: 10.1016/j.patrec.2011.06.001
– ident: ref20
  doi: 10.1109/CISP.2010.5646922
– ident: ref28
  doi: 10.1109/ICPES51309.2020.9349675
– ident: ref19
  doi: 10.1109/ICICEE.2012.77
– volume: 41
  start-page: 210
  issue: 10
  year: 2020
  ident: ref23
  article-title: Power line detection and localization based on active UAV guidance
  publication-title: Ordnance Equip.
– ident: ref5
  doi: 10.1109/MFI.2016.7849523
– ident: ref32
  doi: 10.5201/ipol.2012.gjmr-lsd
– ident: ref21
  doi: 10.1016/j.neucom.2013.09.023
– ident: ref2
  doi: 10.1109/TPWRD.2020.2973505
– ident: ref15
  doi: 10.1016/j.patcog.2015.07.004
– ident: ref34
  doi: 10.1109/CVPR.2017.620
– ident: ref24
  doi: 10.3390/rs61111267
– ident: ref3
  doi: 10.1016/j.ijepes.2020.105862
– ident: ref10
  doi: 10.1016/j.ijepes.2017.12.016
– ident: ref27
  doi: 10.1109/ICUAS.2014.6842267
– ident: ref6
  doi: 10.1109/ICIP.2016.7532456
– ident: ref1
  doi: 10.1016/j.epsr.2013.09.002
– volume: 38
  start-page: 48
  issue: 7
  year: 2017
  ident: ref7
  article-title: Extraction and security detection of power line based on laser point cloud data
  publication-title: Laser J.
– ident: ref13
  doi: 10.3390/rs11111342
– ident: ref25
  doi: 10.1109/TAES.2013.120444
– ident: ref31
  doi: 10.3788/AOS201434.1015002
– ident: ref30
  doi: 10.3788/aos201232.0315001
– ident: ref14
  doi: 10.1109/LGRS.2019.2903217
– ident: ref17
  doi: 10.1109/LGRS.2007.895714
– ident: ref9
  doi: 10.3390/rs8010036
– ident: ref12
  doi: 10.1109/TETCI.2018.2849414
– ident: ref35
  doi: 10.1109/ICIP.2015.7350850
– ident: ref4
  doi: 10.1016/j.isprsjprs.2016.04.011
SSID ssj0019757
Score 2.4473672
Snippet Power line detection plays an important role in automatic power inspection systems based on the vision sensor and UAV (Unmanned Aerial Vehicle). The...
Power line detection plays an important role in automatic power inspection systems based on the vision sensor and unmanned aerial vehicle (UAV). The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Autonomous aerial vehicles
Data mining
Datasets
Electrocutions
Feature extraction
Image edge detection
Image segmentation
Inspection
parallel line detection
power inspection
power line
Power lines
Straight lines
Transforms
UAV
Unmanned aerial vehicles
Title PLE: Power Line Extraction Algorithm for UAV-based Power Inspection
URI https://ieeexplore.ieee.org/document/9874719
https://www.proquest.com/docview/2726114038
Volume 22
WOSCitedRecordID wos000870341900085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90COqDH1NxftEHn8TMrM2axrchGyoyBjrZW0nTixtoK7MT_e9N2jgURfCtD5cQ7nq5u17v9wM4ThML8qYFEYorwkLJiUhCJJFMo7aymN-6Ipvg_X40GonBApzOZ2EQsfz5DJv2sezlp7ma2U9lZ6Y-NnepWIRFzsNqVmveMRC8RPU0DkwJC_jIdTBbVJxd33b7phL0_aYlC6dB8C0GlaQqP27iMrz01v93sA1Yc2mk16nsvgkLmNVh9Qu4YB2WHb_5-H0LLgY33XNvYBnRPFN9otd9K6bVSIPXeXzIp5Ni_OSZ_NUbdu6JjWypk77KqlnMPNuGYa97d3FJHH0CUSbmF0RypWmilal_A9RaUqq5DBiyyCQdPgpFQ4GMaaO4NFU-SspS4__cxzZSxTDYgVqWZ7gLXsK4EaO-amPIZEtalHyf-zrlwmybyAbQT4XGymGLW4qLx7isMaiIrQ1ia4PY2aABJ_MlzxWwxl_CW1bpc0Gn7wYcfFotdq73EptzhS2LQhjt_b5qH1bs3jYAtdoHUCumMzyEJfVaTF6mR-Vb9QG3ZsgP
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gXrwLdZnDp7Etdtkm816K6VitZaCD3oLm82sLWgqNYr-e3eTtSiK4C2H2WSZyc4jk_k-gMM0sSBvWhChuCIslJyIJEQSyTSqK4v5rUuyCd7tRv2-6E3B8WQWBhGLn8_wxF4Wvfx0pF7sp7KqqY-NLxXTMGuZs9y01qRnIHiB62mOMCUs4H3Xw6xRUb24bnVNLej7J5YunAbBtyhU0Kr88MVFgDlb_t_WVmDJJZJeo7T8KkxhtgaLX-AF12DeMZwP3teh2eu0Tr2e5UTzTP2JXustH5dDDV7j4X40HuaDR89ksN5t447Y2JY66XZWTmOOsg24PWvdNM-JI1AgykT9nEiuNE20MhVwgFpLSjWXAUMWmbTDR6FoKJAxbRSXpspHSVlqPAD3sY5UMQw2YSYbZbgFXsK4EaO-qmPIZE1anHyf-zrlwtw2kRWgnwqNlUMXtyQXD3FRZVARWxvE1gaxs0EFjiZLnkpojb-E163SJ4JO3xXY_bRa7A7fc2z2FdYsDmG0_fuqA5g_v7nqxJ1293IHFuxzbDiq1XdhJh-_4B7Mqdd8-DzeL96wD1FMy1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PLE%3A+Power+Line+Extraction+Algorithm+for+UAV-based+Power+Inspection&rft.jtitle=IEEE+sensors+journal&rft.au=Shuang%2C+Feng&rft.au=Chen%2C+Xingzhi&rft.au=Li%2C+Yong&rft.au=Wang%2C+Yuebin&rft.date=2022-10-15&rft.pub=IEEE&rft.issn=1530-437X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2022.3202033&rft.externalDocID=9874719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon