Low-Latency Intrusion Detection Using a Deep Neural Network

Intrusion detection systems (IDSs) must be implemented across the network to identify and avoid attacks to counter the emerging tactics and techniques employed by hackers. In this research, we propose a lightweight IDS for improving IDS efficiency and reducing attack detection execution time. We use...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IT professional Ročník 24; číslo 3; s. 67 - 72
Hlavní autori: Ahmad, Umair Bin, Akram, Muhammad Arslan, Mian, Adnan Noor
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington IEEE 01.05.2022
IEEE Computer Society
Predmet:
ISSN:1520-9202, 1941-045X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Intrusion detection systems (IDSs) must be implemented across the network to identify and avoid attacks to counter the emerging tactics and techniques employed by hackers. In this research, we propose a lightweight IDS for improving IDS efficiency and reducing attack detection execution time. We use an RF algorithm to rank features in order of importance and then reduce data dimension by selecting the top 15 important features. We then implement a deep neural network (DNN) architecture to classify anonymous traffic by analyzing TCP/IP packets on the network security laboratory-knowledge discovery in databases (NSL-KDD) dataset. The results indicate that our proposed technique of applying RF to identify important features can improve the DNN-based IDS system’s execution time and performance and has low latency for intrusion detection as compared to other state-of-the-art techniques.
AbstractList Intrusion detection systems (IDSs) must be implemented across the network to identify and avoid attacks to counter the emerging tactics and techniques employed by hackers. In this research, we propose a lightweight IDS for improving IDS efficiency and reducing attack detection execution time. We use an RF algorithm to rank features in order of importance and then reduce data dimension by selecting the top 15 important features. We then implement a deep neural network (DNN) architecture to classify anonymous traffic by analyzing TCP/IP packets on the network security laboratory-knowledge discovery in databases (NSL-KDD) dataset. The results indicate that our proposed technique of applying RF to identify important features can improve the DNN-based IDS system’s execution time and performance and has low latency for intrusion detection as compared to other state-of-the-art techniques.
Author Ahmad, Umair Bin
Mian, Adnan Noor
Akram, Muhammad Arslan
Author_xml – sequence: 1
  givenname: Umair Bin
  surname: Ahmad
  fullname: Ahmad, Umair Bin
  email: msds19036@itu.edu.pk
  organization: Information Technology University, Lahore, Pakistan
– sequence: 2
  givenname: Muhammad Arslan
  orcidid: 0000-0002-9875-557X
  surname: Akram
  fullname: Akram, Muhammad Arslan
  email: arslan.akram@itu.edu.pk
  organization: Information Technology University, Lahore, Pakistan
– sequence: 3
  givenname: Adnan Noor
  orcidid: 0000-0003-1034-0140
  surname: Mian
  fullname: Mian, Adnan Noor
  email: adnan.noor@itu.edu.pk
  organization: Information Technology University, Lahore, Pakistan
BookMark eNp9kEtPwzAQhC1UJNrCD0BcInFO8DpOGosTKq9K4XEoEjfLdjYopSTFdlT13-OoFQcOnHa0-mZXMxMyarsWCTkHmgBQcfW0WL4mjDKWpJBxlvIjMgbBIaY8ex8FnTEaiwCckIlzK0oh57wYk-uy28al8tiaXbRove1d07XRLXo0flBvrmk_IhU2uImesbdqHYbfdvbzlBzXau3w7DCnZHl_t5w_xuXLw2J-U8aGsdTHApWiNAMNqHWhQIDO06Keiapmda6FyalSoqKF1hwMozloxXNWYVZxUZt0Si73Zze2--7RebnqetuGj5LlBRMsRGGBmu0pYzvnLNbSNF4NEbxVzVoClUNRcihKDkXJQ1HBCX-cG9t8Kbv713Ox9zSI-MuLAoCzLP0BNt11JQ
CODEN IPMAFM
CitedBy_id crossref_primary_10_1007_s11276_023_03516_0
Cites_doi 10.1109/LCOMM.2020.3048995
10.1109/ACCESS.2020.2986217
10.1016/j.ssci.2020.104604
10.1016/j.eswa.2019.112963
10.1016/j.sciaf.2020.e00500
10.1007/978-3-030-57024-8_10
10.1016/j.measurement.2019.107450
10.4236/jis.2016.73009
10.1023/A:1010933404324
10.1145/3395352.3402621
10.1109/LCOMM.2019.2937097
10.3837/tiis.2017.10.024
10.1109/MITP.2020.2992710
10.1109/SSCI.2017.8280825
10.1109/ICOSEC49089.2020.9215232
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2022
Copyright_xml – notice: Copyright IEEE Computer Society 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
JQ2
DOI 10.1109/MITP.2022.3154234
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-045X
EndPage 72
ExternalDocumentID 10_1109_MITP_2022_3154234
9811425
Genre orig-research
GroupedDBID -~X
.4S
.DC
0R~
29J
4.4
5GY
5VS
6IK
7WY
8FE
8FG
8FL
8R4
8R5
97E
AAJGR
AARMG
AASAJ
AAVXG
AAWTH
ABAZT
ABJCF
ABQJQ
ABUWG
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AFFNX
AFKRA
AFOGA
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
ATWAV
AZLTO
AZQEC
BEFXN
BENPR
BEZIV
BFFAM
BGLVJ
BGNUA
BKEBE
BPEOZ
BPHCQ
CCPQU
CS3
DU5
DWQXO
EBS
EDO
EJD
FRNLG
GNUQQ
HCIFZ
H~9
I-F
IEDLZ
IFIPE
IFJZH
IPLJI
ITG
ITH
JAVBF
K60
K6V
K6~
K7-
L6V
LAI
M0C
M43
M7S
OCL
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
Q2X
RIA
RIE
RNI
RNS
RZB
TN5
XZL
ZT3
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c223t-9eaa0051b1ebb8a191b638f79df2f6b9c60aa9d08bb41c2061ba462de5d49fc3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819825800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-9202
IngestDate Mon Jun 30 10:46:10 EDT 2025
Sat Nov 29 05:40:16 EST 2025
Tue Nov 18 21:52:01 EST 2025
Wed Aug 27 02:23:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-9eaa0051b1ebb8a191b638f79df2f6b9c60aa9d08bb41c2061ba462de5d49fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9875-557X
0000-0003-1034-0140
PQID 2682921642
PQPubID 32686
PageCount 6
ParticipantIDs proquest_journals_2682921642
crossref_citationtrail_10_1109_MITP_2022_3154234
ieee_primary_9811425
crossref_primary_10_1109_MITP_2022_3154234
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle IT professional
PublicationTitleAbbrev ITP-M
PublicationYear 2022
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref13
ref15
ref14
ref11
ref2
ref1
Neyshabur (ref4) 2017
Aghdam (ref10) 2016; 18
ref17
Najeeb (ref12) 2018; 13
ref18
ref8
ref7
ref9
ref3
ref6
ref5
Breiman (ref16) 2001; 45
References_xml – ident: ref1
  doi: 10.1109/LCOMM.2020.3048995
– ident: ref18
  doi: 10.1109/ACCESS.2020.2986217
– ident: ref6
  doi: 10.1016/j.ssci.2020.104604
– ident: ref9
  doi: 10.1016/j.eswa.2019.112963
– ident: ref13
  doi: 10.1016/j.sciaf.2020.e00500
– ident: ref5
  doi: 10.1007/978-3-030-57024-8_10
– ident: ref7
  doi: 10.1016/j.measurement.2019.107450
– ident: ref15
  doi: 10.4236/jis.2016.73009
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: ref16
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 13
  start-page: 2347
  issue: 6
  year: 2018
  ident: ref12
  article-title: A feature selection approach using binary firefly algorithm for network intrusion detection system
  publication-title: ARPN J. Eng. Appl. Sci.
– ident: ref17
  doi: 10.1145/3395352.3402621
– ident: ref2
  doi: 10.1109/LCOMM.2019.2937097
– ident: ref11
  doi: 10.3837/tiis.2017.10.024
– ident: ref14
  doi: 10.1109/MITP.2020.2992710
– ident: ref3
  doi: 10.1109/SSCI.2017.8280825
– volume: 18
  start-page: 420
  issue: 3
  year: 2016
  ident: ref10
  article-title: Feature selection for intrusion detection system using ant colony optimization
  publication-title: Int. J. Netw. Secur.
– ident: ref8
  doi: 10.1109/ICOSEC49089.2020.9215232
– year: 2017
  ident: ref4
  article-title: Exploring generalization in deep learning
SSID ssj0016448
Score 2.2647626
Snippet Intrusion detection systems (IDSs) must be implemented across the network to identify and avoid attacks to counter the emerging tactics and techniques employed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 67
SubjectTerms Algorithms
Artificial neural networks
Computer hacking
Deep learning
Intrusion detection
Intrusion detection systems
Network latency
Neural networks
Radio frequency
Tactics
TCP/IP (protocol)
TCPIP
Title Low-Latency Intrusion Detection Using a Deep Neural Network
URI https://ieeexplore.ieee.org/document/9811425
https://www.proquest.com/docview/2682921642
Volume 24
WOSCitedRecordID wos000819825800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-045X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016448
  issn: 1520-9202
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MenG6K0yk5eBLr0qxNGjyJOhTG2GGH3UqSpiBIN9xU_O99SbuiKIK3UpK2vC8v733N-wFwbkPGcsVZEAojA9REhipF4yBTQ52HmaHaKN9sQkwmyXwupw24rHNhrLU--MxeuUt_lp8tzKv7VTaQicv8jJvQFIKXuVr1iYHjGb42KtIhySirTjBDKge4CUyRCTKGBDVG9yH6ZoN8U5UfO7E3L6P2_z5sD3YrN5LclLjvQ8MWHWhvWjSQSmM7sPOl3mAXrseL92CsnJv8QR4Ll2-BsJA7u_YBWQXxAQRE4R27JK5uB75jUgaKH8BsdD-7fQiq7gmBQZO_DqRVyqmcDq3WiUJeplHXciGznOVcS8OpUjKjidZRaBjada0izjIbZ5HMzfAQWsWisEdARKRMgm6Pc80ixYXixvA8UVaEEfKTYQ_oRpypqSqLuwYXz6lnGFSmDoHUIZBWCPTgop6yLMtq_DW460ReD6yk3YP-BrO0UrxVynjCJMPVwI5_n3UC2-7ZZcxiH1ooansKW-Zt_bR6OfNr6hNvfser
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKagHp5vidGoPnsS6NEs_gidRx4Z17LDDbiVJUxCkG24q_ve-pF1RFMFbKQkp75eX937N-wA41x6lmQio64WKu6iJFFWK-G4qejLzUkWkErbZRDgaRdMpH9fgssqF0Vrb4DN9ZR7tXX46U6_mV1mXRybz01-DdZ8xSopsrerOwDANWx0VCRGnhJZ3mB7hXTwGxsgFKUWK6qMDwb5ZIdtW5cdZbA1Mv_G_T9uFndKRdG4K5PegpvMmNFZNGpxSZ5uw_aXiYAuu49m7GwvjKH84w9xkXCAwzp1e2pCs3LEhBI7AN3rumModuMaoCBXfh0n_fnI7cMv-Ca5Co790uRbCKJ30tJSRQGYmUduykKcZzQLJVUCE4CmJpGSeomjZpWABTbWfMp6p3gHU81muD8EJmVAROj7GOWMiCEWgVJBFQoceQ4bSawNZiTNRZW1x0-LiObEcg_DEIJAYBJISgTZcVFPmRWGNvwa3jMirgaW029BZYZaUqrdIaBBRTnE30KPfZ53B5mDyGCfxcPRwDFtmnSKCsQN1FLs-gQ31tnxavJza_fUJ_xzK8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Latency+Intrusion+Detection+Using+a+Deep+Neural+Network&rft.jtitle=IT+professional&rft.au=Ahmad%2C+Umair+Bin&rft.au=Akram%2C+Muhammad+Arslan&rft.au=Mian%2C+Adnan+Noor&rft.date=2022-05-01&rft.issn=1520-9202&rft.eissn=1941-045X&rft.volume=24&rft.issue=3&rft.spage=67&rft.epage=72&rft_id=info:doi/10.1109%2FMITP.2022.3154234&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_MITP_2022_3154234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9202&client=summon